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BAIRE PROPERTIES OF LOCALLY CONVEX SPACES

N. BERSCHEID

INTRODUCTION

The property of topological spaces to be a Baire space is of importane in many parts in
mathematics. SO it iS a fundamental tool in the theorems of Banach Steinhaus, the closed
graph theorem 0r the open mapping theorem.

Unfortunately it has bad permanence properties. For example Oxtoby [28]showed that the
product of a Baire space withitself need not be Baire, whichwas extended by Arias de Reyna
[3]. cf. aso [42], to products of two normed Baire spaces. Moreover dense hyperplanes of
Baire spaces need not be Baire, which was proved by Arias de Reyna in [2], cf. also [33].
So it hns become 4 classical tradition in Pure Mathematics to consider properties of locally
convex spaces which are weaker than the property of being a Baire space and which preserve
the applications of the Baire property. In fact, there isa whole hierarchy of such properties,
e. 9. unordered Bairelike, totally barrelled, db, Bairelike, quasi-Baire and more. They were
introduced e. g. by S. Saxon, A. R. Todd, M. Valdivia, W. J. Robertson, I. Tweddle and F. E.
Yeomans in [34, 31, 41, 39].

Spaces with Baire properties are certainly interesting. For instance, Saxon proved that
Grothendieck’s factorization theorem for closed linear maps from a localy convex Baire
space into an L F-spaceremains true for closedlinear maps from a Bairelike space intoan LB-
space. Moreover an interesting classification of LF-spaces is given by P. P. Narayanaswami
and S. Saxon in[27] anda connection to the classical separable quotient problem isgiven by
S. Saxon and A. Wilansky in[37]. In contrast to the Baire property, these weaker properties
have good permanence properties. For instance they are stable under arbitrary products,
quotients, countably codimensional linear subspaces, the 3-space problem and are inherited
from dense linear subspaces by the whole space.

The aim of this thesis is to continue the study of Baire properties mentioned above. More
specificaly, we investigate the behaviour of Baire properties with respect to projective limits,
to the formation of vector valued sequence spaces h(X) and more generally to inductive
and projective limits of Moscatelli type. Finally we give a contribution to a problem posed
by Valdivia: Are complete Bairelike spaces Baire? In fact, we construct a quasicomplete
Bairelike space which is not a Baire space.

In chapter O we first of all give the definitions of the spaces of type h(X) and inductive-
and projective limits of Moscatelli type and summarize their basic properties. Afterwards we
define the Baire propertiesmentioned above and recall some known connections and resullts.
Moreover, at the end of chapter O we present a result about Baire properties of LF-spaces of
Moscatelli type.

Chapter 1 is devoted to the investigation of the property quasi-Baire. These are spaces
which are barrelled and which are not the union of an increasing sequence of nowheredense
subspaces. This last property, called “without S," is treated independently. We give a
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characterization of this property and study its permanence properties. The independence of
barrelledness and “without S, " is shown by examples and we discuss its stability with respect
t" the formation of the bidual. In the main part of chapter | we characterize the quasi-B&-
property of a space X interms of the existence of a continuous norm on the dual (X*, (X', X))
- at least for a large class of locally convex spaces.

In chapter 2 we examine the stability of these Baire properties with respect t” projective
limits. In general they are not inherited even by countable projective limits of Baire spaces.
Next we study projective limits with open linking maps, called strict. For uncountable strict
projective limits we present an example of a strict projective limit of Banach spaces which
is not barrelled. In the countable case we get positive results for the properties barrelled,
“without §,,", quasi-Baire and Bairelike. Fora special class of strict projective limits we can
also present positive results for the properties db, unordered Bairelike and Baire. Moreover
we give an example of 4 projective limit of discrete abelian topological groups which is not
Baire. We close this chapter with 3 positive result on a projective sequence of df-spaces (the
strong dual isa Fréchet space) for the property “without S,”.

In chapter 3 we first investigate spaces of type h(X). We start with an example of a
quasi-Baire space E, such that {_ (E) is not quasi-Baire. For X which satisfies the countable
boundedness condition we can present a positive result for the property “without S, Next
we turnt” the class of Bairelike spaces, whichcontains the following two large subclasses: the
metrizable barrelled spaces and the weakly barrelled spaces. Thefact that h(X) isBairelike, if
X is metrizable and barrelled, is already contained in L. Frerick’s dissertation. We are able t”
prove thar thisfact remains true for weakly barrelled X - at least for A ={__ and ) having the
property of sectional convergence. After that we prove that for infinite dimensional Hausdorff
spaces X, such that the weak dual (X', o(X’, X)) is barrelled, the space h(X) isnot Baire. These
results are then used to give an example of a4 quasicomplete Bairelike space which isnot Baire.

In the second part of this capter we treat projective limits of Moscatelli type. We obtain
positive results for metrizable barrelled spaces and for weakly barrelled spaces, if the linking
map is open. We finally show that in the general case there exist two weakly barrelled
Hausdorff spaces, such that the corresponding projective limit of Moscatelli type is not
barrelled.
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her great support during the last years, especially for many helpful comments, remarks and
suggestions.
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[ would like t” thank U. Beien for her helpful comments, especially during the typing of
the thesis.
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0. DEFINITIONS, NOTATIONS, TERMINOLOGY

In this section we introduce basic well known definitions and recall some properties of the
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corresponding notion. These are first of all spaces of type h(X) and inductive and projective
limits of Moscatelli type. Then we present a hierachy of Baire properties we will deal with in
the future and recollect some important known results about Baire propeties of LF-gpaces At
the end of this section we give afirst partial description of the Baire properties of LLF-spaces
of Moscatelli type.

Now we start with the definition of normal Banach sequence spaces, spaces of type h(X)
and the inductive and projective limits of Moscatelli type. A comprehensive discussion of
the spaces h(X) can be found in[16] and the inductive- and projective limits of Moscatelli
type are studied in detail in[6] and [7].

0.1 Definition:

Let (A, || ||) bea Banach space with the following properties:
1)@ CACuw,
i) the inclusion (A, || |) = w is continuous.
iii) if o € A and € w with &, |> |B.| for all n € N, then f € A and ||| > ||B].
Then we call (A, | ||) @ normal Banach sequence space (nBss for abbreviation). Examples
for such spaces are ((,,, | [|,) with | < p < o0 or (cg, | ||=)-
A nBss (A, ||||) has the property of sectional convergence if for all x = (x,),en ® A
it is true that (X Je<p » (O 5 ) "= xin (A, || ||). Spaces with sectional convergence are for
example ({,, | [|,) with | < p < ocor (cp, || [|) but not (O, || ||sc).
Now let in the following (A, | ||) be anBss and let (X, &) be a locally convex space (Ics).
Then ¢s(X) denotes the set of all continuousseminorms on X, and for p e ¢s(X)let

A(X‘P) = A{(X,]))”E_\:) = {(xn)nél‘\? € XN : (P(Xn))ne'N € 7\}

be provided with the seminorm p : (x,),en — ||(p(xu))nen ||- Furthermore we define

h(X) := ﬂ)\(x,p)

pecs(X)

and h(X) carries the initial topology with respect to the inclusion (h(X) = A(X, p))pecsx)-
We put
}‘((X)Azn) = {(IR)RZH € HX . ((O);\ < s (Xk)kz,,) € A(X)]

k>n

provided with the induced topology of h(X). Now let X, Y be Ics with continuous inclusion
Y « X. Then we put

E,: = E(Y=XN:= J]XxMYe)
k<n

provided with the product topology. This defines an inductive seguence of Ics with continuous
inclusionsE, , & FE, . |"or allneNadwe put

E = E(Y i X,?\) = indnENEn(Y © X,A)
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Then E is caled the inductive limit of Moscatelli type with respectto Y = X and A. If X
and Y are Bunach or Fréchet spaces, the E isan LB- or an LF-space. respectively and isalso
called an LB- or LF-space of Moscatelli type.

Now let X and Y beles andlet f : Y — X be a continous linear map. We define

F,:= H Y ox A(X)izn)
k<n

provided with the product topology. Moreover let

Enan+l FiH—l - Fn (“’k)REN = ((-’\‘k)k < m.f(xn); (-‘.k)k > n)

This is a welldefined, linear, continuous map and ((F,,),en, (€u.n+1)nen) iSa projective sequ-
ence of Ics, such that we can define F := proj, e (F,, g,0e1)- F is called the projective limit
of Moscatelli type with respect to (A, |||]), ¥, X and f. We write for this F(Y LX, A). If X
and Y are Banach spaces, the also F,, is a Banach space (see the remark after the definition),
such that F isa Fréchet space. Then F isa also called a Fréchet space of Moscatelli type.

Now we recall some bhasic properties of these spaces, see [6], (7] and [Ih] for proofs.

0.2 Remark.
For every nBss (A, || |) and Ics X the inclusions €D,cp X <@ h(X) < [],ex X are
continuous. A basis of the zeroneighbourhood (0-nbhd) filter of h(X) is given by

AU) = {(er € MX) ¢ [|[(po(xa)uen]] < 1}

for U =TU € Uy(X), where Uy(X) denotes the set of all O-nbhds in X. h(X) is Hausdorff,
(semi-)metrizable, (semi-)normable or completeif andonly if X has the same property. For Ics
X and Y witha continuouslinear map g:Y — X the continuous map g : (x,)uex — (20X )nen
maps h(Y) continuously into h(X). If X is a reflexive Fréchct space and A is reflexive then
also h(X) is reflexive.

For the inductive limit of Moscatelli type. we have the continuous inclusions A(Y) =
E(Y = X,A) < h(X) and the continuouslinear mapping

o PX xh(Y) — EY = X,A)
LEN
((eker, Yidier) — (00 + Yidkew
which is also surjective and open [24, page 176], such that we will write
EY = XN =PX+AY)
keN
with the meaning above behind and get a description of the basis of the 0-nbhd filter by

(D Vi +V: Vi € Un(X),V € Up(A(Y))}

neN
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For projective limits of Moscatelli type F := F(Y L X, A) we will also use the following
representation that F is topologically isomorphic to

H = {(_\‘n)neﬁ € YN X (f(_\',;))neN [ A(-X)}

provided with the initial topology with respect to the inclusion H <[],y Y and H —
AX), (x)wen — (f(x)uens see [[1Proposition 3.1.1.]Kh. A basis of the 0-nbhd filter is given
by

[TV < {0ae Mz @ 1Ok < PFER2I < 1}

n<n
with / =TU € Uy(X), V € Up(Y)and i1 € N. The spaces F,, are Hausdorff, metrizable,
normable, complete if und only if X and Y have the same property. F(¥ -£.X,A)is Hausdorff,
metrizable or complete if X and Y have the same property. If we replace X by f(¥) we get the
same space F. such that we can suppose f (0 have a dense range orto be surjective.

Now we introduce some Baire properties. These are well known and a complete description

of them can be found in [29,9].

0.3 Definition.

Let (E, 3) bealcs. Then (£, 3)1s called

i) barrelled, if every barrel U in (E, 3) is a 0-nbhd in (E, ).
11) quasi-Baire, if (F, ) 1s barrelled and E is not the union of an increasing sequence of
nowhere dense linear subspaces of (E, ).
iii) Bairelike, if one of the following equivalent conditions holds:
a) If (A,)uew is an increasing sequence of closed absolutely convex subsets of E, such thnt
it’s union spani E, than there exists an n € N such that A,, € Ly(E, 3).
b) E cannot be covered by anincreasing sequence of rare absolutely convex subsets of E.
¢) E is notthe union of an increasing sequence of nowhere dense absolutely convex subsets.
iv) (db)-space, if the following is true:

If E is the union of an increasing sequence of subspaces(E,),en,then there isanneN
such that E,, is dense in (E, 3) and (E,, 3 N E,) is barrelled.

v) unordered Bairelike, if E is not the union of a sequence of nowhere dense absolutely convex
subsets
vi) Baire space, if the countable intersection of open subsets which al-e dense in (E, 3) is dense

in (E, S).

The properties i) and vi) are classical, ii) and iii) are due to S. Saxon in [34], iv) also
known as suprabarrelled. were independently introduced by W.J. Robertson. I. Tweddle, F.
E. Yeomans in [31] and M. Valdiviain [4]1]and v) is due to A. R. Todd and S. Saxon in
[39]. For further comments and historical notes see [29, Chapter 9.4]. The importance of the
properties ii-v) arises in their applications e.g. in closed graph theorems [29, Chapter 9.1 |
or in measure theory, see [ 15] for details. Moreover they have good permanence properties.
In the following remark we summarize some important properties of them. Pl-oofs and an
intensive discussion can be found in [29]
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0.4 Remark.

The properties i)-vi) are stable under quotients; moreover they are inherited by spaces
from a dense linear subspace. The properties i)-v) are stable with respect to countable
codimensional linear subspaces, the 3-space problemand arbitrary products. Furthermore the
following implications are true:

Baire = unordered Bardike = (db)-space

= Bairdike = quasi-Baire = barrelled

[29, Chapters 9.1, 9.3] establishes all the implications and provides counterexamples, which
show that none of these arrows can be reversed. For metrizable spaces I. Amemiya and Y.
Komura showed in [4, Satz 1] the equivalence of countably barrelled and Bairelike. This
theorem was extended by M. Valdivia in [40] to the statement, that every {..-barrelled
space whose completion is Bairelike is Bairelike, where a Ics E is called {.-barrelled if
every weakly bounded sequence in E' is E-equicontinuous [29, Definition 8.2.13]. Clearly
“countably barrelled” implies “{ . -barrelled”.
For LF-spaces one has the important result of P. P. Narayanaswami and S. Saxon [27, Th.

3] that an LF-space is Bairelike if and only if it is metrizable. On the other hand one has the
following classification which can be found in[23, Corollary 7.2.10].

0.5 Proposition.

For an LF-space (E, ) = ind,zx(E,, ;) the following are equivalent:
i) (E, ) isa Fréchet space.
i) (E, 3) is a Baire space.
iii) (£, 3) is a (db)-space.
iv) There is n € N such that £, = Ej.. for all £ > n.
Altogether it is true that every metrizable incomplete LF-space is Bairelike but not a (db)-
space. An example of an incomplete LF-space can be found in[ |1, page 285]. Now we prove
an extension of Proposition 0.5 for the class of LF-spaces of Moscatelli type.

0.6 Proposition.

Let X and Y be Fréchet spaces with conunuous inclusionY = X and let (A,
nBss. Then for E = E(Y = X, A)the following are equivalent:
i) E is a Fréchet space.
ii) E is a Baire space.
iy =X
iv) E is Bairelike.
v) E is metrizable.
Proof:
The equivalence of 1), i) and iii) follows immediately by Pl-oposition ().5 and iv) < v) by
the theorem of P. P. Narayanaswami and S. Saxon mentioned in Remark 0.4. As ii) = iv)
holds in general, it suffices to show jv) = iii).

|||) be a
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We suppose X # Y, hencetheinclusion Y = X isnot nearly open. Then there exists a

O_—(l)]bhd. U= my in 'Y such that the closure UX of Uin X isnot a 0-nbhd in X and hence
U = m We put p, ;= ||(5KIJ)RENH and

a= | TIx <157 ne

k<n k>n

for all n € N. Then (4,),cx is an increasing sequence of closed, absolutely convex and
nowhere dense subsets of E. To get a contradiction there is only to show that E= |,y Ax

holds. S let x = (x,).cw € E be given. Then there exists an » € N, such that (x;)», €
A(Y)y>n) and consequentely there is m € N with ||((0); <., (Puxe)i=n)ll < m. Let now
j = r:=max{n, m} be given. Then

pux)p; = |Gupux)ien| <

0% < s (o izn)|| <m <1 <

such that x; € }L;U C L{)UX and thus x € A, Since x was arbitrary, we are done.
g g

1. QUASI-BAIRE SPACES

Our next aim in this section isto investigate quasi-Baire spaces. For thispurpose it isquite
useful to treat the following property “not S,” separately, which isa part of the quasi-Baire
property and whichis infact due to[37] where a connection to the separable quotient problem
IS given.

1.1 Definition.

A lcsE hasS§,,il" there isa strictly increasing sequence of closed linear subspaces(E,),cx
inE, suchthat E=|{J,  E..
We say that E contains ¢ (complemented), if there is a (complemented) subspace L C E,
which is topologically isomorphic to .
From the definition of S, and quasi-Baire the following equivalence follows directly
i) Eis quasi-Baire.
ii) £ is barrelled and has not S,,.
An important characterization of quasi-Baire spacesis the following proposition.

1.2 Proposition.

For a barrelled Ics E the following are equivalent:
i) E is not quasi-Baire.
ii) E contains ¢p complemented
i) E contains a closed subspace of countably infinite codimension.
The equivalence | < ii) is due to J. Bonet and P. Pérez Carreras in[9, Lemmal] and the
whole equivalence can be found in [27, Theorem 1]. For genera Ics the following result
holds.
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1.3 Proposition.

Let (E, ) be a Ics. Then the following are equivalent:
i) (£, §) has S.

i) (E, 3) contains a closed subspace of countably infinite codimension.

Proof:

‘i) = 1)”

Suppose E contains a closed subspace L of countably infinite codimension. ThenE / L is
Hausdorff and containsa strictly increasing sequence (M,,),cy Of subspaces with dimM,, = »
and E/L =],y My Since E/ L is Hausdorff the subspaces M, are closed such that also
L,:= ¢~ '(M,)is closed, where ¢ : E — E /L isthe canonical quotient map. Furthermore
the subspaces L,, are increasing and E = | J, ., L, holds. Thus (£, 3) has S,.

) = ii)”

Suppose that (E, ) has S,. Thenthere isa strictly increasing sequence of closed subspaces
(Laen in (E, J) with E = J, . L., Thus we can choose a sequence (x, ),ep in E with X, €
L,+ ,\L, for alln€ N. With the theorem of Hahn-Banach we get that for all n€ N there exists
fy € E''such that f, L,, =0 and f,(x,) = 1. Consequently f : (E, ) — w, x — (£,(x)en
is welldefined, linear and continuous. Since (L ),y iS increasing with E = U”E',\I L, it
follows that f(E) c @ and because of f(x,) = (fi(x,) ooy [ (x,),1,0 ,..) for all n € N we
have f(E) = . Thus kerf is closed and of countably infinite codimension in (E, &), which
establishes ii). a

Putting Proposition [.3 and [29, Proposition 8.2.16] together we obtain the following
extension of Proposition 1.2.

1.4 Proposition.

Let (E, 3) be an t.-barrelled Ics. Then the tollowing are equivalent:
i) (E, 3) has S.
ii) (E, 3) contains a closed subspace of countably infinite codimension.
iii) (£, ) contains (¢, T(¢, w)) complemented.
In the following proposition we remark some permanence properties of S,-spaces

1.5 Proposition.

a) Arbitrary products of spaces without S, are without S,. The proof 1 exactly the same as

the one for quasi-Baire given in [29, Theorem 9.2.6].

b) Let (£, ), (F, R) be les. (E, ) without S, and let f : (E, &) — (F, ) be continuous,

linear and surjective. Then also (F, ) is without S,,.

Proof:

Let (F,),en be an increasing sequence of closed subspaces of (£, &) with F= | |, F...
Then E= U”E,\,f_l(F,,) and since (E, 3) has not S, there isn € N. such that E= f~'(F,).
Asf is surjective F = F,, and hence (F, ®) is without S,. O

Consequently quotients of spaces without S, are without S,.
c)Let (E, 3) bealcsand L C E a dense linear subspace. If (L, 3N L) is without S, then also

(E,3) is without §,;.

Proof:
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Let (E,),en be an increasing sequence of closed subspaces of (E, &) with E=J, ey E,.
Then (E,; N L),ey is an increasing sequence of closed subspaces in (L, N L) with L =
U”Eﬁ, E,NL ThusL=E, NLforsomen¢ N andsincel isdensein (E 3)itisE =E,.0

Of course the other direction IS not true (see @ C w). AS a consequence we get that the
completion E is without S, if E is without S,.

d) Let (E, Q) = ind,en(E,, &) be a countable inductive limit of Ics without S,. Then the
following are equivalent:

i) (E, ) is without §,,.

ii) E= E, for some n € N.

Proof:

The implication i) = ii) follows directly from the definition of S,. To get ii) = i) let
L be a closed subspace of countably codimension in (E, 3). Then L N E, isa countably
codimensional subspace of E,, and since E, is without S, it follows from Proposition 1.3 that
L N E, is of finite codimension in E,,. Then £, =L N E,, & M for some finite dimensional
subspace M C E,,. From this we get

E=E,=LNE,+MCL+M

CL+M+{0}CL+M+LCL+M

Thus L is of finite codimension and we are done. O

Part d) of Proposition | .5 is an extension of a result of [36, page 67 | where d) is mentioned
for LF-spaces. As an application of this to inductive limits of Moscatelli type we get the
following corollary.

1.6 Corollary.

Let (A,||])) be a nBss, Y be a barrelled metrizable Ics and X be a quasi-Baire space with
continuous inclusion Y «  X. For the corresponding inductive limit of Moscatelli type
(E, Q)= E(Y » X, A)thefollowing are equivalent:

i) (E 3) is quasi-Baire
i 7 = X

Proof:

Since Y 1s metrizable and barrelled also h(Y) is barrelled [16, Corollary 6.3], such that
E, = ]_[K”X X A{(Y)>,) is barrelled for all n € N. Consequently (£, 3) is barrelled and
thus (E, ) is quasi-Baire if and only if (E, &) is without S,. From Proposition 1.4 d) it
follows that this holds if and only if E = E, for somen € N. Thisholdsif and only if )7’( =X,
as it is immediately seen. g

In connection with Proposition 0.6 we get with the previous corollary the following
examples which distinguishes between Bairelike and quasi-Baire in the class of LF-spaces of
Moscatelli type.

1.7 Corollary.

Let (A, || ||) be a nBss and (E, ¥) := E(Y = X, A)be an LF-space of Moscatelli type.
Then the following are equivalent:
i) (E, ) is quasi-Baire but not Bairelike.
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Y =XandyY #X.
The following example shows that the properties to be barrelled or to be without S, are
independent of each other.

1.8 Example.

a) The space @ is and example of a barrelled space which has .

b) An example of a countably barrelled space which is without S, and is not barrelled is
the following. Let Y, X be Banach space\, such that Y ¢ X and the inclusion Y = X
is continuous, has proper dense range but is not open onto the range. Furthermore we
suppose that theinclusion (X*, 3(X", X)) = (¥, 3(Y’,Y)) has dense range. Let (F, ) =
F(Y = X, {,)bethe corresponding projective limit of Moscatelli type. Then (F',3(F', F))
is countably barrelled, without S, but not barrelled. Moreover F is not distinguished and
the bidual (F”, B(F", F’))y admitsa continuousnorm.

Proof:

As F ismetrizable, (F’, B(F', F)) is countably barrelled and not barrelled since F is
not distinguished [6, Corollary 2.5]. As the inclusion (X', 3(X’, X)) = (¥, B(Y', Y))
has dense range, it follows from Corollary | .6 that the LF-space of Moscatelli type E :=
E(X', BXX, X)) = (Y, B, Y), L) is quasi-Baire and as the identity id : E — (F', p
(F', Fy)is continuous, it follows by Proposition 1.5 b) that (F/, 3(F’, F)) iswithout §,,. Since
theinclusion Y « X has dense range, it follows by [6, Corollary 2.16] that (F”, B(F", F))
admitsa continuousnorm. a

The hypothesis supposed in the b) are satisfied for example for Y = ({5, || ||2) and
X := (co, || ||sc)- The following example shows that there is even a weak metrizable space
without S, which is not barrelled.

¢) Let(X, 3) bea Fréchet space such that (X', o(X’, X)) isseparable andlet Y C X' withY # X’

a countably dimensional and dense linear subspace. Then (X, o(X,Y)) ismetrizable, without

S and not barrelled.

Proof:

AsY # X' and (X, ) is a Fréchet space the identity id : (X, o(X, ¥)) — (X, S) is not
continuous, such that (X, o(X, ¥)) cannot be barrelled. Since Y is countably dimensional
(X, o(X,Y)) is metrizable and without S, as (X, 3) is without §,. a

The hypothesis in ¢) are true for example for (X, 3) = ({1, |-]|2) and Y = . In this context
we remak now some interesting connections between the property S, and the existence of
continuous norms on the dual spece

19  Proposition.

Let (X, 3) be a lcs with S, then (X', 3*(X’, X)) does not admit a continuous norm.

Proof:

As (X, 3) has S, it follows from Proposition 1.3 that there exists a continuous,

linear surjection f : (X, 3) — (@, o(y, @)). Thus we get that the transpose f' :
(¢, o(p, ©) — (X', o(X’, X)) is injective, linear and continuous. Since (g, o(p, @)) is
metrizable and consequently quasibarrelled, we obtain the continuity of /' : (¢, o(p, @)) —
(X', B*(X', X)). As (9, o(, @)) does not admit a continuous norm also (X, *(X’, X)) does
not admit a continuous norm. a
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110 Remark.

The other direction in the previous proposition does not hold, since Y. Kdmura constru-
cted in [22] a Fréchet space X which is not separable, but in which every bounded sub-
set is separable. In particular for every B = 'B C X bounded, one has F]X # X and
X', BX’', X)) = (X', (X", X)) does not admit a continuous norm. In fact if (X, B(X', X))

admitted a continuous norm. there would exist a bounded subset B = B C X, such that
ﬂneﬂ ”B° = {0}, hence

X_{()}"_(ﬂ B°) _rUnB ~ Bl

nelN nenN

which isa contradiction.

Furthermore one cannot substitute 3*(X’, X) by (X", X)
where ||-|| is an arbitrary norm on ¢, is a DF-space which has S,;, but ((¢@, ||-||)’,
isaBanach space. In the following proposition we presenta positive result for an equivalence.

1.11 Proposition.

Let (X, ) bea locally complete space, such that the strong dual (X', B(X’, X)) isa Fréchet
space. (Such spaces are called df-spaces, see [12.4.].) Then the following are equivalent:
1) (X, 3) is without §,.

ii) (X’, B(X’, X)) admits a continuous norm.
iii) (X', B*(X’, X)) admits a continuous norm.

Proof:

Because of [Corollary 10.2.2] and Proposition 1.9 it is enough to prove i) = ii). SO we
suppose (X', (X", X)) not to admit a continuous norm. As (X, ¥) isa df-space, (X', (X', X))
is a Fréchet space without continuousnorm, such that it follows from|[ 18, Theorem 7.2.7] that
(X*, B(X’, X)) contains w as a topological subspace. Since w is minimal, it is a topological
subspace of (X, g(X’, X)) and even complemented in (X, o(X’", X)). Thus (X, ) contains a
closed subspace of countably infinite codimension and hence by Proposition 1.3 it has §,,,
which is a contradiction to i). a

As an application of Proposition| || we cansupplement Example 1.8 b) by more countably
barrelled spaces without S, which al-e not barrelled.

1.12 Proposition.

Let (E, 3) be a Fréchet space which is not distinguished, such that (E”, 3(£”, E)) admits
a continuous norm. Then (B, B(£’, E)) is countably barrelled, without S,,, but not barrelled
and hence not quasi-Baire.

Proof:

Since (E, &) is not distinguished, (E, B(E’, E)) is not barrelled, but countably barrelled
since (E, ) is metrizable. As (E”, B(E”, E)) admits a continuous norm from Proposition
1.11 it follows that (E’, B(E’, E)) is without . a

In the next example we will show that S, is neighter inherited from a space by its bidual,
nor from the bidual by the original space.
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1.13 Example.

Let (E, %) = E(fy & ¢, (1) be the LB-space of Moscatelli type with respect to (€2, || [I)
and (¢y, || |[|~)- Then (E, 3) is without §,,, but its bidual (E”, B(E”, E')) has S,.

Proof:

Since {, is dense in (cy, || ||») it follows from Corollary 1.6, that (E, ) is quasi-Baire
and hence without S,. Moreover follows from [6, Proposition 2.6] that the strong dual
(E', (£, E)) is topologically isomorphic to the projective limit of Moscatellli type F({; <
{5, {») =: F withrespect to ({;, ||-]|,) and ({4, ||-||»), which isdistinguished by loc. at., whence
(E", B(E", E'Y) = (F, B(F’, F)) is an LB-space. Thus the identity id : (E”, B(E", E')) —
(F', B(#', F)) isa continuous, linear bijectionbetween LB-spaces and hence open by the open
mapping theorem for LF-spaces [29, Theorem 8.4.11]. Now it follows from [6, Proposition
2.31. that (F', B(F’, F)) is topologically isomorphic to the inductive limit of Moscatelli type
E(l; = (., ) withrespectto({y, ||-]]2)and ({s, ||-]ls0), such that altogether (E”, B(E" | E"))
is topologically isomorphic to E({; = (., {»). But since {, is not dense in ({, || ||~ ), we
get from Corollary 1.6, that E({, = (.,{)hasS$,. a

Furthermore (¢, o(, ¢)) isan example of a space which hasS,, but its biduel (w,o(w,))
is a Baire space, hence without §,,

By [6, Proposition 2.14] a projective limit of Moscatelli type F(Y £ X, A) with respect
to Banach spaces Y, X admits a continuous norm if und only iff is injective. In the next
proposition we extend thischaracterization toIcsY and X.

1.14 Proposition.

Let X, Y belcs, f : Y — X be a linear continuous map and Ih, ||||) be an arbitrary nBss.
Then for F := F(Y -L:X, A) the following are equivalent:

i) f(Y) admits a continuous norm ad F s injective
ii) F admits a continuous norm.

Proof:

We may assume that X = f(¥). Let p be a continuous norm on f( Y). Then p(x) :=
|(p(x:))new]| is @ continuous norm on h(X). Furthermore the map F1F—h(X), Onlnen —
(f(va)uew is continuous, linear and injective, such that we get altogether that p o fisa
continuous norm on F.

Now let p be a continuous norm on F. Since W := {y € F: p(y) <1} € Uy(F), there is
neN and U € Uy(X) such that

{((0)k<m()’k)k2n) €F: H((O)k<ln(pU(f(yk)))kzu)” < I} c W

Assume that there is y € Y\{0}, such that f(y) = 0. Then for all (a)rey € @ it is
(O <, (Pu(foay)izn) = 0, hence {((0) < 4, (eydizn) © (Qu)een € @} isalinear subspace
of F which is contained in W, a contrudiction to y # 0. This proves the injectivity of f.
Moreover py is a continuous seminorm on X, which is a norm. In fact, if py(f(y)) = O for
some y = Y, then p(d,xy)ken € W for every p € K. But since W contains no linear subspace
different from {0}, we get y = 0. a



Baire Properties of Loc allv Convex Spaces 239

1.15 Remark,

Condition i) in Proposition |, 14 cannot be substituted by
[ )] X admits a continuous norm and f is injective.

even if we assume f(V) to be dense in X. In fact it suftices to present a (metrizable) Ics
Y with continuous norm, whose completion X := ¥ does not admit a continuous norm (see
Example 1.16). Then F(Y = X, A)hasa continuousnorm, but X not.

1.16 Example.

There exists a Fréchet space X without continuous norm, which contains a dense linear
subspace Z C X which admits 4 continuous norm.

Proof:
Let ¥ be the usual Fréchet space topology on w and let p be a Banach topology on w. This

is possible since w and .. both have (algebraic) dimension card(R)[29, Theorem 2.2.4]. We
denote by 3 A g the final locally convex topology on w with respect to (id : (w, 3) — w)
and (id : (w, p) — w). .

First of all we prove that L ;= W‘m) 15 finite codimensional in w. In fact from | 12,
Lemma [] we obtain that

g (w, p)x(w, ) — (W, o AN,y = x+)

is linear, continuous and open. As{(w, §) x (w, 3) is complete and metrizable, (w, 3 A ) is
complete and semimetrizable. Now let M be an algebraic complement of Lin w. Thenwe get

that for the quotient map ¢, : w — w /L the bijective restriction ¢, : (M, (3 A )N M) —
(w, I A p)/L is a topological isomorphism. Thus w = L £ M and since L is closed
in (w, g andin (w, ¥), (w, ) / L and (w, ) / L are also complete and metrizable. By
the closed graph theorem we get that the identitiesid : (w, p) /L — (W, S A p) /L and
id :(w, )/ L—(w,SAp) /L are topologically isomorphic, such that altogether

S/ L=p/L=0np)/L.

As p / Lisnormed and 3 / L is weak topologically, is follows that (w, &) / L is finite dimen-
sional.

Now we define A- = {(x,-x)cwXw: xew}and Z:=A- + M x M and we
prove, that Z is dense in X = (w, ) x (w, ). SO let (a,b) € w x w, U € Uy(w, p)
and V€ Uy(w, I) be given. Since ¢ is a quotient map, U + V is a O0-nbhd in (w, S A ).
As M is densein (w, S A p), we get that (¢ + b + U + V) NM # ). Thus we can find
zeEMyelU,veVwithz; =¢q+ b+ y+ v. Consequently

(ab)y=(a+u+z,—(a+u+ 7))+ {(-z2)

and hence ((a, )+ U xV)yn Z # (),

Finally we have to show that there exist a continuous norm on Z, but not on X. Since
(w, &) is a complemented subspace of X, there can’t exist a continuous norm on X. Now et
p: X — [0, <[, (x,y) — |[¥]., where | [/, IS a continuous norm on {w, ). It is easy
to see that p |4 is a continuous norm. As we have that (M, S A p N M) is Hausdorff and
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finite dimensional, there exists a continuous norm || || on (M, S A p N M). Thus there isa
0-nhhd TV = Vin (w, 3 A @) with VM C {x € M : ||x|| <1} = U. Consequently py is a
continuous seminorm on (w, 3 A ) and since py(x) = ||x|| forali x € M. it is a continuous
norm on (M, 3A N M). Thus py o ¢ isa continuous seminorm on X and hence also

[ X — [0, oc[(x,¥) = (py o @)(x,¥) + plx,y)

is a continuous seminorm on X. Now we will show that it is a continuous norm on Z, Clearly
it is a continuous seminorm on Z.  let (0.0) # (x,y) € Z he given. Then there exists
(u, v) € M x Mund (w, —w) € A_ with (x,¥) = (u, v) + (w, —w). If (u, v) = (0, 0) we get

w # 0 and hence /(x,y) > p(w, —w) > 0. If (u, v) # (0,0) we may assume (i, v) € A- such
that ¢(x, v)=u+ v+ 0 and hence {(x, y) > pyv(u+v) > 0. Thus! is a continuous norm on Z
and we are done. =

2. PROJECTIVE LIMITS

In this section we examine the stability of the Baire properties defined in Definition 0.3
under projective limits. As every complete Icsis the projective limit of Banach spaces, these
properties are not inherited hy projective limits in general. But even for countable projective
limits this is not true, since W. Roelke et. a. [32] constructed examples of countable
projective limits of separable, normable Baire spaces, which are not barrelled. Analogous to
these examples we construct in the following example countable projective limits of Baire
spaces, which has §,, and are not { . -barrelled.

2.1 Example (cf. [S, 2.11)

Let (X, ) be a Hausdorff Ics containing a dense linear subspace Y of countably infinite
codimension, such that (¥, 3 NY) isa Baire space.

Such a space can be found in every infinite dimensional Hausdorff locally convex Baire
space X. In fact, let X be an arbitrary locally convex Baire space of infinite dimension. We
choose alinear subspace Z io X, such that dimX / Z is countably infinite and a cobasis(x, ),en
of Zin X. Thus X = |J,y L.y Where L,, = Z + [x}, ., x,] for all n € N, whence L,, is not
meagre in X for a suitable n € N. Consequently L,, is a dense Baire subspace of X, cf. [32,1].

Let again (x,),=x he a cobasis of Y in X. Then for every n € N the topology D, of the
topological direct sum (¥ + [x,,: m> n]) & [x|,.,x,] is a Ics Baire space topology on
X und D, 2> D,. The projective limit of the projective sequence (X, Durer (idx)m>n)
of Baire spaces is topologically isomorphic to X provided with the supremum topology
D =V, ey Du. which has §,, hecause Y isa closed linear subspace of (X, D) of countably
infinite codimension.

Furthermore (X, D) is not ¢~ -barrelled. For each n € N there is ¥, € (X, D,), such that
Yy |y ,m>ap= 0 and ¥,(x;) = I for all | < j < n. Then clearly {¥, : n €N} C (X, DY
is pointwise bounded, but not equicontinuous. In fact the space L =[x, : m € N] provided
with D n L is topologically isomorphic to (¢, a(¢, ¢)) (transitivity of the initial topology),
such that for all x =3, ., o, € Lit1s true that lim, . W, (x) = >_,en & and (1 )yen € @
and thus we are done.

Now we examine a special class of projective limits. which are called strict.
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2.2 Definition.

We call a projective system of lcs((X;, Siier, (fii)r < i) trict, if the linking maps /i, are open
forallk <i,i €.

For countable / this definition coinsides with the definition of a strict projective sequence
(E)nens (Pumdm>n) of [ 13]. Inthe following we present some connections between projective
systems with open linking maps and such with open projections

2.3 Remark

Let (X, X) = proj;,((X;, I;), (fii)i < ;) be the projective limit of a projective system of Ics

(X;, Si)ics. We consider the following statements:
i) the canonical projections pr; : (X, &) — (X;, <& ) are open for all i €1,
ii) the linking maps fi; © (X;, 3) — (X, 3;) are open for all k < i with i,k € 1.

Then i) = ii) is always true whereas ii) = i) is true if the projections pr; are surjective for
alli € 1.

Proof:

i) = ii)

Let k,i € I with k< be given. Furthermore let {/ be a 0-nbhd in (X;, ;). As pr;
is continuous, we get pri'(U) € Up(X, 3) and since pry is open we get pri(pri (U)) €
Un(Xi, Fr). Now let vy € ;)r-,fI(U) be given. As pri(y) = fu(pri(y)) and pri(y) € U we get
pri(y) @ nU) ad thus fi:(U) D pri(pri— I(U). sich that f;; is open.

i) =1i)

Let the canonical projections be surjective and the linking maps be open. Furthermore
let i €/ and U € Uy(X, ) be given. As § is the initial topology with respect to (pr;);e;
we obtain that there is k € J and V € Uy(Xy, Sy) with pr,j'(V) C U. Without loss of
generality we may assume k > i, As fi is open we get fx(V) € Uy(X;, I;) and since
[J?‘,'([JI‘A._!(V)) :f}k(}J."k(]Jf'k_l(V))) we get with the surjectivity of pry that

pri(U) D pr,-(pr['(V)) :ﬁk(prk(pr;l(‘/)))
= fu(V) € Un(Xi, &)

and thus pi; is open. a

It is easy to see that the linking maps f; are surjective if the canonical projections pr; d-e
surjective. For a projective sequence (X, ) = proj,cy(Xx, S¢) of Ics the statements i) and
i) are equivalent. In fact it is enough to prove that the canonical projections are surjective,
So let v € X; be given. As the linking maps are surjective, we can find X+ € X1 with
Sex+1(eg1) = xi. Inductively we obtain an x ¢ X with pr,(x) = x, = f,41(x,41) for all
n € N and altogether pry is surjective. This shows that the Definition 2.2 is compatible to
the definition of a strict projective sequence given in [29, Definition 8.4.27], cf. also [13,
page 549/550]. For an uncountable set / the statements i) and ii) are not equivalent, as the
following example shows.
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24 Example.

There exists a projective limit Z = proj, ¢ x (Y, pxr) of Banach spaces Yx with open linking
maps, such that the canonical projections are not surjective.

Proof:

Let X be a locally compact Hausdorff space which is not normal. Such a space can be
found in [14, Example 3.3.14]. As X is not normal. there exists closed not empty subsets A,
B ¢ X with AN B =0, such that for every open subset I/ and V in X with AC [/ and B C V,
we have U NV # (). Consequently there exists no continuous function f: X — R with
f |4=landf |p= 0. For every compact subset K ¢ X we define

Ye :={f: K — R :f is continuous and 3, cxf

ank= & |pnk= O}

A standard proof shows that Y is a closed, linear subspace of (C(K), | ||.) and hence
(Yx, ||| ) is a Banach space for every compact subset K ¢ X.

Now let [ := {K C X : Kis compact}. [ is directed by inclusion “C”. Furthermore for
every K, L € J with K C L the map

L (Yo [ se) — (Y, 1 I )f — fIR

1s welldefined, linear and continuous s it is norm decreasing. Moreover pyy = id and for
KCLCMwith K, LM € [ itis true that pgr oy = pru.

The maps pg; are surjective. In fact, let / : K — R be a continuous map with f [snx=¢
and f |png= 0 for ¢ €R. Then the function

flv) xek
‘Q:KU(AQL)U(BHL)——*R.\"H{C YeANL
0 rxe BNL

is welldefined and continuous [Proposition 2,1.13]. As Lis npormalund K U(AN L)U(BNL)
is closed in Lit follows by the extension theorem of Tietze-Urysohn [14, Theorem 2. | .8], that
there exists a continuous extension ji: L — R of g. Thus 1 €Y, and pg;(h) = f, such that
PkL is surjective.

As (Y1, || [l) and (Y, || - || < ) are Ban:lc 1spcesave get from the open mapping theorem,
that p. is also open. Altogether the spaces (Y, ||| <) with the linking maps pg;, for K C L
with K, L €1 define a projective system of Banach spaces with open linking maps.

Finally we show that the canonical projections Z := proj, ,((Yr, || |ls), (Pxi)kcr) —
(Yk, ||| <) are not surjective. So let @ € A and b € B. As X is Hausdorff K := {a,b} is
compact in X and

b K — R av—|
br—0

is welldefined and continuous with ) |,~x=land h |znx=0, suchthat j € Y. Suppose
that the canonical projection pg : Z — Y, (fy)re) — fx is surjective. Thus there exists
(fL)ier € Z with fy = h. Clearly

f i X — Ry — fr(x)forx € L
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is welldefined and also continuous, as X is locally compact. It is easy t” see that f |4=1and
T |3= 0. But thisisa contradiction to the choice of A and B. Q

We would liket” remark that Z is topologically isomorphic to C(X) with the compact open
topology, cf. also [18, Proposition 3.6.3], where for a completely regular Hausdorff space
X such a projective limit is contructed in order t” represent the completion of C(X) with the
compact open topology.

In the following example we present a projective limit of Bawch spaces with open canonical
projections, which is not barrelled. Thus in general we cannot expect “good” permanence
properties for strict projective limits.

25 Example (cf. [5, 2.2].
Let / be an uncountable set. We consider the projective system of Banach spaces
(€1 (1))yc 1 Jeoumanie With respect to the natural projections
0(K) — G xiex — (iies(J C K C [, K countable)

as linking maps. Let 3 denote the initial topology on (,(/) with respect t" the natural
projections p; : {,(1) — ({;(J),|| |/ C Icountable). According t” [8] and [IQ], ({,(/),3)
is a complete Hausdorff DF-space, which is not barrelled and whose strong dual is a Banach
space. Now

n: (6, S) — X :=projc un lublc(E| NN

. . Wi
(-M).‘EI — ((Aj )fEJ)JCl.munmhlc

is welldefined, linea and injective. Because of the transitivity of initial topologies it is also
continuous and open onto the range. Now we show thut the range is dense in X. So let

X = (O0Dienscreompe € X and U € Uy(X) be given. Then there exists a countable subset
Jo C I with kerpry, C U for the canonical projections pr; : X — ({;(J), || |l,). Now let
7 =((xM)ic 1,, @iens)- Thenz € ¢, (1) und

pri,n(z) = x) =

!)U(.((x!)iej(,mj a(o)ief\.fu )JCI.mm uahlc) _iJrJU((('\—!)iEJ )JCI.cnun lahlc)
= (Ata, = (5"ies,
= (e,

Thus n(z) = x € kerpry, C U and consequently n(£,(/)) is dense in X. Altogether n is a
surjective topological isomorphism and hence X is not barrelled.

Moreover for every countable subset J C I the natural canonical projection p, : ({;(1), 3)
— (L), ||- 1) is open, as S is coarser than the || - ||, -topology on €, (7) and since (¢, (1), ||- [|1)
is a Banach space we obtain from Proposition |.5 b) that also ({;([), &) is without .

In contrast t” Example 2.5 we get positiveresults for strict projective sequences. But before
proving them we need some technical preparation.
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2.6 Proposition.

Let (X,, S,)nen be a projective sequence of Ics with respect to linear continuous linking
maps Pua+i - Xuwt, Sier) — (Xor, Sp), let (X, §) = proj,en(Xa, 3,,) be the corresponding
projective limit and for all # € N let p, : X — X,, denote the canonical projection. If
X = U,en A where each A, isa closed balanced subset of (X, 3), then there are m, n € N,
such that kerp,, C A,,.

Proof:

Foreach » € N let D, denote the discrete topology on X,,, and let D be the initid topology on
X with respect 10 (p, : X — (X,,, Di)uen- Then the embedding (X, D) < [L.cx(Xs, D))is
a linear homomorphism onto a closed subset of [ [, (X,,, D,), which is completely metrizable
as a countable product of completely metrizable spaces. Thur (X, D) is a Baire space.

As DD Sall A, are closed in (X, D). Therefore there are n € N,x € A,, and m € N,
such that x + kerp, C A,,. Let y € kerp,, be given. Then for all k € N it is true that
x+ ky € x + kerp,, C A, hence, as A, is balanced we get %x +y= %(x + ky) €A,. As
limg_~ (+x + ¥) = yin (X, ) and as A, is closed in (X, $), we obtain that y € A,, which
proves that kerp,, CA,.. O

For the following two results see also (3, Proposition 2.3].

2.7 Lemma.

Let (X;,31)ies bea projective system of Ics withrespect to linear continuous and openmaps
pir + (Xi, ) — (X, 30 £ K), let (X, 3) = proj,;(X;, §;) be the corresponding projective
limit and assume that for all i € / the canonical projection p; : (X, 3) — (X;, J;) is open
(see Remark 2.3). Let (A,),cn be an increasing sequence of absolutely convex closed sets in
(X, ), such that X =| J, . A, Furthermore assume that

(1) for each i € I, there is n(i) € N such that pi(A,q) "
(2) there are n € N and { € | such that kerpy; C A,..

Then there ism € N. such that A,,, isa O-nbhd in (X, 3).

Proof: R

Let n,ibe asin (2). By(l)there ism & N such thatp,(A,,,)M"d Joe (X, 3,). Asthe (A,.);\EN
are increasing, we may assume that n < m, whence kerp; C A,,,. Now C := m‘
is a closed subset of (X, 3) satisfying C = C+ kerp; = p"(p )). Smce p, is open, p;(C) is

isa0-nbhd in (X,, $;) and

a closed subset of (X,, 3,). Moreover as A,,, C C, we obtain that p,(A,,,) (‘ pi{C), whence
piO) € Up(X:, 1) and C = p=l(pAC)) € Up(X, ). Finally C C A, T A, C 2A,,, which
implies that 24,, and hence A,,, are O-nbhds in (X, 3). O

From Proposition 2.6 and Lemma 2.7 we immediately obtain the following proposition.

2.8 Proposition.

Let (X, Sinens (Puns1)new) e a strict projective sequence of Ics and let (X, 3) =
proj,ex(Xu, 3,). Then the following statements hold:
a) All(X,,S,) are barrelled if and only if (X, 3) is barrelled.
b) All (X,, <,) are without Sy ifind only if (X, 3) is without §,,.
c) All(X,,3,) are quasi-Baire if and only if (X, J) is quasi-Baire.
d) All (X, 3,) are Bairelike if and only if (X, &) is Bairelike.
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Proof:
As the canonical projections are open, only “ =-"needs a proof in (a)-(d).

a) IfAisabarrel in(X, ), putA, := nA for all n € N. Then by Proposition 2.6 condition (2)
in Lemma 2.1 is satisfied and condition (1) of Lemma 2.1 follows from the barrelledness
of the (X, 3,,)(n € N), such that mA and hence A is a (-nbhd in (X, $). Thus (X, 3) is
barrelled.

b) If X is the increasing union of closed subspaces A, (i € N), then again by Proposition
2.6 condition (2) in Lemma 2.7 is satisfied and condition (1) of Lemma 2.7 is true as all
(X,,3,) ae without §,. By Lemma2.7 we obtain that there is m € N, such that A,,, is a
0-nbhd and hence we get that (X, ) is without §.,.

¢) This follows immediately by (a) and(b).

d) If X is the increasing union of closed absolutely convex subsets, we obtain by Proposition
2.6 that condition (2) in Lemma 2.1 is satisfied and as all (X,,, <) are Bairelike also
condition (1) in Lemma 2.7 is true. Thus by Lemma 2.7 we get that (X, <) is Bairdlike.

O
Unfortunately we cannot present an analogous result for “db” or “unordered Bairelike’
The crucial point which we couldn’t overcome is the following. If X = J, ., A, with
A,, =TA,(n € N) then the Proposition 2.6 yields n,m € N such that kerp,, C A,,. But we
would need: there is m € N, such that [ J, , oy C A, Pu(An) =X
We also cannot present an analogous result ‘for “Baire”. In fact, we might start with
X =U,en nC., where Cis a closed balanced absorbing subset of (X, %), see [35, Theorem 1].

But from Proposition 2.6 and the proof of Lemma 2.1 we only obtain that (.. ,C +¢C is
a 0-nbhd in (X, ¥), whereby we have to show that Cis a 0-nbhd in (X, &
However we can present a negative result concering uncountable strict projective limits.

2.9 Example (cf. [5, 2.5]).

As in Example 2.5 let I be an uncountable set and moreover let ({1(/), 3) = Proj;c; counabic
(P.(J), || [l1). For every J C I countable let D; denote the discrete topology on C,(J)
and let D denote the initial topology on (/) with respect to the canonical projections
(pry : — (L, (1), D)yt comane)- Then in particular (¢,(1), D) is an abelian topological
group Wh|ch is the projective limit with respect to discret abelian topological groups, which
are of cource complete metrizable, hence Baire.

We show that ({;(/), D) is not Baire. In fact. we know from Example 2.5 that ({(/), 3) is
not barrelled. Therefor there exists a barrel A in (£, (1), &), which is not a Q-nbhd. Moreovet
8 (D) = Uyen nA. 1 (X, D) were Baire, we would obtein n € N, x € nA and J C / countable,
such that x + kerpr; C nA. As A is absorbing, there is m € N, such that x € mA, whence
kerpr; C (m + n)A, which proves that condition (2) in Lemma 2.1 is satisfied. Condition
(1) is also satisfied, as all (¢ , JarB anach spaces. Consequently, Lemma 2.7 would
yield that A isa 0-nbhd in ({,(D), <), a contradiction.

Thus we have proved, that the projective limit of discrete abelian topological groups need
not be Baire. Moreover an analogue to Proposition 2.X does not hold for arbitrary projective
limits.

In contrast to what was saidafter Proposition 2.8, we can offer a positive result concerning
(db). unordered Bairelike and Baire for countable strict projective limits of a special shape.
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2.10 Remark.

Let (Y, &) be a lcsand (L,,),cx b€ a decreasing sequence of closed linear subspaces, such
that M,enx Ln = {O}. Then the sequence of quotient spaces (¥, ¥)/ L,, with the linking
maps gupm . ¥/ Ly — Y/L,x + L, — X+ L, is a strict projective sequence. Let
(Z, p):= proj”EN((Y ,9) /Ly, (gy.a+1)) be the corresponding projective limit. Moreoverlet D,
be the discrete topologyonY /L,, and (Z, D) := proj, (Y / L,,, D,), (¢, 1.0 +1)). Furthermore

let
N:(Y,3) — (£, p)y — (y + Ly)pey and

h: (Y, 3)% (2, D) — (Z,p)y,2) — () +2

a) his open.
b) Leti: (¥,9) — (Y x Z,3 x D)y + (y, 0) and let (B,),cy & sequences of closed

absolutely convex subsets of (¥ x Z,3 x Dywith Y xZ = ., B,. Moreover let
J:i={neN: i~ "B, €UlY, 3} If (Y, 3) is unordered Bairelike, then it is true that
Yxz=J 1€t mB,.

Proof:
a) nis clearly welldefined, linear and continuous. It isnjective as [,y L,, = {O}.

It is immediate that / is welldefined, linear, continuous and surjective. To show that h is
open let U € Uy(Y, ) and We Uy(Z, D) be given. Then there is » € N, such that kerp, C W
for the canonical projection pp,: Z — Y / L,,. [tis true that

n(U) + kerp, = p;, ' (ga(D)). (%)

In fact, let u € U/ and v € kerp, be given. Then n(u) = (gx(1)}ey with the canonical

quotient map g, : (¥, ) — (¥, 3) /L,. This proves “C”. To get “O7 let w = (wy)gew € Z
such that p,(w) € g.(U) be given. Then there is u € U with w, = y,,(u) and hence
puM@e)—wy = p((qe(10))een)—gu (1) = 0. Thusn(u)—w € kerp, and hence w € n(U)+kerp,,

which proves ().
As g, is open. q,,(U) € Up((Y¥, <) / L,) and since p, is continuous we get that p”_l(g,,(U)) €

Uy(Z, g). Thus we obtain

U x W)= nlU)+ W > n(U) + kerp,
= P,T](C]n(U)) € u(](zs 63]

ad hence ) is open.
b) Suppose this is not true. As for alln € N |J,,ex
by [29, Lemma 9.1.32] that
YxZ=|)mB,

wENNS
nEF

mB, isalinear subspace of Y x Z we obtain

and hence
Y = Umr‘(B,,).

nEN\S
=
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s (Y, §) 1s unordered Bairelike, there exists m € N,n € N\J, such thut mi~'(B,) €
Up(Y, 3)and hence i~'(B,) € Uy(Y, ). But this is a contradiction to n & J. 0

2.11 Proposition.

Let (¥, 3) bea Ics and (L, ).en bea decreasing sequence of closed linear subspaces of (Y, ),
such that ),cx Ls = {O}. Moreover let ¢ .y +1: ¥/ Lyp1— Y /L . v+ Log1 — x + L,
and let (Z, p) = proj,.,((Y, $) / Ly, (g, 4+1)) be the corresponding strict projective limit.
Then the following statements are (rue:

a)If (Y, 3) is a Baire space, then (Z, p) is a Baire space. (cf. [2.4])

b) If (¥, ¥) is a unordered Bairelike, then (Z, p) is unordered Bairelike.

) If (¥,¥) isa db-space, then(Z, p) is a db-space.

Proof:

Let (Z,D),hand 11be asin Remark 2. 10. Then (Z, D) is a complete metrizable topological
group and hence a Baire space.

a) If (Y, 3) is a Baire space, we obtain by |1, Theorem 4.2] and |28, 5.]that (Y x Z, 3 x D)
is a Baire space. As h: (¥ xZ, S x D} —— (Z, p)is linear, continuous, what isimmediate
and open by Remark 2. 10, thisimplies that also (Z, g)is a Baire space.

b) Let (A,).ex beasequence of closed absolutely convex subsets of (Z, 9) with Z={J, ey As-
As fiis continuous and linear. (h~'(A,)),ex is @ sequence of closed absolutely convex
subsets of (¥ X Z, 5 x D) with

YxZ=|)n '@
neN

Leti: (¥,S) — (¥YxZ,3xD),y — (v,0)andJ ;= {n eN: i (h7'(4,)) € Up(Y, )}
Then it follows from Remark 2. 10 b), that

U mh™ "(A) = Y x Z (%)

ned
mek

Now letj: (Z. DY — (Y x Z,3 x D),y — (0, y). From () we obtain

z=Jmi~ A

=r
=

and as (Z,D) is a Baire space, there exists # ¢ J and m € N, such that the set

J '(J’r‘(m,ﬁ(,,)):D has nonempty interior. Thus we get that the difference mj~' (7~ (4,)) -
mj~"(h~'(A,)) is a 0-nbhd in (Z, D). Consequently the set 2mj~'(h~'(A,)) (A, is absolu-
tely convex) and as the multiplication x — ax, ¢ € K is continuous, also j~'(h~'(4,))
is a 0-nbhd in (Z,D). As neJ also i '(h"'(A) € Uy(Y, I) and altogether it is
i YA x TN (h7Y(A,)) a0-nbhdin (Y x Z, 3 x D). As

TN A <N AL = A < {0 + {0} % N A)
< h™ YA+ 1A <2 (A,
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we obtain that 2/~'(A,,) and hence i~ '(A,)1s a O-nbhd 1n (Y x Z, S x D). Since h 15 open
this implies that A,, = i(h='(A,)) is a O-nhhd in (Z, p).

C) Let(Z,),en beanincreasing sequence of linear subspaces of Z, suchthat Z =| J, . Z.,- As

(Y, &) isadb-space, also (Y, ) / L, isa db-space and hence Bairelike for all n € N. Since
(Z, ) is a strict projective limit. Proposition 2.X implies that (Z, p) is Bairelike, such that
there exists » € N with Z,” = Z. Therefore we may assume that Z,” = Z for all n e N.
Now we must show that there existsp € N, such that (Z,,, pZ,,) is barrelled. Suppose this
is not true. Then for all 1 € N there is a barrel C,, in (Z,, , p N Z,,) such that C,," & Uy(Z, p).
Now let Y,, = h~'(Z,) foralln €N. ThusY x Z = Upwen Yo @nda /i is continuous we
get that also the restriction of at” Y . J ly,: (Y my3xXD) — (Z,, p N Z,),y = h(y) is
continuous, such that #~'(C,,)is closed in(Y ,,, 3x DN Y,,).
Let jand j asin b). The” (i='(¥,))ucw is an increasing sequence of linear subspaces
of (ys %) withY = UmGN f_](Y,,,) and we define Xy 1= ’._I(Ym) - jil(hil(zin)) for all
m € N. Asiis continuous and i~ (C,,) is closed in (Y,,, 3x D N Y,,) also i~ (= (C,,))
is closed in (X,,, 3N X,,) for all m € N. Moreover i~'(h~1(C,,)) is absolutely convex and
absorbing, hence a barrel in (X,,,, 3N X,,) for all m € N. Since

Y= U -"71(’17](2;11)) = U X

neN meN

and (¥, &) is a db-space, we ohtain that there exists # € N such that X,, is dense in (Y, )
and (X,,, 3N X,) isbarrelled. Thus for all m > n we have that (X,,, SN X,,) is barrelled and
X,, isdensein (Y, ). Therefore i~'(h~!(C,,) isa O-nbhd in (X,,, 3N X,,,) for all m > n.

As X, =Y we obtain for all m > n that i—l(h—'(C,,,))d € Uy(Y, I). Moreover we have

z=| &0

mZn
kER

and as(Z, D) isa Baire space there ism >n, k € N'such that &j~! (h-'(C,,,))DhaSnonempty
interior. As C,,, = I'C,,, it follows that

. D . D
ki~ (h=1(C)) = ki~ (h=1(Cw)) € Un(Z,D)
and lwn(:e_,v"‘'(h“](C,,,))jD € Uy(Z, D). Altogether we ohtain that

<¥

D _
TN ATHCY) XTI RTNC) € Un(Y x 2,3 x D)

and as

= D
FT (G %) (G ©
PTG x {0} + {0} x T (G ©

o~

SGxD IxD —_—xD
BTG +h (G C 2 NG
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xD —_— QD
also 2= 1(C,) (C,,,) and hence M—l(C,,,)\j>< is a O-nbhd in(¥Yxz,3x D) Smce his open
’D F—
by Remark 2.10 a) and continuous, } (h (C,”) ) C h(h~ (C,,,)) = C,” such that
C,."isa 0-nbhd in (Z, ©). whichis a contradiction to the choice of C,,, and we are done.[

2.12 Remark.

We would like to remark that in the construction of the projective limit in Proposition

11the “inclusion” n: (¥, 3) — proj((Y, I/ L., gu.s1) = (Z, p) need not be open
onto the range or surjective. In fact let Y be a Baire subspace of w containing ¢ such that
dimw /Y is infinite (see Example 2. | or [32,1.]) provided with jtg relative topology 3 and let
L, = (Hkgn{o} X l_[b’[{)n Y. Then L, = K” and (Z, p) = w. The inclusion Y = w
is topologically isomorphic pnto the range but not surjective.

For another example let (A, | ||) be a nBss and let L, as above. Then it is true that
(Z, ) = w and the inclusion (A, || |) @ w isnot open onto the range, as w admits no
continuous norm and clearly not surjective.

We want to supplement this section about projective limits with 4 result about projective
limits which need not he strict.

213  Proposition.

Let ((X)uer, (Pum)an) 0€ a projective sequence of df-spaces X,, (cf. Proposition 1. Il)
without S, let X = proj, X, and p, : X — X,, be the canonical projections. We suppose
that X isreduced and [ - barrelled. Then X iswithout S,.

Proof:

Suppose X has S,. Then from Proposition | 4 it follows that X contains the space (¢, (<,
w)) complemented, hence there exists a complemented linear subspace L in (X', ¢ (X".X))
which is topologically isomorphic to w.

Moreover as X isreduced, all the transpose maps p/, : X, — X" are injective. Consequently
there exists a natural LF-space topology g on X’ which is finer than o(X’, X). In fact
(X', p) = ind,en(X), B(X), X)) and all (X,,, B(X!, X,,)) are Fréchet spaces. By Grothendick’s
Theorem A [21, Theorem 19.5.4] p is the ultr abomologlcal topology associated with o(X’, X)
on X'. Asw isultrabornological we obtain by the functorial property that pNL = G(X’ )ﬂL

Now for allne N itisL,, := (p] y~!(L)a closed and hence Fréchet subspace of (X ( ”, B(X),
X,)) and L = J,cp L The topol ogy R on L defined by (L, ®) := ind,ex(L,, B(X ,,, X)) N Ly)
is an LF-space topology on L which is stronger than p N L = o(X’, X) N L whichis a Baire
space. Again by Theorem A of Grothendieck there is n € N such that p!(X!) O L. By the
barrelledness of L we obtain from the closed graph theorem that

Pi = o (PR, BOGL X)) 0 ()~ (L) — (L, p N L)

Is a topological isomorphism. We have proved that (X, (X, X,)) contains a copy of w,
hence does not admit a continuousnorm. a contradiction to the fact that X, is without S, (see
Proposition [.11). u

We complete this section with an application of Proposition 2.13 to g projective sequence
which need not be strict.
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214 Example.

Let Z = ind,cxZ, bea weakly acyclic LF-space (for a definition see [44, |. page 58]), such
that each Z, isareflexive Fréchet space with continuousnorm. Then the projective sequence
(Xn)nEN = (Z:n ﬁ(zf,. Zn))neba with respeCt to the natural tl'anSpOSe maps Zf“ —_— Z,"i form 2 n
consists of reflexive LB-spaces, which are without S, by Proposition 1.1 |. The projective
limit X := proj,xX, is reduced as the transpose of the inclusion Z, - Z has weakly dense
range, hence strongly dense range by the reflexivity of X,,. Moreover X is bornological by
[44, Lemma 4.1] and [43, Theorem 5.6]. As X is also complete, we get that X is barrelled.
From Proposition 2.13 we obtain that X is even quasi-Baire.

Easy examples of weak acyclic LF-spaces can be found in [26, Remark].

3. VECTOR VALUED SPACES

In this section we will invedtigate the behaviour o quasi-Baire and Bairelike with respect to
the formaion of vector valued sequence spaces A(X) and also of projective limits of Moscatelli
type.

First of all we will present a quasi-Baire space E such that V,(E) has §,,. For this purpose
we Start with g technical lemma. which isin fact partly known.

3.1 Lemma.

a) Let (X,),cn be aninductive sequence of Ics and let X = ind,xX,. Then the following are
equivalent:

l) Eoo(X) = Unej\f eoc(Xn)

ii) the inductive sequence (X,,),cy is regular.

We owe thisimproved version to J. Wengenroth.

b) Let X. Y be Banach spaces with continuousinclusionY = X andunitballs Ain X and B
in'Y, respectively. Moreover let X be separable. [f C,(Y) isdensein {,(X)then X =Y.

c) Let X. Y, G, H be Ics with continuous inclusions Y @« X and G = H. If {.(Y x G) is
denseinf_ (X x H)then{_,(¥)isdensein(_.(X).

Proof:

a) ii) = 1) is obvious. In order to prove i) = ii) let B C X be g bounded set. If B is not

a subset of X,, for all n € N, there exists x, € B\X, for all » € N. Then (x,),en €

Loc OO\ U, e o (X,), a contradiction to i),

So we may assume B ¢ X,. Now if B is unbounded in X,, for each n € N, we get that
for all n €N there is U, € Uy(X,), such thet for all k € N there exists x,;, € B\kU,. Thus
(k< nen € LX)\ U”ENEOO(X,,), which isa contradiction to i). This proves part a).

b) As X is separable there exists a Sequence (x)ep in A with {x, @ k € N} = A Thus

(xi)ken € {oo(X) and as f,(Y) isdensein { . (X) we obtain that there exists p > 0, such that

{x;\.:keN}CpB-I-L—rA

Thus A={x: k€ N} CpB+ 1A and by induction we get that for all k € N it is true that

1 1
AC A+ T4+ 57)0B
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From this it follows A C %A + 2pB tor all k € N and hence A C 2p§x. Consequently
theinclusion Y < X isnearly open and by the open mapping theorem it is open, which
impliesX =Y.

) Let (xp)ien € LX) @and U € Uy(X) be given. Then (x;, O)rex € {o(X x H) and as
{.(Y xG)isdensein {. (X x H), there exists 4 bounded sequence (vi, zi)rew in ¥ x X,
such that (x;,0) = (v, zx) € U x H for allk € N. Thus x; = y; € U forall k € N and
altogether {.(Y) isdensein { . (X). O

3.2 Example.

Let Y, X be Banachspaces such that X is separable with continuous inclusionY = X and
unit balls BinY and A in X, respectively. Moreover let Y C X be a proper dense subset and
B closed in X. For an arbitrary nBss (A, || ||) it is true that £ := E(Y = X, A) isquasi-Baire
but {,.(£) has$,.

Proof:

AsY is dense in X we get by Corollary 1.6 that E is quasi-Baire. Moreover as B is
closed in X, E is regular (see e.g. [24, Proposition 8]), hence we get by Lemma 3. | a)
loo(E) = U, cn (< (E,). Suppose (.. (E,) is dense in (. (E) for some n € N. Then by Lemma
3.1 ¢) we obtain that {.(Y)is densein {,.(X) and as X is separable we get from Lemma 3.1
b) that Y = X, which isa contradiction to the assumption. Thus {..(E) has §,,. 1

Spaces used in Example 3.2 are forexample Y = ({5, | ||2) and X = ({3, || ||3)- In contrast
to tbis we get a positiveresult for projectivelimits of Moscatelli type for the property without
S, if X satisfies the following countable boundedness condition, see Definition 3.3.

3.3 Definition.

A lcs (X, 3) satisfies the countable boundedness condition, if for every sequence(B,),ex
of bounded sets there exists a sequence of scalars (o, e in (0, 00), such that |, ¢ ot By is
bounded

For example every metrizable lcs stisfies the counteble boundedness —condition.

3.4 Proposition.

Let X, Y belcs, f: Y — X belinear and continuous and we suppose that X satisfies the
countable  boundedness  condition. Moreover let (A, ||- ||) b e anBss with sectional convergence.
If Y is without S, then also the corresponding projective limit of Moscatelli type F:= F(Y L
X, A)iswithout S,

Proof:

Let L C F bea closed [inear subspace of countable codimension, First of all we prove that
there isann € N and a linear subspace M C F with dimM < oo, such that

L+m>Fn | JJ{oy < J]¥
k<n k>n

Suppose thisis not true. Then there isa sequence (y*), ¢y iNEP, o, Y anda proper increasing
sequence (k,),en in N with k; = 1, such that y/ =0 forall n €N, n> | and all k €
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[lsknl U [kn+])OC[ and
y” Q’ L+ [yl‘_ ’ '\y”_l]-(*)

As X satisfies the contable boundedness condition, there is a sequence (o,)uen in (0, ©0), such
that B = |J,en o {f(3) 1 K, <K <k,y } is bounded in X. Thus the map

T D — FBikew = (BroaYODr, <t < kyey Inen

is welldefined, and linear and continuous, as it is immediately seen. As L is closed in F,
(L) is closed is (A, || |Jand countably codimensional in A. As (A, || ||) isa Banach space
and hence without S, it follows from Proposition 1.3 that j-*(L) is of finite codimension in
A. SO let

2= (D <k < ket 1 (Ot ko [0W)

for all n € N. Then " € ¢ C A and (z"),en is linearly independent. Since ¢ is dense in
(A, [[1]) it is true that there exists r € N and y,, -, |, € K with i, # O, such that

ez e+ € TN
As | islinear, we get
wjEh) + + i) € L. (%)

From the definition ofj und y" for n € N it follows that j(z') = c;y! for all | </ < r and with
(++) we obtain
woogy' + + ey €L

As i, #0 we get that y e L +[y',-,y"~'] which is a contradiction to ().
AsY iswithout S,,also the product [], ., Y xT];»,{0} is without S, by Proposition 1.5
a). Thus by Proposition 1.3 there exists a linear subspace N C I, ., Y x [];5,{0} with

dimN < oo, such that
ITr=J[{o} cL+n.

k<n k>n

Altogether we obtain that

F = Fn (H{O} < [TY+ ¥ ][{o}

k<n kzn k<n k>n
C L+M+N
and as dimM < o0 und dim/ < o¢ we obtain from Proposition 1.3 that F is without S,. O
As acorollary we obtain also a positive result for spaces of type h(X).
3.5Corollary.

Let X bea Icswhich satisfies the countable boundedness condition and is without §,,. Let
(A, || [) bea nBss with sectional convergence. Then h(X) is without §,,.

Especially if X is a metrizable Ics without S, then for every nBss (A, | ||) with sectional
convergence h(X) is without S,,.
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Now we turn to the behaviour of Bairelike with respect to the formation of h(X). Unfortu-
nately we couldn't find out, whether in general a space of type h(X) is always Bairelike. if X
is Bairelike and A a nBss. But we will present partial positive results. A first result follows
immediately from [16, Corollary 6.3].

3.6 Proposition.

Let X be g barrelled, metrizable Ics. Then for every nBss (A, || ||) the space h(X) is again
barrelled and metrizable, hence Bairelike.

For normed barrelled spaces and A € {{ : | < p < oo} thisisalso aresult of the theorem
in[19]. Moreover for A= ¢y T. Gilsdorf andJ. Kakol hus proved in[17] that ¢,(E)is Bairdike
if and only if E is barrelled and the strong dual (E', B(E’, E)) of E is strong fundamentally
{;-bounded, where strong fundamentally {,-bounded iSa stronger property than the property
(B) of Pietsch, see the Definition 3.X below.

As a barrelled space is Bairdike if and only if its completion is Bairelike, the weakly
barrelled Ics, i. e, Ics X which carry a weak topology and are barrelled, form nnother fairely
big class of Bairelike spaces. We will show that they behave well with respect to the formation
X — h(X) and start with a well known lemma, &' easy proof of which we present fora sake
of completeness.

3.7 Lemma.

Let (X;);e he a family of Ics and let (A, || [|) b € a nBss. Then A (T],¢, X;) is topologically
isomorphic to [ ], A(X)).

Proof:

We show that

n: HX,) — HA(Xi)((«\f)ie)keN — (K eemdies
i€l i€l

is topologically isomorphic. In fact, it is welldefined, linear, injective and continuous, as it

is easy to see. Moreover if V is a 0-nbhd in A (T],., X;), there is a E C [ finite and there are

U, € Uy(X;), fori € E such that

MIJux [[x) cv

i€E ieNE

(For the notation A(L/;) see Remark 0.2). Now

wo= JTA@) x I acx)

icE iel\E

is a O-nbhd in [T, A(X;) and W C n(V), as can he verified without difficulty and we are
done. a

Lemma 3.7 isa special case of Propositio” 2. 11in[20], wheretheanalogous statement is
proved for arbitrary projective systemes of Ics. Following J. Schmets in [38, Remark IV 6.31
we give the following definition.
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3.8 Definition.

A |cs Esatisfies property (B) of Pietsch or isfundamentally {,-bounded (cf.[29, Definition
4.8.211)]), if for every bounded subset B of {, (E) thereis an absolutely convex bounded subset
Cof E. such that B isa bounded subsetof €,([C], pc).

For example every metrizable Ics has property (B) of Pietsch [Theorem1.5.8].

The following proposition coincides in fact with (Proposition 3.2) in [5]; here we present
a different proof, which is more elementary and avoidstensor products.

3.9 Proposition.

Let X be a weakly barrelled Ics and let (A, || ||) be a nBss, such that either (A, || ||) =
(s, || llsc) Or such that (A, ||||) has the property of sectional convergence. Then h(X) is
Bairdike.

Proof:

We want to apply the characterization of [29, Proposition 9.1.5] thut a barrelled dense
subspace of 3 Bairelike space is again Bairelike. As the completion ¥ of X is topologically
isomorphic to a product of copies of K, Lemma 3.7 implies, that A(X) is topologically
isomorphic to a product of Banach spaces, hence Bairelike. Therefore we must show that

h(X) is dense in A(X) and that

h(X) is barrelled or equivalently - by |16, Lemma 6.1] quasibarrelled. For the density,

the assertion is clear if (A, || [|) has sectional convergence, because for the topolog
induced by h(X), &,exX isdensein@,cxX, ®,exX is dense in A(X), and &,cxX C h(X).

In the case A = {., we make use of the fact that in X bounded sequences are precompact:
Given x = (x,)yen € LX) and a 0-nbhd U in X, there is y = (y,)yex € X such that
{v,: n€ N} isfinite and such that x = y € U¥; moreover there isz = (z,),ex € X¥ such that

7, nEN} isfinteand ;= ye U¥; hence z € {(X)and 7 — x € (U + )V,

We finally must establish the quasibarrelledness of h(X).

First, let (A, ||||) satisfy sectional convergence and let 3 be a bounded subset of the strong
dual (h(X)", B(AX)', A(X))). By [16, Theorem 5.14 i)] we get that (h(X)*, B(A(X)", h(X))) is
continuously embedded into A%((X’, B(X’, X))), where A*:={y € w: Yier 2 pen XuVn
< oo} isthe Kgthe duul of A, A% isa nBss with respect to the natural “dual” norm||||«. For
more details see [16, page 11]. Consequently, B is a bounded subset of A*(X’, 3(X’, X)). For
every n e N, put p, := ||(8,4 )een||a. Then the map

f: AQ(XI» B(XI; X)) — Eoc(X’; B(th X)), (,\'M)HG_N — (pn.vn)neﬁ

is welldefined. linear, injective and continuous. Therefore we get that the set { p, v, : (Vi)ren €
B, ne N}isboundedin (X', 3(X’, X)), and thus finite dimensional. Thisimplies that there isa
finite dimensiona] linear subspace £ of X’ such that 3 isa bounded set in h(E). Let F:= X/ E°
be the quotient space with respect to the polar space E° = {x € X : V,cp<x,y> = 0}.
Then by natural duality, F' = E. Moreover (A(F)’, B(A(F)', A(F))) coincides topologically
with A°(E), see e.g. [16, Remark 5.18]. As h(F) is a Banach space, the bounded subset 5
of "(E) = (h(F)*, BA(F), A(F))) is an equicontinuous subset of A(FY. As the inclusion
AFY = AYE) © MX)(C A%(X', B(X’, X))) is the transpose of the quotient map X —
X / E° = F, B isalso an equicontinuous subset of h(X)‘, suchthat altogether h(X) isbarrelled,
hence Bairelike for A with sectional convergence.
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Finally, let (A, [[]) = (0x, || |[«).- A'S X 1 weakly barrelled, it is nuclear and from [38,
IV. 7.10 ¢)] it follows that its strong dual (X', B(X’, X)) has property (B) of Pietsch. Now we
denote by 3N the Stone-Cech-compactification of N. As (X', 3(X’, X)) has property (B) of
Pietsch, we obtain hy the Mendoza-Marquina-Theorem [38, IV 7.7] that the space C(BN, X)
provided with the topology of uniform convergence is barrelled. Since the map

ti: C(BNv X)""_' cx(X)vf [ (f(”))nel\’

15 a topologicalisomorphism onto its range, it suffices to prove thatj has dense range. But this
follows again from the fact, that bounded setsin X are precompact : Let x = (x,),en € C(X)
and let U be a O-nbhd in X; then there is y = (v,),ex € X¥ such that {y, : n € N} is finite,
hence compact. and such that y — x € U". Consequently there is f € C(BN, X) satistying
fn) =y, for all ne N and we are done. 0
In particular we have supplemented Frerick’ sresult in[16]about classes of barrelled spaces
X for which h(X) is barrelled for nBss A with sectional convergence by the class of weakly
barrelled spaces. Having found a class of Ics X for which h(X) 1 Bairelike, we will now
presenta class of Ics for which h(X) is not Baire. We will start with 3 technical lemma

3.10 Lemma.

(see [5, Lemma 3.31, for the sake of completeness we present the short proof again.)
Let X beaHausdorff Ics, let] be g set and let 1€ N. Then the set

C. i ={(x)icy € X’ = dim[x; 1 i € 1] < m}

isaclosed subset of the topological product X’

Proof:

Let ((x'“));e/)wea be a net in C,, converging to an element (x;);e; in X'. We must show
that for any /,,, i, €the (m+1)-tuple (x;, ,x ;) is linearly dependent. For each
& €A there is (A, A2 ) € K"T\{(0, ,0)} such that 3/ Ax® = 0, and we

(\l

may assume that each (A", Al))) belongs e. g. tothe | |;-unit qphere Sin K"+'. By
the compactness of S, the net (\\", , A/ ) hdS an accumulation point (A;,. ,Aws1) iN
S.As forallj € {1, ,m+ 1}the net ()c“"),‘@l converges to x;,, we obtain by the continuity
of lincar combinations K"+ x X"+! — X that /' A;x; is an accumulation point of

(Zm+l () [n )“ A and hence equal to 0 € X. u

3.11 Proposition (cf, [5, 3.4]).

Let X be an infinite dimensional Hausdorff Ics such that each hounded subset of X has finite
dimensional linear span (or — equivalently — that its weak dual (X', o(X’, X)) is barrelled),
and let (A, ||||) bea nBss. Then the space h(X) is not Baire.

Proof:

By Lemma 3. 10 we get that for each m € N, the set C,, := {(x,)uen € XV : dim[x, : n €
N] <m}isclosed in X¥ with the product topology, hence the set C,,, N h(X) isclosed in h(X).
No C,,, N h(X) has an interior point in h(X). In fact, otherwise there would exist a sequence
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(Uynew of 0-nbhds in X such that

@ Ui Cu=c,, ¢ Con

nelN

As X is of infinite dimension, we can choose g linea-ly independent sequence (x,)ech €
[Lex Uy, from which we obtain that ((x,)y<am+1, (0)y > 2m+1) € Cay. a contradiction. Thus

it remains to show that
A(X) = U Cm
meN

which igestablished by involving once again the continuous linear injection

h: )\(X) - gx(x)( Un )nE!\' [ — (pn-rn)neh

with p, = [[(3u)eew| for n € N, which shows that for all (x;),ex € A(X) the linear span
[x, : n € N] has finite dimension. Q

3.12 Example (cf. 5, 3.5])

The incomplete Montel space X constructed by Amemiya and Kdmura in [4] satisfies both
the assumptions of the Propositions 3.9 and 3.11. Thus, for every nBss (A, || - ||) with sectional
convergence and for (A, || |) = ({s, | |ls). th € space h(X) is Bairelike but not Baire. (In
particular, this is true for {,(X)(| < p <x) and for ¢;(X).) Moreover all these spaces h(X)
are quasicomplete by [ 16. Cor. 4.71 ai X is clearly quasicomplete.

Thus we have obtained a class of quasicomplete Bairelike spaces which al-e not Baire.
According to [29, 13.9.1] it is an open question of Valdivia. whether there exist complete
non-Baire but Bairelike spaces. Obviously, the spaces in Example 3.12 are never complete.
On the other hand, all the non-Baire Bairelike spaces we could find in the literature are not
sequentially complete and not even locally complete.

Now we turn to the stability of Bairelike under projective limits of Moscatelli type. Unfor-
tunately we could not prove ananalogous result to Proposition 3.4 for Bairelike. But we can
present partial results for weakly barrelled or metrizable barrelled spaces. We start with the
following lemma.

3.13 Lemma.

Let X, Y be Hausdorff Ics, f : Y — X be linear and continuous and let (A, | ||) be a
nBss. If Y is topologically isomorphic to a product of straight lines, then F(¥ L X, A) is
topologically isomorphic to (kerf)" x A(Y / kerf).

Proof:

First of all since kerf is a closed subspace of g product of straight lines, there is a closed
subspace L of Y such that Y = kerf 3 L. Furthermore, since L is also minimal as a closed
subspace of Y, the restriction f |;: L — f(L) is a topological isomorphism onto the range
and thus F(L —L= ' f(L),A) = h(L) and L is topologically isomorphic to Y / kerf. Now we
prove that

p: (kerf)" x h(L) — F(Y £X, \)
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(Oedrews Eew) — ik + S kew

is a topological isomorphism p is clearly welldefined and linear. [t is injective since if
0% *+ Zken = 0 for (vilen € ketf and (Zoew € A(L), it follows from kerf N h(L) = {0}
that y, = 73 = 0 for all kK € N.

To show that p is surjective let (¢ e € F be given. Since Y = kerf + L, we have that for
all k € N there exists v; € kerf and 7, € L such that ag = y; + 2. Then (yp)pen € (kerf)¥
implies that (f(z)er = (flax)ren € MX). such that from (z)ex € LY it follows that
(Z)ken € A(Y). Thus p is surjective.

p is continuous as it is easy to see. As p |(k€1'{')‘ and p |y, are topologically isomorphic
onto the range, it suffices to show that F(¥ X, A) = (ker/)" & h(L) to get that pis open. So
let p:Y — kerf be a continuous linear projector with kerp = L. Then

P F(Y LX,A) — (kerf)t

(apheen ¥ (play Niew

is a welldefined. linear projector with
kerp = LY N (Y LX) = h)

As F(Y L.X,\) is topologically isomorphic to the space H := {(v)uey € YV : (v hew €

h(X)} provided with the initial topology with respect to the inclusion H « [, Y and

H — h(X), (x,)uen = (F(x,))nen. P is continuous and thus we get that p is open. O
As a direct consequence we obtain the following corollary.

3.14 Corollary.

Let X, Y be Hausdorff Ics, f : Y — X be linear and continuous and (A, ||||) a nBss. If Y is
topologically isomorphic to a product of straight lines, then the projective limit of Moscatelli
type F(Y LX) is 4 Baire space.

Proof:

Because of Lemma 3.13 F(Y 4X, A) is topologically isomorphic to (ker/)" x MY / kerf).
Since Y is topologically isomorphic to a product of straight lines. kerf is also topologically
isomorphic to a product of straight lines and thus topologically isomorphic to K’ I'or some
index set [. Since Y/ kerf is again topologically isomorphic to a product of straight lines,
we get with Lemma 3.7 that A(Y / kerf) is topologically isomorphic to A’ for some index set
J. Altogether F(Y L.X, \) is topologically isomorphic to a product of Banach spaces, hence
Baire. O

With the help of the following lemma we will get a result for Bairelike.

3.15 Lemma.

Let Y, X be Hausdorff Ics, let f : Y — X be linear and continuous andlet ¥ and X be the
completions of Y and X. respectively. Furthermore ]et]" : ¥ — X be the continuous linear
extension from f to ¥. If (A, ||||) is a nBss with sectional convergence, then F(Y £:X, A)is a
dense topological subspace of F(¥ -£:X, h).
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Proof:

Because of the transitivity of the initial topology F(¥ L. X, A is a toplogical subspace of
F(Y LX,N). Moreover @0, Y is dense in @0, ¥ with respect to the induced topology
of F(¥ L., 1) and because of the sectional convergence, @, ¥ is dense in F(¥ LX),
such that altogether ), Y isa dense subspace of F(Y L.X, A). Asitis true that PenY C
F(Y LX A) we are done. a

As a consequence of Lemma 3.15 and Corollary 3.14 the following corollary.

3.16 Coroallary.

Let Y, X be Hausdorff Ics, such that Y carries 2 weak topology. let f : Y — X be linear
and continuous and let (A, || ||) be a nBss with sectional convergence. Then F(Y LX.A) is
Bairelike if and only if 1t is barrelled.

Proof: )

From Lemma 3. |5 we get that F(¥ L. X A)is a dense subspace of F(¥ -L:X, A) and since
¥is topologically isomorphic to a product of straight lines, we get from Corollary 3.14 that
F(Y —f;f(, A)is a Bairespace. Thus F(Y -LX A)is Bairelike if and only if it is barrelled (see
[29, Proposition 9.1.3]). a

Now the question arises under which conditions a projective limit of Moscatelli type is
barrelled. We give a characterization with the keep of a generalization of Lemma. | of |16)].
In fact it is exactly Frerick’s proof which works also in the more general situation.

3.17 Lemma.

Let X. Y be Hausdorff lcs, f : Y — X be linear und continuous, and let (A, ||||) bea nBss.

Then the following are equivalent:
i) F(Y LX) is barrelled.
ii) F(¥Y 4X, A) is quasibarrelled and Y is barrelled.

Proof:

Only ii) = i) needs a proof. So let T be a barrel in F := F(Y £ X, A). Since F is
quasibarrelled, it is sufficient to show that T is bornivorous. Solet B C F be a bounded set.
Without loss of generality we may assume that for all x = (x )y € B @nd J C N it is true
that ((x,),es, (Muems) € B. It isimmediate that F is topologically isomorphic to

[Tr=]Jtoy| e {Fo]J{oy < ]]Y

k<n k=n k<n k=n

for every n € N. Since [[; ., Y X I;~,{0} is barrelled for all n € N as Y is barrelled, it
is enough to show that T absorbs B N (Hk <., {0 x sz” Y) for some i1 € N. We assume
this is not true. Then we obtain that for every n € N there exists some 2 = (z{"),x €
BN (H,\..(,,{O} X [lisn Y) such that " ¢ 2*T. Now let f : ¥ — X be the continuous
extension of f 1o the completion¥ and X of Y and X, respectively, and let

he (b, | ) — R Loy = F
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k
(Xedren — Z % J !
k=1

As (&%), is bounded and (ou )ex € ), 1 is welldefined, it is also linea and we will show
that h: (¢;, o(ly, co)) — (Fy, o(F, F))) is continuous. So let | € F be given, then for all
o = (oyren € L it is true that

1
P(h(o) = P (Z % 57 :‘“) => Oﬂkﬁll)km)

kEN keN

and since (Z*)xen isa bounded sequence, and 1]) is linear and continuous {\(z*) : k € N}
is bounded in K. Thus 1 o h is represented by (4(z%*));ex Which converges to zero and so
P ohisa({;, ¢y)-continuous, which proves that themap h : (;, o({;, ¢g)) — (Fy,0(F}, F)))
is continuous.

As the closed unitball By in (£, ||-||. )15 0(£), co)-compact, the range i(B,) of B| iso(F, F})
compact and thus a Banach disc in F, with its original topology. If & = (o, ),en € £;, then

L) *)
ZOCA,)“ ZOCA,),\(~ )iew

keN keN

J
(Z LT j“) eY¥nF =Fr.
k=1 jew

Thus A(B,) C F such that i(B,) is a Banach disc in Fand hence T absorbs h(B)). It follows
that there exists p > 0 such that for all k € N it is true that - 2%’ € pT, such that for all n e N
with 2” > p it holds that z¥ € 2°2"T = 2*'T which s a contradiction (o the assumption.
Consequently there is n € N and some p > 0 such that

Bo | [Jtor=<[]Y | coT,

k<n k>n

whence we get that

B < Bn|J[r=xJ[{or] +Bn | JJ{or =]~

k<n k=n k<n k=n
C 2uT

for some 1 > p, which completes the proof.
As a further result we obtain from this the following corollary.

3.18 Corollary.

Let ¥, X be metrizable Ics, such that Y is barrelled. Then F(¥Y £X, A) is barrelled, hence
Bairelike.



260 N. Berscheid

Proof:

Since X and Y are metrizable also F(Y £ X, A) is metrizable and hence quasibarrelled.
From Lemma 3.17 it follows that it is also barrelled. such that it is altogether metrizable and
barrelled, hence Bairelike [29, Proposition 9.1.31i)]. O

A further positiveresult holds for weakly barrelled Hausdorff spaces, as we will show now.

3.19 Proposition.

Let X.Y belcs, suchthat Y isBairelike and X isweakly barrelled and Hausdorff. Moreover
let f : Y — X be linear. continuous and open map. If (A, || ||) is a nBss with sectional
convergence or (A, ||-[) = (L, || -]l =), then the projective limit of Moscatelli type F(Y LX | A)
isBairelike.

Proof:

Since Y is Bairelike also the finite product [, _, Y is Barelike for all n € N. Furthermore
by Proposition 3.9 we obtain that A((X)i=.) IS also Bairdike for all n € N. Together we
get that the steps F,, := [, ., Y X A((X)>,) Of F(Y L X, A) are Bairelike, such that by
Proposition 2.8 it is enough to show that the linking maps

Gor w0 [] Y XY XAMOzas1) — [ ¥ % X X MXOrz001)
E<in b <n

((.VA‘)R < Yy (,\'k)kzn-t-t) — ((_\’k)e'\ < H!.f(yn)a (.\"k)kz.'l«H)

are open. what is immediate, since f is open. O

We remark that in the previous proposition the condition on f to be open is essential. even
if Y is chosen to be weakly barrelled. But before we give an example we show the following
Lemma.

3.20 Lemma.

Let X. Y be lcs. f : Y — X be linear and continuous, and (A, || ||) be a nBss. Then the

canonical map )
F o FY DX, N — AX), Vudnen = (Fu)nen

is surjective, if f is surjective and f is open, if f is open.

Proof: i

Because of the definition ofthe projective |imit of Moscatelli type, f is clearly welldefined,
linear and continuous. Now let (x:)rex € h(X) be given. Since f is surjective, it is true that
for all n € N there is a y, € Y such that f(vi) = x;. Thus (f(yi)ken = (0i)ren € N(X), such
that (y)icw € F(Y -5X, A) and hence f is surjective.,

Now let f be open and V & U4,(Y), n €N and U & U4,(X) be given. Since f is surjective as
we have just proved, we obtain that

f (H Vx {mkzn € MY ksn) 2 ([0 <y (o (Fiza)|| < 1})
k<n

> Hf(v) x {(v\-k)kzn S A((X)LG) : ”((0)1‘\‘<m (P(;’(-"A))kzn)n S 1}

k<n
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and thus  is open, since f is open. O

3.21 Example.

There exist weakly barrelled Hausdorff spaces (Y, 3) and (X, g) and a linear bijective,
continuous map f : (¥, 3) — (X, g) such that F(Y £X, A) is not £, -barrelled for any nBss

Proof:

Le (¥, §) bea wekly barrelled infinite dimensonal Hausdorff space, such that the bounded
sets have finite dimensional linear span. An example of such a space is the incomplete
Montelspace of I. Amemia and Y, Kémura [4]. Then (Y, 3) is not complete, because otherwise
it would be topologically isomorphic to the product of one dimensional spaces, such that the
bounded sets would not have finite dimensional linear spat.

Now let ¥ be the completion of (¥, &) and let x € ¥\ Y be given. 3 denote the topology
on Z := Y + [x]induced by ¥. Now we prove that the bounded sets in (Z, 3) also have finite
dimensional linear span. In fact, let B be a bounded subset of (Z, %), then for all b € B there
exists some y, £ Y and A, € K such that

h =¥y + Apx. (%)

We will show that K := {A, : b € B} is bounded in K. Suppose this is not true. Then there
is asequence (b,)uen in B such that A, "= oo and A, # O for all n € N. Now (x) implies

that foralln e N | |

T V=
)\JJ,, ?\h,,

is true. Since {b, : n € N} is bounded in (Z, &) and : =3 0 we get that (,\ Vb, Jnen 18 @
sequence in Y which converges to —x, But since Y is quasicomplete and hence eequennally
complete this would imply that x€ Y whichisa contradictionto x ¢ Y. ThusK isa bounded
subset of K and we get that A= {y,: b € B} C B Kx is bounded in (Z, $). It follows that
A C Y isbounded in (¥, %) and hence dim[A] < oo, Altogether we get that

b, = x

dim[B] < dim[A U {x}] < dim[A] + | < o

such that we have proved that the bounded sets in(Z, ) have finite dimensional linear span.

Now we put (X, ) := (Z, 3) /[x] and denote by ¢ : (Z, 3) — (X, p) the canonical
quotient map. Since (¥, ) is weakly barrelled (Z, &) = Y+ [x]is weakly barrelled and hence
(X, g) is also weakly barrelled. Furthermore (X, g) is topologically isomorphic to a closed
hyperplane in(Z, %) and thus the bounded sets in (X, ) have finite dimensional linear span.
From the definition of (Z, &) and (X, ) it follows directly that f : (¥, 3) — (X, p), y — g(y)
islinear. bijective and continuous but not open.

Now let (A, || ||) be an arbitrary nBss. We prove that the projective limit of Moscatelli
type F((Y, ) =X, ), A) =: F is not {.-barrelled. Since (¥, ) and (X, p) are barrelled,
they are in particular Mackey spaces, such that there exists a map ) € (Y, $)’ such that
Pof- & (X, p). Let p, = ||(§u)een|| @nd let pr,: F — Y be the canonical projection
and let B :={p,(\{ o pr,): n € N}. Now we will show that B is pointwise bounded.
In fact. let (y)ew € F be given. Then {pif(3): k € N} is a bounded set in (X, )
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such that E := [{f(y;): k € N} |is a finite dimensional subspace of X. Since (X, p) is a
Hausdorff space, we get by the uniqueness of finite dimensional linear Hausdorff topologies
thatf [f"(E): (f"(E),S Nnf~YE) — (E, p N E)is atopological isomorphism. It follows
that (yi)eew € A(f~'(E)) C h(Y) and thus

{pn(q)(])rn((}'k)kEN))) T hE N} = {pn(u)()'u)) ne N} = u’({p;:)'n he N})

is a bounded subset in K. We will show that B is not equicontinuous and hence F(Y -LX, A)
is not {,.-barrelled. By the above argument we have also obtained thatf |yy: h(Y) —
AX), ("ken — (FOu))ken is bijective. Thus if B were equicontinuous there would exist
some ny € N, such thatp, () o pryof~")=p,(hof ') would be continuous in(X, p) for all
n > ng. But this would imply that ) of-" € (X, p)’ which is a contradiction. O

3.22 Remark.

The proof of Example 3.21 shows that for every weakly barrelled Hausdorff space (Y, 3)
such that the bounded sets have finite dimensional linear span, there exist a stictly weaker
weakly barrrelled Hausdorff topology p on Y, such that F((¥, ) <Y, p),A) is not (.-
barrelled.

Furthermore it seems worth mentioning that the question asked by Valdivia [29, 13.9.1]
whether complete Bairelike spaces are Baire would get a negative answer, if one could find a
complete locally convex Baire space Y admitting 3 quotient Y / L with weak topology, such
that the bounded setsin Y /L have finite dimensional linear span. Infact,if¢:Y — Y /Lis
the quotient map and if (A, || -||) is a nBss with sectional convergence or (A, ||-])) = ({se, |||/ )
the projective limit F = F(Y Y / L, Ajs complete, Bairelike by Proposition 3.19 but not
Baire, since f 1 F — A(Y /L), (p)nen — (G(vx))new is linear, continuous, open by Lemma
3.20 and A(Y / L) isnot Baire by Proposition 3. |1.
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