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CONTRIBUTIONS TO THE THEORY OF BOUNDEDNESS IN UNIFORM SPACES AND
TOPOLOGICAL GRoOuUPS

H. FUHR. W. ROELCKE

Abstract. First, we discuss the behavior of boundedness in uniform spaces with respect to
subspaces, projective limits, and suprema in relation to precompactness. A special uniformly
isomorphic embedding of an arbitrary uniform space in a bounded uniform space is presented
and examined in 2.6. Hejeman's characterization (by B-conservativity) of uniform spaces
in which boundedness can be tested by a single pseudometric is proved in a new way, see
3.13, using a version 3.1 of the metrization lemma. We comment briefly on boundedness
in topological vector spaces. In topological groups we investigate a hierarchy of partly
new notions of boundedness, strongly interrelated among themselves, and exhibit various
situations in which certain of these notions coincide. “Boundedness respecting subspaces”
of a uniform space prove useful. Many examples illustrate and complement the general
theory, see, e.g., Example 6.4.
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0. INTRODUCTION

In this paper we continue the study of boundedness in uniform spaces and topological
groups, as initiated by Hejeman [13] and Atkin[1]. In the first three sections, after reviewing
and developing basic material for background and later use, we examine thoroughly the be-
havior of boundedness with respect to subspaces, projective limits, and suprema in relation
to precompactness. From Section | we mention in particular Example | .10 of an unbounded
projective limit of bounded uniform spaces, and 1.13, 1.14, 1.15 on maximality properties
of the finest precompact compatible uniformity on a Tychonoff space. 1.16 and 1.17 are
examples of two bounded uniformities on a set which induce equal topologia but have un-
bounded supremum. Typically, boundedness is more difficult to handle than precompactness
and gives rise to specific concepts like “boundedness respecting subspace” Y of a uniform
space X in thesense that any bounded set A C Y isbounded in Y. For corresponding results,
see 2.2,2.3,2.4, 3.5, and Section 6 for “infraboundedness respecting”. Theorem 2.6 contains
the known fact (see Isbell [16], p. 20, no. 21) that every uniform space has a uniformly
isomorphic embedding into a bounded uniform space. Qur construction has the advantage
of being well compatible with other structure on the space, like previously known analogous
constructions for topological vector spaces and topological groups. The third section deals
with the connections between boundedness, uniformly continuous functions, and pseudo-
metrics, In 3.13 and 3.14 Hejeman's characterization (by B-conservativity) of uniform spaces
in which boundedness can be tested by a single pseudometric is proved ina new way, usinga
version 3.1 of the metrization lemma. A somewhat expository short fourth section on boun-
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dedness in topological vector spaces mainly illustrata the material of the preceding sections.
In the final sections 5 and 6 we treat boundedness in topological groups. By 5.6, every topo-
logical group has a topologically isomorphic embedding into an £V R-bounded topological
group. In addition to boundedness with respect to the four natural uniformities of the group,
we consider the notions bibounded, infrabounded, and strongly infrabounded (see 5. | and
6.1) which are natural from the roles they play and strongly interrelated. In the hierarchy
which these notionsform (see 6.3), any two of them are different except possibly for the pair
LV R-bounded and bibounded. In this context the most difficultexample 6.4, essentially due
to Uspenskij, is that of a (strongly) infrabounded, hut not £ vV R-bounded group. We exhibit
various situations in which certain of our notions coincide. E.g., specia results are obtained
for ASIN-groups (see 6.14 through 6.19) and for groups with open L-pseudocomponent (see
6.29, 6.30, 6.31). The general theory isillustrated by many examples. A number of questions
remain open. Little could be said about L ¥V R-boundedness. In a subsequent paper we
will treat invariant pseudometrics inrelation to boundedness in topological groups, extending
Hejcman’s work on abelian groups.

In regard to terminology and notation we remark: A uniformity V on a set X will be
understood as a st of vicinities The topology induced by V will also be called the V-topology.
For A C X, V|A denotes the restriction of Vto A. AC X is called uniformly discrete if V|A is
discrete. A uniformity on a topological space (X, T)is called (7 -)compatible if itinduces 7.
For V € V, VY denotes the diagonal of X. We let N denote the set of non-negative integers
and put N' := N\ {O}. For a topological space (X, 7) and ¢ € X, I4,(X,T) denotes the
neighborhood filter of ¢.

1. BOUNDEDNESS AND PRECOMPACTNES

Definition and Remark 1.1. Let (X, V) be a uniform space and A C X. A is called
precompact, if for every vicinity V €V there exists F C X finite such that A C V[F]. A is
called bounded, if for every vicinity V €V there exist F € X finite and n € N such that
A C V'[F). In both cases F can be chosen as a subset of A, see [ 13], 15. [fAcY C X, we
call Abounded inY ifA is bounded with respect to the uniform space (Y, V Y). If we consider
several uniformities on X we use the terms “V-boundedness " and “V-precompaciness” for
distinction. If the whole space is bounded or precompact W. r.t. a given uniformity, we call the
uniformity hounded resp. precompact.

Example 1.2. Let X bea seminormed real or complex vector space. (A seminorm s a function
x = |[x]| of X in R such that, for all x,y € X and scalars A, one has ||x[| > O, [|Ax||=|A||x||
and x + y|| <|lx|| + |¥ll.) The seminorm induces the pseudometric (x, y) — ||x = y|| on X
which in turn generata the “standard” uniformity V of X. A set A © Xis V-bounded in X iff
sup{|lal| : « € A} isfinite.

Boundedness in the context of topological vector spaces will be discussed in Section 4.

Remark 1.3. (1) For a subset A of a uniform space the following implications are obvious:
A is compact = A is precompact = A is bounded. Subsets and finite unions of precompact
(resp. bounded) sets are precompact {resp. bounded). Also the closure of a precompact (resp.
bounded) set in the topology induced by the uniformity isagain precompact (resp. bounded),
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see [13], Theorem | .9.

(2) The precompactness of a subset A depends entirely on the relative uniformity on A, i.e. A
is precompact iff it is precompact with respectto (A, V|A). This is easily proved by means of
the formula (VN (Ax A)[F]=ANV[F], for FCAand VeV.

A a consequence, precompact sets are bounded in themselves.

B)IfACYC Xand Aisbounded in Y, then itis also bounded in X. In contrastto the case
of precompact sets. the converse is generally not true, as the following example by Atkin
shows (cf.[l], Ex. | .8 b)): Let A be an infinite orthonormal subset of a Hilbert space X.
uniformized as in 1.2. Then A is bounded in X, but the relative uniformity on A is discrete, so
that A is not bounded in itself. As a consequence, A is not precompact. From this example
one obtains a bounded uniform space X' with a closed and open bounded subset A’ that is
not bounded in itself by putting X' ;= {x € X: |[x| <2und |lx || #1for alla € A} and
A= {x €X:|jx=al < 3 for some ¢ € A}.

(4) One easily proves that finite unions of bounded in themselves subsets are bounded in
themselves. The next fact, which is essentially (2.1) of [1], has a slightly more technical
proof: For ZCY C X with Z dense inY, one has: Z is bounded in itself iff Y is bounded in
itself.

(5) On every completely regular space X tlgere exists a compatible precompact uniformity,
e.g. the uniformity induced by the Stone-Cech-compactification. This shows that generally
the topology does not yield sufficient information concerning precompactness.

(6) Plainly, finite sums of bounded uniform spaces are bounded.

Proposition 1.4. Let (X, V) be a uniform space and A C X. Then A is bounded (resp.
precompact) iff every countable discrete BCAis bounded (resp. precompact, or,equivalently,
finite).
Proof. The condition is necessary by |.3( 1). Now let A be unbounded. Then there exists
a vicinity V such that for any finite F C A and, for any n € N'. A ¢ V'[F]. Take any
ap € A and choose inductively a, € A with a, ¢ V"[{ay, , a,—}] (for n > 0). Then the
set B := {a,,: n € N} is not bounded: Suppose it is. Then there exist m,n € N with
B C V'[{ao, , a,}]. Wecan assume m=n - 1(if necessary, increase either m or n), so
that especially a, € V"[{ay, ., @—1}]. which contrudicts the choice of a,.
If A is not precompact, there is a vicinity V with A ¢ V[F], for all finite F C A. Then choose
inductively a, € X, n € Nwith a, ¢ V[{ay,. .. ,a,-1}]. Then B = {a,: n € N} is not
precompact.
It remains to show that B is uniformly discrete. Pick a symmetric W € V with W2 C V. For
i # k we have a; & V]ay] (in both cases), and therefore W[a; N W(a] = 0. O
We omit the proof of the following known

Corollary 1.5. (a) A subset A of a uniform space is precompact iff every uniformly discrete
B C A is finite.
(b) A countably compact space s precompact.

More generally than | .5 (b), every pseudocompact subset of a uniform space is precompact,
see [9], Problem 8.5.10 or [9], Chapter IX,§1, Exercise 21.

Proposition 1.6. Let f : X — Y be a uniformly continuous mapping between uniform spaces.
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If A o X is bounded (bounded in itself or precompact, respectively), then f(A) CY has the
same property.
Proof. Elementary, cf. [ 13], Theorem |. [0, u

Proposition 1.7. Let (f;)icr be a family Ofmaps fit X =X, let V; be a uniformity on X; for
i €1, and let V be the initial uniformiry with respect to (fi)ici. A subset A C X is precompact
in (X, V)Ifffi(A) is Vi-precompact for each i€ 1.
Proof. See [4], Chapter II, $4.2, Proposition 3.

Since the relative uniformity is the initial uniformity with respect to the inclusion map,
we know from example 1.3 (4). that the analogue for bounded sets does not hold in general.
However. it hasbeen shown to be true for product spaces and certain projective limits:

Proposition 1.8. Ler X he the product of a family (X;) ic; of uniform spaces, endowed with the
product uniformity. For i € [, let ; © X — X; De the projection. Then for all ACX: Als
bounded in X iff Vi € I:n,(A) is bounded in X;.

Proof. See [13], Theorem 1.11. O

Proposition 1.9. Let (X, V) be the projective limit of a projective system (X;, V;, fu, I) OF

uniform spaces (X;, Vi) with directed index set I inthe sense of [4], Chapter [[, $2.7. ( "inverse

systent” in the terminology of [9], Exercise 8.2.B). Assume that, for eachi € I, the canonical

map f,: X — X;is surjective. Then a subset AOF X is V-bounded (resp. bounded in itself) iff
filA) is Vi-bounded (resp. bounded in itself), for each i € [,

Proof. See [1], Lemma 2.3. For the part concerning “bounded in itself” the surjectivity of
the maps f; is not needed. O

That the assumption of surjectivity of the maps f;is not superfluous isshown by

Example 110. of an unbounded projective limit of a decreasing sequence of bounded uniform
spaces. Let Y be a countable Hausdorff, dense in itself and bounded upiform Space with an
unbounded subspace X (2.6 and 2.7 (5), (1) and (0) yield such Y and X). Writing Y \ X as
{»: © n € N}, we obtain a decreasing sequence of dense open subsets Y \ {yy, ,y,} which
are bounded (inthemselves) by 1.3 (4). Their intersection X is the desired projective limit.

One could obtain un example with closed subspaces if, in the above, Y could be chosen
in addition locally precompact. (However we do not know whether such a Y exists) The
unbounded in itself subspace X may be assumed to be closed because of 1.3 (2). Then one
can choose, for each n € N, an open precompact neighborhood V,, C Y \ X of y,, so the
subspaces Y \ |Ji_, Vi, n € N, are closed, and they are bounded in themselves by 3.7 (which
we anticipate for this construction) and they have again as ther projective limit the unbounded
space X,

Thefollowing notion of V-component, helptul in the discussion of boundedness, has already
been used by Bourbaki ([4], Chapter 11, §4, Exercise 7) and Atkin ([ 1],1.3).

Definition and Remark 1.11. Let X be a uniform space and N a symmetric vicinity. Then
Vii= J,en V" defines an equivalence relation on X. The equivalence classes modulo V are
called the V-components. Th-; are open and therefore closed.

The pseudocomponent of x € X is defined as the intersection OF all V-components containing
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x. The pseudocomponent of x is a superset of its quasicomponent (defined as the intersection
of all clopen sets containing x) which in turn contains its connected component. Plainly, the
pseudocomponents are closed, and they form q partition of X.

The equivalence “(a) < (b)” of the following lemma has been shown by Atkin

Lemma 1.12. Let (X, V) be a uniform space. For A C X the following are equivalent:

(a) A is bounded.

(b) For all symmetric vicinities V, A meets only finitely many V-components; and for every

V-component W and every x € W there exists n € Nwith ANW C V"[x],
(c) For all symmetric vicinities V. A meets only finitely many V-components; and, for every
V-component W, W N A is bounded in W.

Proof. For “(a) < (b)” see [1], Lemma 14

“(a) = (c¢)": Let A be a bounded set and W be a V-component. Because of (a) < (b), it
remains to show that AN W is bounded in W. Let U be a symmetric vicinity, U C V. Then
we have ANW C U"[F]. with suitable n € Nand finite F C ANW. Since U C V and Wis a
V-component, we have (UN(W x W) = U'N(W x W), sothat ANW C (UN(W x W)Y'[F].
Thus ANW is bounded inW.
“(c) =(a)™: (¢) implies that A is the finite union of bounded sets and hence bounded. O

Proposition |.9 applies in particular to the supremum of a directed set of uniformities on
a given set X. (Here the directedness of the set of uniformities is crucial, see examples
1.16 through 1.18) In particular, by Zorn's lemma, for any set A of subsets of a set X
there exist uniformities V which are maximal with respect to the property “each Ag A is
V-bounded”. We call these uniformities A-maximal. If there exist two distinct 4-maximal
uniformities V and W for the same set A then some A ¢ A is not bounded for the supremum
V V W, This remark applies in particular to the case A = {X}. (Conversely, if V and
W are two uniformities on X for which each A € A is bounded, but not every A€ A is
V vV W-bounded, then any .A-maximal uniformity V' >V is distinct from any A-maximal
uniformity W > W.)
We now give some results concerning the maximality of the finest precompact compatible

uniformity on Tychonoff spaces.

Proposition 1.13. The finest precompact uniformity W on a set X is a maximal element in
the set of all hounded uniformities on X. In particular, W is maximal in the set of dl bounded
compatible uniformities on X endowed with the discrete topology.

Proof. Suppose there is a bounded uniformity V 2 W on X. Then V is not precompact.
Hence, by 1.5 (a), X has an infinite V-discrete subset A. On the other hand N :=(Ax A) U
(X \ A) x (X \ A)) generates a precompact uniformity 2 on X; soN €2 C W CV, and A
is an N-component. But then, by 1.12, (@) = (c), Ais V-bounded in itself, which contradicts
the V-discreteness. O

The following is an example that the proposition does not hold for arbitrary Tychonoff
spaces.

Example 1.14. of a Tychonoff space X whose finest compatible precompact uniformity W
is not maximal in the set of all compatible bounded uniformities on X. In a Hilbert space
with norm || || and infinite orthonormal system (e,),¢;, let X := |J,,[0, 1]e, be equipped



194 H. Fiihr, W Roelcke

with the usual topology induced by ||||. The usual compatible uniformity V on X is clearly

bounded. V is not comparable with the finest precompact compatible uniformity W: V is
not coarser than W since the set {e, : 1 € I} is not precompact: it is not finer than W since
it is easy to exhibit bounded continuous real functions that are not V-uniformly continuous,
but these functions are W-uniformly continuous. W is the initial uniformity with respect to
all bounded continuousfunctions X — R, see [11], [5Tand J. Let U € VvV W. For the
boundedness of V v W we prove that X = U"[0] for some n € N, Putting fi(x) := ||x]|
(x € X), there are some more bounded real functions f5, | f, on X and an € > 0. such that

US{xy)eX xX:|xy

|< eand |[f,(x) —f,(»] < efor [ <p <}

We cover J = U},}:lfp(X) by finitely many open intervals /y,., I, of lengths at most €.
Let 1 € I. Since the m" products /,,, x ... x I, with ..., . € {1,... m} coverJ’, the m'
open sets

{x €100, Ue, = (fix), Si0) € Ly x x L}

cover [0, l]e,. Therefore, and since [0, 1]e, is connected, we can index these sets as X, |, »
X, insuchawaythat 0¢ X, , and such that each non-empty X, . with 2 << 1 < m' intersects
some X,., with 1 < ¢ < T. Now, for T > 2, one has for all x,v € X, ;. [f,(x) — f,("] <e€
for all | <p < round [[x  y||=|fi(x) = fi(y)] < e, whence (x, y) € U. It follows that

X, . CU[X, ,] for some ¢ < T, and we obtain X = U™ [0]

Remarks 1.15. (1) V V W is complete since it is compatible and V is complete.

(2) The dense subspace X,:= X\ {0} of (X, Vv W) islocally compact (infact. the topological

sum of the spaces ]0,1]¢,) and it is bounded. but not precompact. Therefore. by |.2() below.
it is not uniformly locally precompact. Further, a slight adaptation of the arguments from

the example shows for the locally compact space X,: The uniformity V, := V|X) is not
comparable with the finest precompact compatible uniformity 1, on X,, and V, V W is

again bounded. Indeed, instead of considering {/*[0] with / € V, one shows that, for every

Uy € VoV W, thereisp € Nsuchthatforall 1 € [, Ujle,] =]0, | |e,. Since Uy = UN(XyxXy)
for some [/ € V, and {/[0] s a neighborhood of 0 in X. it follows that X, C U2*[e, ], for any

LEL

(3) We do not know whether V V W is maximal or even the finest uniformity in the set of all
bounded compatible uniformities on X.

(4) Perhaps every bounded, non-precompact compatible R on X is the supremum of V and the
finest precompact uniformity P ¢ R. (Pi\ the initial uniformity with respect to all bounded
‘R-uniformly continuous functions X — R.) This would imply that V is the smallest of all
bounded, non-precompact compatible uniformities, and that V V W is the finest bounded
compatible uniformity (cf. (3)).

Example 1.16. of two bounded metrizable uniformities V and W on a set X which induce
equal topologies and have unbounded supremum. In the Banach space £, with | < p < o
consider the unit vectors ¢; := (du)iez. k € Z, and define X := (J, ([0, %IUI%» 1)) ¢
with its usual topology. Let V be the metrizable uniformity on X induced by the standard
uniformity of .,'f;z. V is easily seen to be bounded. Let ¢ : X — X be the bijection that

leaves the points of | J,.,[0, [-¢; fixed and sends (x;)iez iNto (x;_)icz, for [|lx| > §. Let
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W be the uniformity on X for which ¢ : (X, V) — (X, W) is a uniform equivalence; so W
is also hounded. Clearly, V and W are compatihle. To show that V V W is not bounded
consider the vicinities M := {(x,») € X x X [lx y|| < 3} €V and N := ($ x p)(M) € W,
so MNN €V v W. It suffices to show that the M n N component of ¢ is equal to
]%, 1] ek, since this implies that X has infinitely many M N N-components and hence cannot
be hounded, by Lemmal.12.In fact we wil] show (x)(M N N)'[e; ]—]l,l] ey, forall n > 1.
By definition one has Mlei] = N[ey] = ,, I'] €;, which proves (x %) for n = |. The induction
step amounts to proving (M N N)[Ae;] C] 5,11 en for 1 5 < A <. Suppose that there exists
Y E (M NN)[Aex]\ (]%, I]ec). Then y € M[Aey] implies thut

l
B H 0 _.'.;‘
(%) v E] .2|C1‘

since points in [0,1] - ¢; are at distance > 3 from Ay for j # k. Therefore y € N[Ae;] implies
that y= ¢~ EM (b (Aey)] = M[Aer_; | It follows that y €]0, 1]-ex—,, in contradiction
10 ().

Remembering that the supremum of two precompact uniformities is precompact. the fol-
lowing example is of interest.

Example 1.17. of two uniformities V and W on a set X. inducing equal topologies, such
that V is hounded and W is precompact and such that V'V W is unhounded. Lct (X, V) be a
bounded uniform space which has an open and closed subset A thatis not V-bounded in itself
(cf. end of 1.3(3), where Vis metrizahle). Let JA/; be the precompact uniformity on X with
basis {N}, where N := (A x A) U ((X\ A) x (X \ A)). The W,-topology {0, X,A, X \ A} is
coarser thanthe V-topology 7. Hence W, is coarser than the finest 7-compatible precompact
uniformity W (the precompact uniformity W vV W, is T-compatible, hence equalto W). To
prove that VvV W is unbounded we show that A is V V W, -unbounded. As Ais not V-bounded
in itself, it is also not V V W;-bounded in itself. But A is an N-component, hence, hy 1.12.
“(a) = (¢)”, Aisnot V V W,-bounded in X.

An example with metrizahle V and W can he ohtained similarly if }/is metrizable (cf. end
of |.3(4)) and if, in additionto A as above, there existsa metrizahle precompact uniformity
W’ inducing the V-topology on X: One may then take W := W v Wy4. E.g., if the
metrizable V-topology has g countable basis 3 consisting of closed and open sets, then the
sets (BX B)U ((X\ B)x (X \ B)) with B € 3 generate such 4 uniformity W',

In hoth examples X is not connected: we do not know a connected counterexample. But
we mention that we were able to construct a connected Tychonoff space X, two compatible
metrizahle uniformities ) and W and a subset A C X which is V- as well as W-bounded, but
not V V WW-bounded.

Example 1.18. of two bounded uniformities } and W on a set X such that the W-topoloyy
is compact and )V V W is unhounded. Let (X, )') he any bounded uniform space with an
unbounded subspace (A, V|A), and let W he any uniformity for which A and X\ A are

compact. Then an argument very similar to that of the preceding example yields that )V VW
is unbounded.

Definition 1.19. A uniform space (X, V) is called uniformly locally compact (uniformly
locally precompact resp. uniformly locally bounded) if there exists V € V such that, for all
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x € X, V[x]is compact (precompact resp. bounded). A vicinity V €V is called B-conserving
if V[A]is bounded for each bounded A C X, or, equivalently, if V"[x] is bounded for ench
x € X and n € N. The uniformity V and the space (X, V) are called B-conservative if there
is a B-conserving V € V.

The concept B-conserving has been introduced and studied by Hejeman in[14], Def. 3, und
in [15]. That B-conservative is strictly stronger than uniformly locally bounded is shown in
[14], Example. In particular, B-conservative is used to characterize uniform spaces in which
boundedness can be tested by a single pseudometric, see [15], Theorem | and our Theorem
313

The next proposition gives some easily found classes of uniform spaces in which boun-
dedness and precompactness are the same. See 2.4 fora characterisation of this property.

Proposition 1.20. Let (X, V) be a uniform space fulfilling one OF the following conditions:
(a) X is uniformly locally precompact.

(b) V has @ basis consisting of transitive relations.

Then every bounded subset of X s precompact. If X {5 even uniformly locally compact, then
every bounded subset is relatively compact.

Proof. For case (a), see [ 13], Theorem 1.18. Case (5) is clear, since transitivity of V means
V"= V. for all n > 1, and because it suffices to consider a basis of V. The last statement
follows easily from case (a). ([l

Remarks 1.21. (1) Condition (b) of the previous proposition is equivalent tg
(b’) V has a basis consisting of equivalence relations,

since, for any transitive reflexive relation V, V N V=" is an equivalence relation.
(2) There are locally compact (even discrete) Tychonoff spaces which have compatible uni-
formities which are not uniformly locally precompact. For instance, take an infinite set X
and a sequence Of subsets (U,,),en With U, D U,y and such that U, \ U, is infinite for
every n € N, Suppose further that M,en Us = 0. Then the sequence (V,,),en, defined by
V,, = Ay U (U, x U,) is the basis of a uniformity V which induces the discrete topology on
X. But V is not uniformly locally precompact: To sec this, it is sufficient to observe that for
every 1 € N and every F C X finite we have V,+[F] C U,y U F, in particular for every
x € Uy \ Uysr we have V,[x] = U, ¢ Vi1 [F1.

Since V has a basis consisting of equivalenze relations, we see (by (1)) that V is not even
uniformly locally bounded.
(3) Forafurther example of non-locally bounded compatible uniformities on a discrete space
let X be an uncountable set. Wc equip X with the initial uniformity V with respect to all
functions X — R (with R carrying the usual uniformity); the V-topology is discrete. We
show: All bounded subsets of X are finite and (X, V) is not uniformly locally bounded. If
A ¢ X isinfinite, any function X — R which is unbounded on A shows that A is unbounded,
by 1.6. To prove the second assertion note that the sets of the form

V= {(x,y) e X xX:sup{ [fi(x) =fim|: i =1,.,n} <1}

where fi, ,f; are arbitrary real functions on X, form a basis of V. For any such basic
vicinity Vthere isan uncountable set Y C X such that

Vief{l,.,n}dkeZVyeY iy elk k+1]
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Hence Y xY C V, so that, for each y € Y, V[y]is infinite, i.e. unbounded.
(4) There exist bounded, non-precompact uniform spaces with discrete topology, see 3.9.
Because of 1.20, they cannot be uniformly locally precompact. Note that a locally compact
space is uniformly locally compact for some compatible uniformity iff it is paracompact, see
[18], Chap. 6, Problem T (e).

The last proposition of this section concerns the behavior of boundedness with respect to
special quotients.

Proposition 1.22. Let (X, V) be a uniform space and R an equivalence relation on X which
is compatible with 'V (in the sense of [25], 4.10), i.e.

vVeVyalueV:RoUCVaR.

Suppose all equivalence classes modulo R are bounded (resp. precompact). If we endow

X / Rwith the quotient uniformity then for the quotient map q and any subset Aof X we have

the equivalence:

A s bounded in X (resp. precompact) iff q(A) is bounded in X / R{resp. precompact).

Proof. We shall only prove the statement for bounded sets, since the proof for precompact
sets is completely analogous (see also [25], 12.15). The “only if” part is clear by the uniform
continuity of ¢. Now let A be a subset of X with q(A) bounded and let V be any vicinity

on X. By the assumption on R there exists a vicinity U with Ro I/ ¢V o R We have

(g x g)(U) € V /R by [25], 4.10, whence

q(A) C (g x g)U))" [F]

with 11 € N and finite ' C q(A). Choose a finite F C A with q(F) = F. Then one verifies
easily
q(A) ¢ (g x g)UN'[a(F)] = ((g x a)U")[g(F)] C g(U" o RIF]),

which entails

A Cq '(gA) Cq 'qU" o RIF)) = (Ro U" o R)IFIC (V" o R[F],

due the choice of U/ (and to R* = R). By the assumption on R, R[F] is bounded, so that
R[F] C V"[G], with a finite set G and m € N. Thus A C V"*[G]. O

2. BOUNDEDNESS IN SUBSPACES

As was noted in1.3(1}, precompactness Of a subset IS a property of its relative uniformity,
whereas boundednessin Y ¢ X may depend on thesubspace Y. In thissection we will discuss
this point in greater detail. For this purpose, we give the following definition:

Definition 2.1. Let (X, V) be a uniform space. We say that a subspace ¥ C X respects
boundedness (or for short, is a b.r. subspace) if it induces the same notion of boundedness
as the whole space, i.e. if a subset of Y is bounded in 'Y if (and only if) it is bounded in X.

Trivially, a bounded subset of X respects boundedness iff it is bounded initself. If Y isa
b.r. subspace of X and Z isa b.r. subspace of Y, Z isa b.r. subspace of X.
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Regarding b.r. subspaces we prove now:

Proposition 2.2. Let (X, V) be a uniform space.

(i) A subspace Y C X respects boundedness if it fulfills one of the following conditions
(a) Y is a union of V-components, for some symmetric v € V.

(b)Y is dense in X.

(ii) All subspaces of X respect boundedness if every bounded subset is precompuact.

(i) If Yy and Yy are b.r. subspaces of X, so is Y; U Vs,

Proof. To (i). Case («)is clear by Lemma 1.12 (¢) < {g), using the fact that for two
symmetric vicinities U, V € , [/ C V, every U-component is contained in a V-component.
For case (5),see|13], Theorem 1.20.

To (ii). The hypothesis and|.3(2) imply that every bounded subset of X is bounded in itself.
Hence [.3(3) yields the result.

To (iif). Let A C Y, U Y, be bounded in X. Then A NY; is bounded in X for j = [, 2, hence
bounded in Y, U Y,, by 1.3 (2). Therefore A= (ANY,) U(ANY,)is bounded in Y, UY, by
1.3(1). O

Proposition 2.3. Let (X, V) be a uniform space, Z CY C X, Z dense in Y. If Y respects
boundedness, then so does Z. If V|Z is pseudometrizable, the converse also holds.

Proof. The first statement is a consequence of Proposition 2.2(i)(b) and the transitivity of
the b.r.-property. For the converse in case that V|Z is pseudometrizable. we observe that
also V|Y is pseudometrizable, since the closure of a countable basis of V|ZinY X Y isa
basis of V| Y. We must show: If A CY is V-bounded. it is V|Y-bounded. By 1.4. we may
assume without loss of generality that A is countable, A = {«,: n € N}. Choose a basis
(W, )uen of V| Y with W,, = W, 'and W2_, Cw, for all n. Choose h,, € W,[a,] N z, for
n.€ N. Let V ¢ V. There are E C A finite and p € N such that A C V’[E], and there is
m € N such that W,, CV N (Y xY). Consequently {b,: n > m} C W,[A] C VT [E]
Hence {b,, : n € N} is V-bounded and therefore, by assumption, V|Z-bounded. So there
are F C Z finite and ¢ € N such thnt {h,, : n € N} C(V N (Z x Z))[F]. Now we obtain
{a,: n>m) CW,[{b,:n>m}] C(VN(Y xY)¥[F]. This shows that A is V|Y-bound-
ed. O

We would not be surprised to sce a counterexample for non-pseudometrizable Z.

The following proposition yields the converse of Proposition 2.2 (ii) :

Proposition 2.4. For a uniform space X the following are equivalent:

{a) Every subspace respects boundedness.

(b) Every bounded subset of Xis bounded in itself.

(¢) Every bounded uniformly discrete subset of X is finite.

(d) Every bounded subset of X is precompact.

(e) Every bounded countable, uniformly discrete subset of X is precompact

Proof. “(a) = (&)": Obvious.

“(b) = (c)": Every uniformly discrete subset which is bounded in itself is finite.
*(c)=(d)":If Ais bounded and B C A s uniformly discrete. then Bis bounded and therefore
finite. hy (¢).By 1.3 (a), this implies that A is precompact.
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“(d) = (e)”: Obvious.

“(e) = (a)": Suppose. (a) does not hold, i.e. there is A C Y C X whith A bounded in X
but not in Y. Then, by 1.3 (2) and (4). A is not precompact and hence contains a countable
uniformly discrete subset B which is not precompact, by | 4. AF a subset of a bounded set, B
is bounded, which contradicts (e). O

Corollary 2.5. For a bounded uniform space X the following are equivalent:
(a) Every subspace respects boundedness.

(b) Every subspace is bounded in itself.

(¢) X is precompact.

The following theorem, illustrating the dependence of boundedness on the subspace, is a
known consequence of Isbell [16], p. 20, no. 21, combined with 1.8 and the fact that unit balls
of normed spaces are bounded in their natural uniformities, see 4.3. We give here a different
proof, by a construction that involves convergence in measure, and (with some modifications)
has been used in various contexts: Hartman and Mycielski embedded topological groups into
connected ones (see [12]), Peck and Porta used it for the construction of dual-less topological
vector spaces (see [22], [23]). We have not seen this construction in the context of uniform
spaces, and it will be needed also in the proofs of 4.7 and 5.6.

Theorem 2.6. Every uniform space has a uniformiy isomorphic embedding into a bounded
uniform space.
Proof. Let (X, V) beauniform space. Let B(X) be the set of allmaps f :[0,][— X which are
continuous on the right and pieccwisc constant in the sense that, for some 1y, 1, 1, € [0, 1]
with 0 =1 <1< <1, =1f|lti-1, t;] is constant for | <i < n,

Forf,g € B(X) let (f,g): [0, 11- X xX. {f,g)(®) := (f(1), g(r)). Let A be the Lebesgue
measure on [0, 1[. For any open V. C X x X and f, g € B(X) the set (f,g)"'(V)is clearly a
Borel set. Thus we can defing, for any open VeV and anye > 0,

N(V,e) = {(f,g) € BX) x BX): M{f,g) " (V)) > 1 —¢}.

We will show that the set C := {N(V, €): VeV open, ¢ > 0} is a basis of a uniformity W on
B(X). such that (B(X), W) is bounded and the canonical embedding ¢ : X — B(X). defined

by (p(x)(7):= X for 0 < <[, isa uniform isomorphism onto its image.

For I/, V&€V open and €, > 0 we have N(UN V, min(e, 8)) C N(U, )N N(V, 6). Therefore
C is a filter basis.

Now let V € V be open and ¢ > 0. For any f € B(X) we have {f,f)(f) = (f(0),f(1)) €V, fo
all 1 € [0, 1[. Therefore A((f,f)~"(V)) = land (f.f) € MV, ¢).

Now let fi,f>,f3 € B(X) with (f1,f2) € N(V, €) 3 (f2,f3)- We bave

() ' o (LAY TN A) W),

whence

ML DN (B AT

MfLA) TV >
> AL TTV) + A AT V) = 1> 1= 2e
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From this we obtain N(V, €) 0 N(V, €) C N(V o V,2¢). Finally, N(V, €)"'= N(V~! ¢€) is
easily checked. Since ) has a basisconsisting of open vicinities we conclude that C isa basis
of a uniform structure W on B(X).

Next we show that the space (B(X), W) is bounded. Let U € V be open and ¢ > 0. Take any
g € B(X) and choose n € N' with | /n < €. For any f € B(X) define fy, ./, € B(X) as
follows: fn:= g, and for i between | and » let

{f(r) 0<t<i/n
Jiy= 4§ ‘ .
g(n) . otherwise

For 0 <i < nthe maps fjand fi+) agree on the set [0, 1 [\[i/ n, (i + 1) / n[, whence
M fir)™H W) >1=1/n>1 =€ Sincef = f,, we have f € N(U, €)"[g], and since g
and 5 were chosen indepently of £, thisimplies X = N(U, ¢)"[¢g].

¢ isuniformly isomorphic onto itsimage due to the equetion

N(U. B NH{X) X g(X)) = (¢ x p)U).

Remarks 2.7. (Using the notation of the preceding proof:)

(0) If X hasat least two points, B(X) isdensein itself.

(1) If X is Hausdorff, B(X) is easily seen to be Hausdorff as well. Moreover, in this case
G(X) is closed in B(X): Let f € B(X) \ ¢(X). We exhibit a neighborhood of f which is
disjoint to {(X). There are r, s € [0, 1] and a symmetric V € V such that (f(r),f(s)) € V2.
e = min{ A (F{r}))) ¢ €10, 1[} is positive. We show that N(V, €) N d(X) = (). Let
2 € ¢(X) and puti := g(0). Then (x,f(r)) € V or (x,f(s)) € v, say (x,f(s5)) € v. SO
) HX x X\ V) D f~'(f(s)), whence A({f, g) "' (X x X\ V)) > eand g ¢ N(V, ¢).

(2) B(X) is pseudometrizable iff X is If B(X) is pseudometrizable, then also its “subspace”
X. On the other hand, X is pseudometrizable iff U has a countable base 3, in which case
{N(U, 1 /n): Ue B,\ €N} is a countable base of V.

(3) B(X) is pathwiseconnected andlocally pathwise connected: Forf, g € B(X) ands&[0,1]

letf, : [0, 1[— X,
o fn  0<r<s
fi() = {g(f) : otherwise

Then f, € B(X), and s — f, isa continuous path connecting f and g, due to A({f;,f;) ' (U)) >
s+ rfor0O<r<s<IL.U €U By asimilar argument, we conclude (f,f) € N(U, €)
from (f, g) € N(U, €), whence B(X) is locally pathwise connected.

(4) A much bigger bounded uniform space containing B(X) as a subspace iS obtained very
similarly by putting on Y := X'l (the set of all maps f : [0, 1|— X) the uniformity W*
with the basis {N*(V,e) : V € V,e>0} where N*(V, ¢) := {(f,g) € B(X)” X B*(X) :
A ((f,8) 71X x X\ V)) < e}, A* denoting outer Lebesgue measure. W may he called the
uniformity of convergence in Lebesgue measure, cf. [8], p. 104, Def. 6 (where X isa Banach
space and maps f, g which are equal almost everywhere are identified).

(5) If X iscountable, we can construct a countable dense subspace Y with ¢(X) CY C B(X)
hy admitting only the functions with rational points of discontinuity. This subspace is again
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bounded in itself, by 2.2, (i)(h). Using similar arguments, it is easy to show that B(X) is
separable if X is.
Excluding the case of a trivial )V we prove

Proposition 2.8, If the uniform space (X, V) does not carry the coarsest uniformity then B(X)
is neither precompact nor compiete.
Proof. For the first assertion, let V. = ¥V~ € V, V open, be such that V2 # X x X, and
let F C B(X) be finite. We show that N(V, 1)[F] # B(X). There are t, t;,., t, € [0, 1],
0 = fp<t;<.<t, = 1, suchthateachf € Fisconstanton [f,_,#[,for I <i < n. Choose
(a, b)€ (X x X)\ V2. Then, forallf € Fand 0 <t <1, V'(t), a) & V or (f(r), b) ¢ V. Putting
$i = s(timr+ 1) for 1 < i< nand defining g € B(X) by g(r) := a for t € UL, [ti=1, 5l
and g(r) := b for t € Ui_,[s, [, one obtains A((f,g)~'(V)) <1 for all f € F, hence
g & NV, %)[FL

For non-completeness choose a, b € X, (a, b) ¢ ﬂ V, and asequence fy < f; < t < in
[0, 1[, and define f, € B(X) for ne N by

n

a : forte | J[tu, tasl
.ﬁi(f) = kL:JO
b . otherwise

It isnot hardto show (indirectly) that (f, ) isa Cauchy sequence without a limit in H(X). 0

3. BOUNDED SETS, UNIFORMLY CONTINUOUS FUNCTIONS AND PSEUDOMETRICS

In this section we study the relations between boundedness and uniformly continuous
functions and pseudometrics. We start witha metrization lemma. It differs from the standard
formulation in that it allows the construction of unbounded pseudometrics, which is very
useful for our purposes. This additional feature has already been realized in the case of
topological groups (in[27], Theorem 6.2). Also the inclusion (c) is sharper than usual.

Theorem 3.1. (Metrization Lemma) Ler X be g ser and (U )acz a sequence of subsets of
x X x satisfying | J,.zUy =X x X and, for all n € Z Ay = {(x,x): x € X} ¢ U,
Furthermore assume that the sequence has one of the following two properties:
(i) Yn € Z : U} CUypy
(i) ¥n,meZ:U,cU,, =U,, oU, and U,ZI CUn
Thend : X x X — R, defined by

k
dx,y) = mf{z 2 ke NI‘ x,y) € Uyy0o Uy 00 Um}
i=1
has the following properties:
(a) Vx,y€ X :dx,y) > 0anddx,x)=0
(b) Vx,y, 2 € X d(x, z) < d(x, y) + d(y, 2)
(c) VneZ: {(x,y) € X xX:dx,y)<2"V CU, C{x,y) € X xX:dxy <2
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If all U, are symmetric, d is symmetric, which implies (together with (a) and (b)) that d is
a pseudometric. In this case, (c) implies that d is a metric iff (,ez Un = Ax. If. moreover, X
is a uniform space and (U,),cz consists of symmetric vicinities, the second inclusion of (c)
implies that d is a uniformly continuous pseudometric.
Proof. d is well-defined because of X x X = UneN U,, so that d(x,y) is the infimum of 3
nonempty set of non-negative reals. Properties (n) and (6) are easily checked, as well as
the symmetry of 4 in case the U, are symmetric. The only critical point in the proof of
the remaining assertions is the first inclusion in (¢), for which we first prove the following
auxiliary statement

(Ap) Vmon ,..., m€Z: Z 2" <2 = U, 0...0U, CU,
1<i<h

for all k € N'. (A;) 15 proved via induction over k:
First, suppose (i) holds. (4,) means that the sequence (U,),cz increases with n, which it
does: U, C U} C U,., Now suppose that (A,) holds for all i < k. Let (n,)<jci 1 € ZF!

and ¢ = ZI<E<A+1 2", Let n ¢ Z with a < 27. Putting

jrmmaxgheN:h<k+ 1, Z 2"<a/2

| <<i<<h—1

we have ZI<:‘<:‘—I 2 < a/2<2""and ZI‘+I<:‘<I;+I 2t <a/2<2"! whence by indu-
ction hypothesis: U, 00 U ,,_, C U,_, and U, ., 0o U, CU,_|, where the product
of the empty sequence of vicinities means Ay. From 2% < 2" follows n; <n 1, and thus
Uy, C Uy Summarizing, we obtain

(Um 0...0 Un,-—|) oU, o (Um+1 .., 0 U,,H_I) cU,_yolU,_yolU,_cU,

as desired. Now let (i) hold:

Again, (A)) is clear. Let (A,) hold, for every , < k. Let (n))j<i<x) € Z'F', and define
a as above. Take n € Z with ¢ < 2”. Since the U,, commute we can further assume
m <y < < mggy. In case that n; = niy (for some 1) we put m, ;= n, (for j < i),
m, = n+ land m; = njg (for i <j <k). Obviously >, _, 2" = a, and by (ii) we get
v,ol,,, C U, whence

i

Uy o o U

M

C Uf”[ 00 Uuu C U”,

with the Jast inclusion due to the induction hypothesis. In the case of n) < 1y < < 14 we
have 3, ., 2 <2.2" < 2"+1 5o that theinduction hypothesis (together with py | +1<n)
yields

Uyococl, olU,,6 CU.

We can now finish the proof of the first inclusion of(c): Let (x,v) € X x X with d(x, y) < 2".
By the definition of ¢, this means that there are x = xy,x;,, v =yand ny,, n, € Z
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satisfying (Xiz ,.Xf) € Uf!. and E](,‘(.(- 2" < 2". So we have (-x»,“) S U:u 0o Un| C U, by
(Ax). a

Remarks 3.2. (1) If we are given 3 sequence (U,),cz of equivalence relations, U, C U,y
clearly implies (/) and the resulting pseudometric is ultrametric. On the other hand. Sor every
ultrapseudometric d, the sets {(x,y): d(x,y) <c}and {(x,v): d(x,y) < c} are equivalence
relations, for any ¢ > 0.

(2) The pseudometric ¢ constructed in the metrization lemma is the greatest pseudometric
satisfying the second inclusion in(¢), as can easily be seen,

(3) If a group G acts on X on the left and the sequence (U}, )yer satisfies

Vn € NVg € GY(x,y) € U, : (g.x,8.y) € Uy,

“U,is G-invariant”, then also ¢ is invariant under the action of G. which means d(g. x, 9. y) =
d(x,y) for all g €G and x,y € X. The same can be stated for right group action, with the
obvious changes.

The following theorem was show by Hejeman ([13], Theorem 1.12 and 1.14) and also
by Atkin (| 1|, Thcorcm 2.4). Probably the earliest reference for (h) < (c) is [2], where
Atsuji proved the equivalence for metric spaces (Theorem 2). His proof of the equivalence
for uniform spaces can be found in [3], Theorem 7.

Theorem 3.3. Let X be a uniform space and A C X. The following are equivalent:

(a) A is bounded.

(b) Every uniformly continuous real function on X is bounded on A.

(¢) A has finite diameter with respect to every uniformly continuous pseudometric on X.

Proof. See [ 3], Theorems 1.12 and 1.14. 0

Remarks 34. (1) If a pseudometric ¢ induces the uniform structure of X and ¢ is a uniformly

continuous pseudometric such that a subset A does not have a finite ¢’-diameter, then d + 4’

is a pseudometric which induces the uniformity of X, and A has no finite d + d'-diameter.

Hence, if X is pseudometrizable, (¢) can bereplaced by

(¢1) A has finite diameter with respect to every pseudometric inducing the uniform structure
of x.

By an analogous argument (¢) can be replaced by

(¢2) A has finite diameter with respect to every uniformly continuous metric on X. if there
exists a uniformly continuous metric on X, and by

(¢3) A has finite diameter with respect to every metric inducing the uniform structure of X, if
X is metrizable.

(2) The previous theorem allows us to generalize proposition 2.2: If ¥ C X is dense or the

union of V-components (for a symmetric viciniry V), it is possible to extend every uniformly

continuous function Y — R to a uniformly continuous function on X. For dense subsets, this

is well-known, cf. [4], Chapter Il, $3.6, Section 6, Theorem 2 (R being complete): if Y is the

union of V-components, any extension which is constant outside Y is a uniformly continuous

function on X. Now we can show the more general result:

If Y is a subspace of X such that every uniformly continuous real function on Y has a

uniformly continuous extension over X then Y respects boundedness. Indeed if A C Y is
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not bounded in'Y there is a uniformly continuous f : Y — R which is unbounded on A. f
has an extension over X, so that A isnot bounded in X. More generally, a slight elaboration
of thisargument shows: A subspace Y of X respects boundedness if each unbounded, non-
negative, uniformly continuous function on Y is dominated by (the restriction to Y of) some
non-negative, uniformly continuous function on X.
It should be noted that the converse does not hold, i.e. there exist b.r. subspaces Y < X and
uniformly continuous functions on Y which donot extend to X. Asanexample, take Z CR
and the function i — n?.
The extendability of uniformly continuousreal functions from a subspace of a uniform space
over the whole space is studied in[21]. Uniform spaces X with the property that, for every
Y C X, every uniformly continuous function Y — IR has a uniformly continuous extension
over X have beenstudied under the name of RE spacesin[7]. The class of RE spacesincludes
the fine spaces and it is closed under completion and projective limits.

We use the last remark to show

Proposition 3.5. In every uniform space, the complement of any precompact subset 1S a b.r.
subspace.

Proof. In view of (2) of the last remark it is enough to prove the following lemma which
in case of a metrizable X is due to Levy and Rice, see the remark after Proposition 4.4. of
[21]. O

Lemma 36. Let (X, V) be a uniform space und'Y C X with X\'Y precompact. Then every
uniformly continuous functionj: Y — R has a uniformly continuous extension over X.
Proof. The general case is easily reduced to the case that X is Hausdorff and complete and
Y isclosed. TheY N X\Y = Fr (X \¥) (the boundary of X \ Y). As X \'Y is compact the
continuous restriction f| Fr(X \ ¥) has a continuous extension g over X \'Y. Since X is the
union of thetwo closed sets Y and X \ 'Y, the functions f and g define a continuous extension
h off over X. We finish by showing that h is uniformly continuous. Supposing the contrary,
there exist ¢ > 0 and, for each V € V, a pair (ay, by) € V such that

() |h(ay) = h(by)| >€

Since f is uniformly continuous there exists a Vy € V such that |f(a) = f (b)| < € for all
(a,b) e Vo N (Y x ¥). So (ay,by) € Y x Y forall V fromVy:={V €V:V C Vy}. We
may assume that ay € X \'Y for all V € V. The net (ay)vey, has an accumulation point ¢
in the compact set X \ Y. For every V €V, we choose W(V) € V with W(V) C V such that
(aww). C) cV and

(%) ‘h(aw(vj) - /?(C)I < g

As (awy, bway) € W(V) C V we obtain (bwy, c) € Vo V!, hence the net (bwonvev,

converges to €. Because of the continuity of A, h(b yy,) converges to ii(c). Because of (),

this implies a contradiction to (). 0
Because of a remark before 2.2, Proposition 3.5 implies
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Corollary 3.7. In every bounded uniform space the complement of any precompact subset is
bounded in irself.

We are now able to construct bounded, non-precompact compatible uniformities on locally
compact, in particular on discrete spaces, see 3.9 through3.11. Thefirst step isthe following
simple gbservation whose proof we omit.

Lemma 3.8. Let k be an infinite cardinal and (e,), < x an orthonormal set ing Hilbert space.
The spaces X, .= J, < .[0,1]e, and Y. := |, . .([O, 11N Qle, have cardinalities max( K, 2")
and k, respectively, Equipped with their usual metrizable uniformities  (induced by the Hilbert
space norm), X,., ¥, and X, \ {0} are bounded and non-precompacr. The topological space
X \ {0} is locally compact, in fact, the sum of the locally compact spaces 10, 1]e,.

In the following theorem, fora locally compact space X, let P denote the coarsest precom-
pact compatible uniformity on X. 7 isalso the coarsest compatible uniformity and the initial
uniformity with respect to all continuous real functions on X with compact support, see [5],
Chap. IX, $1, Exercise 15.

Theorem 3.9. Let (X, T) be a locally compact space and V a bounded, non-precompact
uniformity on the set X wirh V-topology coarser than T. Then V' NV P is bounded, non-
precompact and compatible.

Proof, Obviously, V V P is non-precompact and compatible. Its boundedness is proved. 1n
view of the description of P before the theorem and inview of 1.9, whenwe show: For every
finite st F of continuous real functions on X with compact supports, denoting by Q the initial
uniformity with respect to F, V v @ is bounded. Let § be the compact union of the supports
of the functions f e F. Since X is V-bounded, X \ § is V-bounded in jtself, by Corollary 3.7.
Since Q|(X \ S) isthe coarsest uniformity, X \ § is also bounded for (V' V @)|(X \ §) and hence
V'V Q-bounded. Since § isalso VV V O-bounded, it follows that (X, VvV @)is bounded. O

Corollary 3.10. For every infinite cardinal , the locally compact space X, \{0} from Lemma
3.8 admits a bounded, non-precompact uniformity.

Proof. Apply the theorem to the locally compact space X, \ {0} and the usual uniformity on
it. a

Corollary 311 Every infinite discrete topological space admits a bounded, non-precompact
uniformity, which, for countable X may moreover be taken metrizable.

Proof, Letk := |X|. For the first part, apply 3.9 to the discretely topologized set ¥, from 3.8
and the usual uniformity on it. If k is countable note that the usual uniformity onY,. as well
as P are now metrizable. a

Theorem 3.3 together with the metrization lemma 3. | gives us the following characterization
of boundedness :

Theorem 3.12. Let X be g uniform space and A C X. Then A is boundediff, for all families
(Viuen OF symmetric vicinities satisfying V2 C V4 (for all n € N) and Unen Voo =X x X
there exists an n € Nwith Ax AC V,,.

Proof. By 3.3, if Aisbounded, it has finite diameter with respectto the uniformly continuous
pseudometric constructed from the family (U,),cz, defined by U, := V,, (n € N) and
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(Un)u < ¢ chosen inductively according to condition (i) of the metrization lemma. By (¢) of
31, wegetAxAC U, =V, forsomen € N,
If A is not bounded, 3.3 yields a uniformly continuous pseudometric 4 on X such that A
does not have finite d-diameter. Then (V,),cn, defined by V, := {(x,y) € X : d(x,y) < 2"}
{(n € N), is the desired family of vicinities. O
The metrization lemma can also be applied to the question, when boundedness can be
tested by a single pseudometric. Such spaces were named “B-simple” in [15]. Theorem |
of [15] contains the equivalences of(n) through (d) of the following theorem. Nonetheless
we give a full proof since we believe that the enhanced metrization lemma allows for a more
transparent proof, which is already contained in the thesis[1O] of one of the authors,

Theorem 3.13. For a uniform space (X, V), the following are equivalent:

(a) There exists auniformly continuous pseudometric d on X such that YA C X (Ais bounded
iff A has finite d-diameter).

(b) There exists q uniformly continuous real function f on X such that YA C X (A is bounded
ifff is bounded on A ).

(¢) X is B-conservative and ¢- bounded, i.e. X is the countable union of bounded sets.

(d) There exists a symmetric B-conserving V. € V such that X has only countably many
V-components.

(e) There exists a family (U,)nen of symmetric vicinities satisfying | ),y U, =X x X and
U2 C Unye 1, such that YA C X (A is bounded iff Ax A C U, for some n € N).

Proof. “(a) = (b)": Choose any y € X and let f{x) = d(x,y).

“(b) = (@)™ Letd(x,y) = [f(x) — f(y)]-

“b) = (X =,en f~"([—n,n])is a countable union of bounded sets, by the nssumption

onf.Let v := {(x,y) : [f(x) — f(y)] < 1}. vis a(symmetric) vicinity, since f* is uniformly

continuous. We have V" C {(x,¥) : [f(x) — f(¥)| <n},wr ence V"[x] is bounded, by the

assumption on f (for all x € X and n € N).

“(¢) = (d)”: If X isthe union of countably many bounded sets, each of the bounded sets

meets only finitely many V-components (by 1.12). therefore X canhave only countably many

V-components.

“(d) = (¢)": For any x € X, the V-component of x equals [ .y V"[x], hence it is g-bounded.

Then X is the countable union of g-bounded sets, thusit isg-bounded.

“(c) = (el”: By assumption we have X = J,¢y B... with B, bounded. We can assume

B,, C B4 for all n. Let Uy = UD_I € V be B-conserving, and for n > 0 define inductively

Up+1 = U2 U (B, x By). Then U,ery Un D U,en B, X B, = X X X. Moreover, each U, isa

symmetric vicinity satisfying, by definition, U2 C U,+; The“only if" part of theequivalence

is true by 3.12, s0 it remains to show the “if” part. For this, we first prove

() Vi€ N,Vm e N' @ Vx € X : U}[x] is bounded.

For n =0 (x) holds (for all m) by the assumption on . Now let n > 0 and suppose, thar (x)
holds for n and all m € N'. For m = we have U, , [x] = (U3 U 8., x B,))[x] C U2[x] UB,.
whence U/, [x] is bounded by assumption on i and B,,. If () holds for n + | and m > |, we
have

Ut x) = Up U )] € Ut [USIF]]
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for some finite F and k € N, by the hypothesis on m. But

U [USIF)) = (U2 U (B, x B)IUNF]]
= UMP[FIU B, x BIUSIF)]
N — ]

CB.,

is bounded by assumption on s, which ends the induction.

Now from A x A C U, for some n € N follows A C U,[a] for any a € A, which implies by
(%) that A is bounded.

“(e) = («)": Apply the metrization lemma to the family (U,),cx, With a suitable choice of
vicinities for negative indica. 0

Remarks 3.14. (1) If the space X is uniformly locally precompact the statements in the
preceding theorem are equivalent to

(f) X is g-precompact.

Indeed. there is a vicinity V such that for all x € X and all n > |, V'[x]is precompact (by
[13], Lemma 1.17). Hence (f) implies 3.13 (¢), On the other hand, since in every uniformly
locally precompact space bounded sets are precompact by Proposition 1.20, 3.13 (c) clearly
implies  (f).

A similar result has been obtained by Potter, see[24].

(2) Every space X fulfilling the equivalent conditions of theorem 3.13 has a fundamental
sequence (5,) of bounded setsin thesense that the sets B,, are bounded und each bounded
set is contained in some B,,. Simply fix x € X and let B, := {y € X : d(x,y) < n}, where d is
the pseudometric from 3.13 ().

(3) If (X, V) is auniform space and ¢ is a pseudometric as in 3,13 (a), then V and the uniformity
Y, induced by d yield equal collections of bounded sets, even though they do not necessarily
coincide. (Clearly, every V-bounded set is Vy-bounded since Vy is coarser. On the other hand,
every V;-bounded subset has finite ¢-diameter, hence it is V-bounded, by the assumption on
d.) Fora further instance, let V; be the initial uniformity on X with respect to all V-uniformly
continuous real functions. Plainly V, C VAC. where C is the initial uniformity with respect to
all continuous real functions on X. Clearly V, # C iff there is a continuous, but not uniformly
continuous real function on X. We do not have an example for ¥, # V A C. V| induces the
same topology on X as V), by [9], 8.5.7 (a). To produce an example for ¥, #V, let V be
discrete. Then V), = C. Further, C = V iff [X]| < R, by [11], 15.23 (b). So V;=C # V fo
uncountable discrete (X, V).

A second example for Vi # V is any bounded but not precompact space (X, V) since in
this situation every V-uniformly continuous f : X — R is bounded go that V) is precompact,
hence different from V. In order to give a sufficient condition for V; =V AC, denote by Vj
the initialuniformity on X with respect to all bounded V-uniformly continuous real functions.
V) 1s the finest precompact uniformity on Xthat is coarser than )/, see[9],8.5.7 for the case
that V is Hausdorff. We have Vi, C Vi C V A C generally, so if ) A C is precompact then
VA C C V,, hence we obtain equality.

For a further discussion of Theorem 3.13 in the context of topological vector spaces, the
reader is referredto 4.5
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4. BOUNDEDNESS IN TOPOLOGICAL VECTOR SPACES

In the context of topological vector spaces the concept of boundedness (defined somewhat
differently, see below) plays an important role. Before we proceed to general topological
groups, we take a closer look at what some of the results of the first three sections mean in
the context of topological vector spaces

We recall some of the basic definitions and facts. Let (X, 7) denote a real topological
vector space (TVS, for short), which for simplicity will always be assumed to be Hausdorff.
“The” uniformity V of (X, T) is defined by the basis of vicinities

Ny :={(x,y):x—ye U]

where U ranges over a neighborhood base at zero. V induces 7. In the following, uniform
concepts in (X, 7) like boundedness or precompactness, will refer to V. The topology of a

TVSis metrizable iff its uniformity is metrizable. In the theory of TVS, 7 -boundedness is

defined as follows: A C X is 7 -bounded iff for every neighborhood U of O there existsp > 0
such that A C pU. Clearly, every 7 -bounded subset is bounded. For locally convex TVS the
converse was show by Atkin:

Lemma 4.1. In every locally convex space the bounded sets coincide with the T-bounded
sets.
Proof. See [1], 1.7. O
However, for general TVS this is not true: There exist non-trivial bounded TVS (see 4.7
below), but a 7-bounded TVSiseasily seen to be trivial.
In the beginning of our discussion we will deal mainly with locally convex spaces. There
is the following positive result about the behavior of boundedness with respect to initial
uniformities.

Proposition 4.2. Let fi: X — (X,, T;), i € I, be a family of linear maps of a vector space X
(over Ror C)intolocally convex spaces (X,, T;). Let V; be theuniformity OF (X;, T), i€l
and let V be the initial uniformity on X with respect to the mapsf; - X — (X;, V). Thena &t
A C X is V-bounded #;(A) is Vi-bounded for each i € I.
Proof. One verifies that V is the uniformity for the (locally convex) initial topology 7 on
X with respect to the maps f; : X — (X;, 7;). For the non-trivial direction of the proposition
consider A C X such that fi(A) is Vi-bounded, for each i € I, i.e.. Z;-bounded. This implies
that A is 7-bounded, see [17], 24.3. Hence A is V-bounded, by 4.1.

The next result concerns the b.r. subsets. It is a slight generalization of [1] (1.8). The proof
given there works also for this case.

Proposition 4.3. Let (X, T) be a locally convex TVS. If Y C X 1s convex (or only star-like
in the sense that, for somec€Yonehmc+ A(Y=¢)CYfor O < A < |3 thenit respects
boundedness. In particular Y is bounded iff it is bounded in itself.

We now turn to the relation between boundedness and uniformly continuous real functions
(resp. pseudometrics), as it was exhibited in the Theorems 3.3 and 3.13. As might be hoped,
in the context of locally convex TVS one needs only consider continuous linear functionals
and seminorms:
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Theorem 4.4. Let (X, 7) be a locally convex TVS For a subset A the following are equivalent:
{a) A is bounded.

(b) Every continuous seminorm on X is bounded on A.

(¢c) For some set S OF  seminorms which induces 7, every pe S isbounded on A.

(d) Every continuous linear functional on X is bounded on A.

Proof. (¢) = (b), since every continuous seminorm is uniformly continuous for the unifor-
mity of X. (b) = (c¢) is clear. For (¢) = (d), we may assume the family of seminorms to be
directed (including sums does not affect condition(¢)), hence a linear functional is continuous
iff it is continuous w.r.t. some p;, whence () follows. For (d) = (a) see [19],§20,11.(1).0

As a consequence we see that a subset is bounded iff its closed convex hull is bounded
initself. (This is already clear from the well-known fact that the 7-bounded sets have the
analogous property and that they coincide with the bounded sets) Note also that two different
locally convex topologia ona vector space X have the same bounded sets, if their topological
duals coincide. Inparticular, if A ¢ X is bounded, itis S-bounded for the weak topology S of
X. In(X, S) every bounded set is precompact, see [19], §20, 9.3. Therefore, by 2.4, (d) < (a),
every subspace of (X, §) respects boundedness, cf. 4.3. Further, 24, (d) is satisfied in every
Schwartz space as well as in every semi-Montel space, where every bounded subset is even
relatively compact by definition, see[17],10.4.3 and 11.5.

For locally convex TVS, an analogue of Theorem 3.13 can be formulated as follows:

Theorem 4.5. Let (X, 7) De a locally convex TVS The following are equivalent:

{a) 313 (a) holds.

{(b) 313 (a) holds, wirh the pseudometric arising from a norm.

{c) There exists a bounded neighborhood U of 0.

(d) 7 is normable.

(e) 7 is metrizable and X has a fundamental sequence OF  bounded sets.

Proof. (d) = (b) was stated in 1.2. (b) = (a) = (c) is obvious. (¢) & (d) is due (o
Kolmogoroff, see [19], §15. 10.(4). (d) = (e) is again obvious, whereas (€) = (d) follows
from [19], $29. 1.(2).

Remark 4.6. The equivalence of (4) and (¢) holds in every TVS as is clear from 313,
(@) < (d), see Hejeman [15], Corollary 2 of Theorem 3.

The condition of metrizability in 4.5 (e) cannot be dropped since there exist non-metrirable
locally convex TVS with fundamental sequences of bounded sets:
(a) Let Xbe aTVS of countably infinite dimension, carying the finest localy convex topology.
X hasa fundamental sequence of bounded setssince its bounded setsare finite dimensional
and relatively compact by [19], §18, 5.(6). X is not metrizable by 4.5 and because it is not
normable. This example isa special case of [19], §29,1.(8).
(b) Consider a normed infinite dimensional vector space (X, || ||). Its weak topology S is
locally convex and strictly coarser than the norm topology ‘R since every S-neighborhood
of 0 contains an infinite-dimensional subspace. Let 7 be any locally convex topology such
that SC 7 SR. Then 7 is not metrizable since otherwise R and 7 would coincide with the
Mackey topology, see [19], §21. 5.(3). Since the duals of all topologia involved coincide,
and since there exists a fundamental sequence of bounded sets for R, we have found a
fundamental sequence of bounded sets for the nonmetrizable topology 7. This showsagain
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that the metrizability conditi”” n 4.5(e) cannot be dropped. = Also the strong duals ot
metrizable, non-normable locally convex spaces are non-metrizable locally convex spaces
with a fundamental sequence of bounded sets, see [ 19], $29, 1.(S).

We turn now to non-locally convex TVS and some pathologies occurring in connection
with them,

Theorem 4.7. Every TVS (X, T) has a topologically isomorphic embedding into a bounded
TVS B(X).

Proof. We embed the uniform space (X, V) int” the bounded yniform space (B(X), W) as in
the proof of 2.6 and observe that B(X) has a natura] vector spacesiructure. The proof that the
W-topology is a vector space topology can be found in [22], § 1. Note that B(X) is a linear
subspace of the vector space considered there, and that the blwer spaceiseasily shownt” be
bounded as well. Clearly W isthe uniform structure belonging to the W-topology. a

Theorem 4.1 will be used for the construction of Example 6.3].

Remarks 4.8. (1) This example shows that 4.3 does not hold for non-locally convex spaces:
If we embed un unbounded TVS X int” B(X), X is also bounded in B(X) but not in itself
(observing that the restriction of the uniformity of B(X) to X is the same as the uniformity on
X).
(2) The construction of B(X) has been used in [23] for the construction Of dual-less vector
spaces. Indeed every bounded vector space has trivial dual, since nontrivial continuouslinear
functionals are uniformly continuous and unbounded. However not every dual-less vectol
space is bounded, as the example of the spaces £, for () < p < | shows: By [19], £15, 9.(9)
they have trivial dual. However, the quasinorm || ||, associated t” £; is uniformly continuous
and unbounded. This also serves as a counterexample for 4.4 for non-locally convex TVS.
We end this section with an example showing that the supremum of finitely many bounded
vector space topologies need not be bounded. It is due t” Peck and Porta, see [23], Theorem
8.2).

Theorem 4.9. Let E be avector space of dimension > 2%, The finest vector space topology
on E can be obtained as the supremum of at jnost the ropologically isomorphic and bounded
vector space topolagies.
Proof. [23], Theorem 8.2) is stated for dual-less instead of uniformly bounded TVS, but the
proof yses the construction of B(X) and thus vields infact bounded uniformities. U
A closer inspection of the proof of [23], Theorem B.2) shows that of the three bounded
topologie? T,, T, T3 constructed there, already T,V T3 IS not bounded.
Quite different properties of bounded sets in topological vector spaces are investigated in
a recent paper [6] of Burke and Todorcevic.

5. BOUNDEDNESS IN TOPOLOGICAL CROUPS

In this section we consider the natural uniformities on topological groups and discuss
boundedness with respect to these uniformities. We let £ denote the left uniformity and 7.
denote the right uniformity, AR and £\/R arecalled the lower respectively upper uniformity;
e denotes generally the neutral element of a group, and U, the filter of neighborhoods of e.
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Recall that the basic elements of the standard bases of £, R,L V R, £ A R are, respectively,
given by

Up = {(x,y): y e xl}, U = {(x,y): y € Ux}
Upyr i=1{te,» 1y e xUNUx, Uppr = {(x,¥): v € UxU},

with {J running through [{,. For a survey of these uniformities the reader is referred to [25],
Chapter 2.

Remark and Definition 5.1. For a topological group X and a subset A we have the following
equivalences:

A L-bounded < YU ¢ U, Inc N3 finite F C A A C FU”
A R-bounded < YU € U,3n € N3 finite FCA: A CU'F
A L A R-bounded < VU € U,3n € N4 finite F C A A CU'FU

A is L-bounded iff A is R-bounded, thus for symmetric subsets L- and R-boundedness are
the same. A is L A\ R- respectively £V R-bounded iff A= is.

We call A bibounded, if' it is both L- and R-bounded. Bibounded topological groups are
simply called bounded.

Remarks 5.2. (1) If X is a hounded topological group, every open subgroup has finite index.
(2) Plainly every £V R-bounded set is hihounded, but we do not know whether the converse
holds. We do not even know a hounded topological group that isnot L V R-bounded. In

contrast, £V R-precompactness is equivalent to £- and R-precompactness, because of 1.7.

(3) Every L- (or R-) bounded open submonoid of a topological groupis £- (or R-) bounded

in itself. Thisis clear from the definitions and Remark 1.1

Example 5.3. Let The an infinite set and X the group of bijections T — T, endowed with the
topology of pointwise convergence w.r.t. the discrete topology on T. Then X is a topological

group. It has a neighhorhood base at unity consisting of suhgroups, hence each of the five

kinds of houndedness in X coincide with the corresponding kind of precompactness. It is
£ A R-precompact (hy [25], example 9.14), but not £-precompact, since the open subgroup
consisting of all the elements leaving a given { € T fixed has no finite index in X. Also, X
has an infinite £-uniformly discrete suhgroup, namely the cyclic groups of all shifts on an

injective sequence (1,),cn: Furthermore there exists an £-precompact subset of X which s

not R-precompact and thus not R-bounded and so not hihounded (Cf. [25], Exercise 8.1).

Remark 5.4. For every [/ = U~! € U, the corresponding basic vicinities V with respect to
L,R,L ARYyied, for a point x € X, the V-components x{(U}, (U)x, {U)x(U), respectively,
as one verifies easily. Hence the pseudocomponents of ¢ for these uniformities are all equal
to the intersection of all open subgroups of X, whichisa closed normal subgroup P; and the
pseudocomponents of the elements of X are the cosets of P. The pseudocomponent of ¢ is
open iff it is the smallest open subgroup of X. We doubt that any of this extendsto £ v K.

Remark 5.5. On the analogy of Section 2 we can raise the question, for which subgroups
H of a topological group and subsets A C H, A bounded in some sense in X, Ais already
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bounded in H in thesame sense. (Note that the converse isalways true.) For U-boundedness
U e{C,R,LAR,L v R}),there is an ambiguity conceming “boundedness in H”: We can
consider the relative uniformity I{|H or the corresponding canonical uniformity 74 of the
topological group H. If ¢/ = C A R, these uniformities may differ, even for closed normal
subgroups (Cf. [25], 3.25). However, if we restrict ourselves to open or dense subgroups, then
the uniformities coincide, by [25], 324, which enables us to transfer 22 to topological groups:
Let I be any of the canonical uniformities. If H isan open subgroup, it isa V-component, V
being the vicinity associated to the e-neighborhood H (cf. [25], Chapter 2, formula (2), (3),
(10), (14)). Hence every subset of H that is bounded in X is also bounded in H, by 2.2. If H
is dense, this implication is immediate from 2.2.
Generally the implication is false, as Theorem 5.6 below shows. For a further example let
X be a Hilbert space (more precisely, its additive group) and A C X an infinite orthonormal
set. In X all canonical uniformities coincide with the uniformity induced by the metric on
X, whence A is bounded in X. The subgroup H generated by A is discrete, whence A isnot
bounded in H.

The following is the analogue to 2.6 for topological groups. The construction is due to
Hartman and Mycielski ([ 12]), and, independently, to S. Dierolf (oral communication from
theseventies).

Theorem 5.6. Every topological group has a topologically isomorphic embedding into an
L v R-bounded topological group.
Proof. Let X be a topological group and let, as in the case of uniform spaces, B(X) be the
set of all mapsf : [0, 1[— X which are continuous on the right and piecewise constant. B(X)
carries the canonical pointwise group structure, For ¢ > 0 and U/ C X an open neighborhood
of ¢, we define

N, €)= {f € BX) : A¢ '(U)> | e},

A being the Lebesgue measure on [0, [. Then the set C := {N(U, ¢): U € U4, open, ¢ > 0}
is a neighborhood base of a group topology on X. Due to [25], Proposition 1.21, the proof
amounts to verifying the following four statements:

{(a) Cisafilter base.

(by YPEC30€C: Q*CP.

()YPelC3IQeccC: Q7 'CP.

(d)VPeCV¥ge BX)30 € C: g0g~'C P.

(@) through (c) can be shown in quite the same way as in the proof of 2.6. For the proof
of (d),let U € U, and € > 0. For g € B(X) choose W £ U, such that, for all 1 € [0, 1],
g(OWg(n~' CU. Thisis possible due to the finiteness of g([0, I[). Then for any f € N(W, €)
we have f~1(W) C (gfg~")~(U), which implies gfe™! € N(U, ¢).

For the proof of the £ v R-boundedness of B(X), let I € I, be open and € > 0. Choose
n e Nwith |/ n <e. It suffices to show that B(X) C V"[e], with ¢ the neutral element of
B(X) and V the £ v R-vicinity defined by V :={(f,g): ¢ ® fl(U,e) N N(U, e)f}. This can
be done in exactly the same way as in the proof of 2.6. For any f € B(X) define fy(r) == ¢
(te]0,1D,fori=1,... ,nlet

g(t) . otherwise



Contributions to the theory of boundedness in uniform spaces and topological groups 213

Then f; € B(X), and fi_, and f; agree on [0, 1[\[( = 1) /n,i/n[, whence we obtain A((fi—
7)) 2 1=1/n> 1 —eand \(f™ i)~ (U)) > | — €. Butthis implies (f;—1,/) € V,
and thusf = f, € V"[e].

X embeds in B(X) via the map ¢ sending x € X to the constant function f — X. ¢ iS a
topological embedding because of theequation

N(U, €) N p(X) = p(U)

O
Recall that a topological group X is called an SIN-group (resp. an ASIN-group) if £ and
R agree (resp. agree on some neighborhood of ¢), cf. [25].

Remarks 5.7. (1) Remarks 2.1 concerning metrizability, connectedness and separability of
X are easily transferred to the case of topological groups.
(2) Itiseasy to check that the left uniformity of the topological group B(X) is equal o the
uniformity obtained by embedding (X, £) as in 2.6; and similarly for R andCV R.For CA'R
this isalso true, although the proof is somewhat more complicated and is omitted.
(3) It is easy to check that (X) isa normal subgroup of B(X) iff X is abelian andthat B(X) is
an SIN-group iff X isSIN.

As alast property of the group constructed in 5.6, we note

Proposition 5.8. If the topological group X does not carry the coarsest topology, B(X) is not
L A R-precompact.

Proof. Let U = U~! € U, with U* # X. Let F C B(X) finite. We will show that
N(U, DFN(U, 1) # B(X). There exist 0 = o < 1 < < f, = | such that each f € F is
constant on [f;_, ;[ for 1 < i < n. Choosen € X\ U* and puts; := 11, + 1) for 1 < i < n.
Then U? N Uall = ), whence, for each f € F, ¢ & Uf()U or a & Uf()U for 0 < t< 1.
Defining ¢ € B(X) by () := ¢ for 1 € | J_, [t~y si| and g(t):=afor 1 € UL, [s;, [, it
follows that

|
(%) A{t: gty € UF(OU}) < 3

We finish by showing that g & N(U, 1)FN(U, }). Otherwise g = hyfh, with by, by € N(U, 1)
and f € F. Then M(h'(U))> 3 for i = 1,2, whence A(h7'(U) N h;*(U))> 3. But for
t € k7' (1) Nhs '(U) one has g(t) € UF(nU. This contradicts (). O

In contrast to C v R-precompactness, £ vV R.-boundedness of a group does not imply the
SIN-property, as the following examples show.

Examples 5.9. on £V R-boundedness and SIN,

(a) The topological group B(X) from 5.6, although £ v R-bounded, is not SIN for any
non-SIN-group X, since SIN is inherited by subgroups.

(b) Another CV R-bounded group that is not SINis the group X of all orientation-preserving
self-homeomorphisms of the compact interval [0, 1], X provided with the topology of uniform
convergence. By Atkin [1], (6.8) (b), X is bounded and non-SIN. We show now that it is
L V R-bounded. The sets U, = {x € X : max{ |x(1) =#]:0 <t <1} <e}witheg>0
form a basis of {1 (X), and the sets V, := {(x, y) e X x X : y € xU, N Uex} with ¢ > 0 form
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a basis of £V R. The £V R-boundedness results from (V, ;,,)"[e] = X for all n € ¥, the
latter following obviously from

(*) V€!6>D: Vh[Ufl 3 UEth‘)')

Vel = U, and U, = X. To prove (x), let y € U.is. It is €asy to see that an x € U, is
defined by x(1) := y(Nif |y(1) = | <e. x() =1+ ¢eif y(1) >t + € and x(t):= 1 = ¢
if y(r) <t =¢€, and that max{|y(t) = x(r)] : 0 < <1} <6, hence y o x~' € Us. Since
the graphs of x~'and y~! arise from those of x and y by reflection about the diagonal of
X x X, also max{ [y='(t) = x~'()|: 0 <t <1} <6, which means that x~'o y € Us. S0
y € xUs il Usx C Vs[U,]. This proves (). O
In this example, X is not a Banach Lie group, since every bounded Banach Lie group is
SIN by [1], (6.8) (b); for instance the unitary group of Pissucha group by |oc. cit.. (3.5).

6. INFRABOUNDEDNESS

In this section we introduce yet another rather weak notion of boundedness. It is not
derived from a uniform structure. We then compare the different notions.

Definition 6.1. Let X De a topological group. We call « subset A < X infrabounded
(resp. strongly infrabounded) if for all U € U, there exist n € N and finite F' C X (resp.
F C A) with A C (FU>'. A subgroup Y of X respects infraboundedness if a subset of Y is
infrabounded inY if (and only if) it is infrabounded in X (confer 2.1).

We do not know whether there is always auniform structure on X such that the boundedsets
with respect to the uniformity areexactly the infrabounded subsets. Plainly, Y < X is strongly
infrabounded. if it is infrabounded in itself. We shall not discuss strong infraboundedness
systematically, it will appeal- in 6.2. 6.4, 6.14, 6.15, 6.16, 6.19 and 6.31.

Proposition 6.2. Let X be a topological group in which every infrabounded subset is strongly
infrabounded. Then for gll A C X: A is infrabounded iff everv countable uniformly £ A R-
discrete subset of A is infrabounded.

Proof. The necessity is obvious. For every A C X which is not infrabounded there exist
V € U, and an inductively constructed set B = {ag, a4y, } satisfying a, = ¢ and

(’!‘) ay €A \ ({([(], uan—]}v)?” (fl Z ])

We have in particular a, € V"{ay, , a,— | }V" (note ay = e), hence the £ A R-discreteness
of the sequence. From the construction and the assumption on X itis clear that the set B\ {a }
is a countable subset of A which isnot infrabounded.

The following proposition states the obvious implications between the various notions of
boundedness

Proposition 6.3. Foro topological group X and A C X the following implications hold = A
CV R-bounded = A bibounded = A L-bounded (or R-bounded) = A LA R-bounded = A
strongly infrabounded = A infrabounded
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If X is an SIN-group (i.e. has a neighborhood base of conjugation-invariant subsets) then
every infrabounded set is £V R-bounded, i.e. all notions of boundedness ave identical. If X
is locally compact, all notions are equivalent to relative compactness.

Proof. The chain of implications is obvious from the definitions and from the characterization
in 5.1. If X is an SIN-group, all the uniformities coincide (see [25], Proposition 2.17) and the
same holds for the related definitions of boundedness. Furthermore, if U € U4, is a conjugation-
invariant neighborhood, then for every infrabounded A we have A C (FU)" = F'U", with
n € Nand F finite, which implies the £-boundedness of A. But then A is also £V R-bounded.
If U € U, is compact and A C X is infrabounded, then A C (FFU)" for some finite F, and the
product is compact. O

As was shown in Example 5.3, the second and third implications in 6.3 generally cannot be
reversed; whereas we know nothing about the first implication. We show now that a (strongly)
infrabounded group need not be £ A R-bounded. The example has been communicated to us
by V.V. Uspenskij; we present it in a slightly sharpened form.

Example 6.4. There is a topological group X with a {{,-base consisting of subgroups, which
has the following two properties :

() YV eld € X:X=VVV

(ii) 3V € UNVF C X finite : X # FVFVF

By (9, X is (strongly) infrabounded, by (i7) it is not £ A R-precompact and hence not £ A R-
bounded.

The construction of X: Let (U, d) be the Urysohn universal metric space of diameter I, as
constructed in [26], V1. U satisfies:

(2) Every finite metric space ¥ of diameter < | has an isometric embedding into U (cf. [26],
VI).

(b) Every isometry U/} — U, between two finite subsets U/} and U> of U extends to an
isometry of U onto itself (cf. [26], VII).

Let X be the group of isometries of U onto itself, endowed with the topology of pointwise
convergence with respect to the discrete topology on U. Then X has a U,-base consisting of
subgroups and satisfies (/) and (4¥), as will be shown with the aid of the following two lemmas:
Lemma 1: Let A := {ay,... ,a,} CUand V= {g € X : V]I <i < n:gle) =a;}. Then
forevery f € X:

VIV={g e G:VI <ij<n:dglu)a)=d{f(a) a)}.

Proof o f Lemma | : Concerning “C™: If g = vifin, with v €V, then d(g(a) a;) =
dvifraay), ap) = d(fvalay), vl"(aj)) = d(f(a;), a;), with the last equality due to the fact
that vy, v1 leave the g;fixed.

Concerning “3": Let g € X be such that for all i,j : d(g(a;),q;) = d(f(a;),a;). Then
there is an isometry between A U y(A) and A U f(A), defined by @, — @; and g(a;) — f(a;)
(1 <i< n). This is well-defined because if g(a;) = @;, then d(f(a;), @) = d(gla;), ¢j) = 0,
implying f(a;) = a;; therefore ¢; — a;and g(¢;) +— f(q;) are consistent. Let h € X be
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any extension of this isometry, by (b), i exists. Then we have i € V and f~'hg € V:
S~ thgla) = f~'f(a;) = a;. This yields g = h~'ff ~'hg € VfV.

Lemma 2: Let A C U be finite and %diamA < ¢ < 1. Then there is g € X with Yg, he A :
d(g(a), b) = c.

Proof of Lemma 2: Define a metric don } := A x {0, 1}, by setting

dla,b) : i=j
¢ i#]

By (a) there exists an isometric embedding ¢ : Y — X. Fori = 0, 1, let B; := ¢p(A x {i}).
Then B; isisometric to A, with d(b;, b2) = ¢, for b, € B,. Let g/, g2 € X with g,(A) = B;, they
existby (b). Theng = gy 'g, isasdesired: d(g(a),b) = d(g> 'g1(a),b) = d(gi(a),g2(b)) = «,
since gi(a) € Byand g:2(b) € B.

Proof of (i): We can assume V = {g e X: VI <i<n: glag) = a}, for some A =
{ay,. ,a,}. Pickf € X with d(f(a;),a;) = | for all 1 <i,j <n, as provided by Lemma 2.
Applying Lemma 1, we compute P == V'as

d((a, i), (b,))) := {

(4 P={gex: VI<ij<n: dgla) a) =1

Since V> =V, we have t” show P? = X. Let g € X. Applying Lemma2t’ A U g(4), we
obtain an isometry h € X satisfying d(h(a;), a;) = d(h(a;), g(a;)) =1, for alll <i,j < n. Let
p € X be an extension of the isometry h(A) U g(A) — h(A) U A, defined by h(a;) — a; resp.
g(a;) — h(a)). By definition “fp: p~'(a;) = h(a;) = pg(a;), whence d(p~'(a),a) = | =
d(pg(a;), a;). Then (+) implies p~', pg € P, whence g = p~'pge P

Proof of (ii):Letg® U and V:={geX: g(a) = a}. Then we have V € U,. For any finite
F C X and any g € X we have the following equivalences:

g EFVFVF & 3 peF flefs e vry
& hhAEF A e (@), a) =df@), a)
& ABEF: dgh ) fil@) = dfia),a).

Applying Lemma 2 t" the finite set {f(a): f € F} u {f~'(a): f € F}, we obtain that
d(gfs (@), fi (a)) takes any value between 1 / 2 and 1, as g runs through X. On the other hand,
d(f3(a), a) can take only finitely many values, whence X # FVFVF. O

Conceming the fifth implication in 6.3 and the property of respecting infraboundedness for
open subgroups, and also for the succeeding Remark 6.6 we present

Example 6.5. of a topological group X with an infrabounded open subgroup G which is not
strongly infrabounded. Because of the openness of G this means that G is not infrabounded
in itself. In particular, G is an open subgroup which does not respect infraboundedness.
Moreover, X contains an open normal subgroup which does not respect infraboundedness.

Let Y be an infinite group and § the subgroup of ¥Z consisting of all (y,),cz for which
{n €Z : y,# ey} isfinite. The normal subgroups

Hy = { ez €5 ¥y = ey for n <k} (ke Z)
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of § form a basis of 14,(5) for a Hausdorff SIN-group topology & on §, with which we equip
S For eachme Z, 6,0 S = S, Wuhcz — Vupmncz. 1S a topological automorphism of
S (note that ¢,,(H;) = H,_,); and i1 — LT,,, defines a homomorphism ¢ : Z — Aut(S). We
form the topological semidirect product X ;= §x,ZZ, with Z carrying the discrete topology.
The subgroups G; := H; x {0} (k € Z) of X form a basis of neighborhoods of (¢g, 0) in X:
and for i, k€ Z,

(eS,’")Gk+m(€5’s”1)_] = Uf}l(Hk+lrJ) X {0} = Gk

Therefore each G, is infrabounded.

But G, is not strongly infrabounded: For every [ > k and finite F C G,, one has (FG,)" =
F'G; (since H;/5), which is a proper subset of Gy since H; hasinfinite index in Hy. With a
view t0 6.24(ii) below we note also that the open normal subgroup S x {0} contains no open
subgroup G that respects boundedness. Otherwise, for k € Z with G, C G, G, would be
infrabounded in G and hence in§ x {0} whichleads to a contradiction similar to the preceding
one. U

Remark 6.6. V. Uspenskij has communicated to us in a letter of 26 April, [992 the sul-prising
result and its interesting proof that a topological group X is precompact if for every U € U,
there is a finite F ¢ X such that X = FUF. By contrast, the open subgroups G, <X of
Example 6.5 are not even strongly infrabounded although for every k € ZZ and U & I, there
is x € X such that G, C xUx~".

We now give a table of the basic properties of the various notions of boundedness:

Proposition 6.7. Let X be a topological group. Let A, B C X be both bounded in one of the
previously defined senses, and let x € X. The following table gives an overview which of the
various sets constructed from A, B and x are bounded in the same sense: A “+7 means, that
the set is always bounded, “-" indicates that there is a counterexample, the *?” indicates
that the question is unsettled.

C R bibounded £ AR L V R infra

ccA + + + + + +
AUB + + + + + +
A + o+ + + + +
XA U A + + + + + +
AB + o+ + 9 +
Al + + + +

Substituting “bounded” by “precompact” in the first five columns vields the same table,

except for the 7" which turns into a "+". (Note that a “+" in this case means that the set
is precompact, not just bounded. )

Proof. The first two rows are obvious. For the uniformities the third row is due to 1.3 (1),
using the fact that all uniformities induce the group topology. For infraboundedness, the proof
is easy: If A is infrabounded and U &€ U,, then A C (FU)", for some n € N and £ C X finite.
Thus A C UA C (FU {epU)y*+!.
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Now for the fourth row: translations are unitorm automorphisms ofthe canonical uniformities
(see [25], 2.24), which implies a “+” for these cases as well as for biboundedness. For
infraboundedness it isa corollary of the fifth row.
For the fifth row let A, B C X be L-bounded. Let U € I4,. Since B is £-bounded, there exist
finite F C B and n € N with B C FU". Pick W € I{, with Wf C fU, for all f in the finite set
F. By L-boundedness of A we have finite H C A and m € N satisfying A C HW™. Hence
AB C HW"FU" c HFU™" with finite HF. The proof for R-bounded A, B is analogous,
implying the bibounded case. The counterexample for £ A R-boundedness can not be given
in this paper, as it would require too much space. The infrabounded case is obvious.
For the counterexamples in the last row, confer Example 5.3. For the bibounded case the
“+" is clear. The inversion is a uniform automorphism of the uniform spaces (X, £ A R)
and (X, £ VR). which implies a “+" in the corresponding places. The proof for the case of
infraboundedness is again easy: If A C (FUY", then A=' C (F~'u {eh Uy,
If we substitute “bounded” by “precompact”, most of the above argument can easily be
adapted; only the fifthrow requires a different treatment. For £ AR, the same counterexample
mentioned previously also works for this case. Asto £V R, upply 1.7 to the cases R and
L. For the remaining cases, it suffices to deal with the left uniformity. Let U € I4,, choose
V € U, with V> C U. Since B is £-precompact, there exists finite F C B with B C FV. Pick
W ¢ U, with Wf C fV, for all f in F. There exists H C A finite satisfying A ¢ HW. Hence
AB C HW"FV" C HFV' C HFU, with finite HF. 0
For the proof of the partial result 6.9 on products of £V R- (resp. C A R-) bounded sets
we need

Lemma 6.8. If X is an ASIN-group and A C X is infrabounded then

(%) YUelIVeldVreA: VxCxlU

Proof. By [25]. 10.17, since X is an ASIN-group,
(%) U e UNV eUIW e UNxe U Wy C V.

With {// € I, from (=) we have A C (FU’)” with finite F C X and n € N. For x € A write
X = vy vy With y, € F and u, € U Now let & € U,. Putting V| == U, (xx) yields a
W, € U, sucht that Wyu C uV, for all i € U’. Hence

xU =y ooy Vi o v oy Win,

There is a V> € U, such thaty~'Vay ¢ W, forally € F. ThusxU D viuty . Va— 12—y VaVait,.
Proceeding inductively, the result follows. U

Proposition 6.9. Let X be an ASIN-group and AJB C X. (i) If A.B are LV R- (resp.
L NR-) bounded in themselves, then so is AB. (ii) If A, B are L N R-bounded and A or B is
L A R-bounded in itself, then AB is L A R-bounded.

Proof. (i): In both cases, A,A~!, B, B~ are infrabounded. Therefore, by 6.8, given U € U,
there is V € U4,, V C U, such that forall x € A U B one has Vx C xU and xV C Ux. IfA,B
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are CV R-bounded in themselves there are finite sets £ C A and FC B and n€ ¥ such that,
for each ¢ € A and b £ B, there are ag,a),., a, € A and by, by, , b, € B with gy € E,
ay=a, by eF, b, =b, and a4 € ¢;V N Vg, bir, € b;V N Vb; for 0 < i < n. Consequently,
agby € EF, a,b, = ab, a;b, @ AB, and a;y1biy € @;VE;V NV Vb, C a;b;UV N VUab; C
a:b;U? N Ula;b; for 0 < i< n. This shows thut AB is £ V R-bounded in itself. If A,B
are £ A R-bounded in themselves one argues similarly, considering ay, a;,, a, € A and
bo, b1, , b,, € B with @;4| € Va;V and b, € Vb;V.- The proof of (i) is similar.

In regard to the hypothesis of £ A R-boundedness in itself. confer Proposition 6.18. Every
open subgroup of a topological group X respects V-boundedness for each V € {C, R, L A
R,L V R}, because of 5.1. The following result on infraboundedness-respecting open
subgroups will help to establish cases in which infraboundedness coincida with other kinds
of boundedness.

Theorem 6.10. Let X be a topological group and G < X. Consider the following conditions.
(i) G has finite index.
(ii) There are R,S C X, R finite, such that X = GSR and such that

() YUEUIVEUNVsES:sVs~ CU

(iii) YU e U3V e UNx € XTg € G : xVx™! C gUg™ .

(iv) YU € U3V € U,x € X3 finite E C G3 finite F C X3Im € N : xV C (EU)"F.

Then (i) = (i) = (iii) = (iv), and if G is open, then (iv) implies that G respects infraboun-
dedness.

Proof. The proof of the implications between (i) through (iv) is simple (for (ii) = (iii) use
Nrer r'Vi wi V open from (x)). Now let (iv) hold, let A C G be infrabounded and U € U4y,
U c G. To prove A C (EU)” for some finite £ C G and n € N, choose V € 4] according to
(iv). One has

(1) A C (FV)" with some finite F ¢ X and m € N,

An easy induction, using (iv), shows
¥i € N3 finite E; C G3finite F; C X3p; € N (FVY C(E;UY'F;

So, by (1), A C (E,UyY»F, NG. Since A E,,U are contained in &G we obtain, with
E:=E,U(F,nG)and i := p, + 1, that indeed A C (EU)". d

Corollary 6.11. Ler X be a topological group and G an open subgroup of finite index. If G is
infrabounded, then it is infrabounded in itself.

Corollary 6.12. [et X be an infrabounded topological group. Then every open subgroup G
of X that contains an open normal subgroup N is infrabounded in itself.

Proof. With some finite F C X and n € N one has X = (FN)" = F'N. Hence G has finite
index and 6.10 (i) showsthat G respects infraboundedness. Since G isalso infrabounded, the
result follows. O
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Corollary 6.13. An gpen subgroup G of a topological group X respects infraboundedness if
the group GZ, where Z denotes the center of X, has finite index.
Proof. This isimmediate from 6. 10 (if). 0
We doubt whether every open subgroup of an ASIN-group respects infraboundedness,
which is plainly true for SIN-groups.
We now look for circumstances under which some of the notions of boundedness coincide.
Some results hold for all subsets of the groups of a certain class, in other results we put
conditions on the subsets. Qur first result also concerns ASIN-groups.

Proposition 6.14. Ler X be a topological group and let A C X be strongly infrabounded. A
is L-bounded under any of the following three conditions.

(i) U, has a basis B such that YU € B¥x € A - Ux C xU.

(i) A is a semigroup and

(%) YU el AV eUNx €A Vx CxlU (confer 6.8).

(iii) A is L A R-bounded and (x) holds.

Condition (if) implies (). An analogous “right version " is obtained by passing to the opposite

topological group.

Proof. If (i) holds, note that (FU)" ¢ F'{/"forall FCAandp €N,

If (i) holds, the set W := |J,, x ! Vx with any V € U, satisfies x~' Wx CW for all x € A,

which yields(i).

If (i) holds, for given {/ € U, pick V C U according to (). By assumption one has

A CV'FV" with finite F ¢ Aand n€ N, whence AC FU'" by (). O
Three corollaries of 6.14, case (ji) (and 6.8) are

Proposition 6.15. Let X be an ASIN-group. A subsemigroup of X is bibounded if it is strongly
infrabounded.

Proposition 6.16. Let X be an ASIN-group and G a strongly infrabounded subgroup. Then G
is bounded and {U € U,(X): ¥x € G: xUx~"= U}is a basis of U.(X). In particular, every
infrabounded ASIN-group is g bounded SIN-group.

Proposition 6.17. Let X be an ASIN-group. If A C X is L A R-bounded, it is bibounded.

Proof. A is £-bounded by 6.14, and this may be applied to A~'. O
Using the last part of 6.14 we can show also the following result on £\ R-boundedness.

Proposition 6.18. Let X be an ASIN-group and let A C X be £ A R-bounded in itself. Then
Ais LV R-bounded in itself.
Proof. Let U € U,. The last part of 6.14 applied to A and A~ shows

Vell,:VCcUand¥r € A: VxCxUandxV C Ux

By assumpuion, there are a finite set F C A and n € N’ such that for every a € A there are
beF and xy, x1,, Xy € Asuch that xp= b, x,= g and x; € Vx;_, V for | <| < n, whence
X; € xi_ 1 U* N U*x;_, by the choice of V. This proves the assertion. 0
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A similar result is

Proposition 6.19. Let X be « topological group and A an open, strongly infrabounded
submonoid OF X. Suppose that X is an ASIN-group or that

(*) B:={UeUX): ¥x €A: xUx~"= U} is a basis of U(X)

Then A s an SIN-subgroup of X and bounded in jtseff.
For the proof we need

Lemma 6.20. Let X be a topological group. Every open £- (or R-) bounded monoid A C X
is a subgroup of X.

Proof. It is enough to consider the case that A is L-bounded. To show A~'C A, let
U=U"'¢ U.(X), U C A. By assumption, A C FU/" with finite F ¢ X and n € N. For given
x €A therearek, | €N, k< I,and h € F such that x*, ¥' € hUU". Hence x~"** ¢ U ¢ A and
xV =Xy c Asincel — k — 1 €N O
Proof of 6.19: Since A and A~!are infrabounded. the last part of 6.14 shows that (x) is
satisfied if X is ASIN. Suppose now that (x) holds and let U € B, U C A. By assumption.
A c (FU)” with finite F ¢ A and j € N, whence A = F"{J". Hence A is L-bounded in itself.
and by 6.20 a subgroup of X, whichis SIN because of (x). U

6.21 Example/Remark In 6.20, the conditionthat A be £- or R-bounded cannot be weakened
to LA ‘R-boundedness, as the following counterexample shows. Let T be an infinite set and
X the group of all bijections x : T — T and let X;:= {x € X : {t €T : x() # t} is finite}.
Equip X with the group topology T for which {V,: F C T finitg} with Vp:={x € X, :
x(t) =1 for 1 € Fyis a basis of [f,(X, 7). Then (X, L A 'R) is precompact by the argument
from [25], 9.14 in which only the neighborhoods Ur are to be replaced by the sets V. Let
A ¢ X be the open monoid generated by X, and an element ¢ € X of infinite order. Then
A =X,{d": ne N} and A is LA R-precompact, but A is not a subgroup, since ¢~'¢ A. 0

Remark 6.22. Plainly, ina topological group X. e hasa neighborhood that is bounded (resp.
precompact) for £ or R iff ¢ has a bibounded (resp. £V R-precompact) neighborhood, and this
is equivalent with X to be uniformly locally bounded for £ and R (resp. uniformly locally
£ V R-precompact; see 1.19). “Uniformly locally bounded” may be replaced here by B-
conservative, by the result about AB in 6.7. This yields a corollary to0 3.13, (a) < (¢) < (d),
generalizing [15], Theorem 3 to arbitrary topological groups, for £ and R. Similarly, in
ASIN-groups, if ¢ has a neighborhood {J which is £ A R-bounded in itself, then the vicinity
Upnr 1SL AR-B-conserving (by 6.9). andanother corollary to 3.13, for £ A R-boundedness,
results.

We do not know if X isuniformlylocally CV R- (resp. CAR-) bounded if ¢ hasan LV R-
(resp. £ A ‘R-) bounded neighborhood.

Proposition 6.23. Ler X be a topological group and let e have an L-bounded (resp. L-
precompact) neighborhood (cf. 6.22). Then every infrabounded subset is bibounded (resp.
LV R- precompact).

Proof. If AC X isinfrabounded and U/ € I, is bibounded (resp. precompact) then AC (FU)”
with F C X finite and n € N. (FU)" is a finite product of bibounded (resp. £V R-precompact)
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sets and thus itself bibounded (resp. £ v R-precompact), by 6.7, whence A is bibounded
(resp. CV TR-precompact).
The following proposition was show by Atkin in a weaker form (cf. [1], 3.2 (b)).

Proposition 6.24. Let X be a topological group and let A C X meet only finitely many
left (resp. right) H-cosets OF X, for any open subgroup Hof X. (i)Ais £ A R-bounded
iff it is L-bounded (resp. R-bounded). (ii) If every open subgroup of X contains an open
subgroup which respects infraboundedness and if A is infrabounded then A is L-bounded
(resp. R-bounded).

Proof. For (i) let A be £ A R-bounded and U € {, symmetric. (U) is an open subgroup,
hence A C F(U) for a finite F C A. For any x € F, x"'A N {U)is £ A R-bounded, so that
x A N{U) C UXEU* for some finite E C x~'A N (U) C {(U) and k ¢ N. U/ is symmetric and
E is finite, hence E C /' for some /, and x~'AN (U) C U**, Choosing k and /big enough
for all x € F, we obtain A= |J,.px(x~'A N (U)) C FU“+*, as desired. A modification of
this argument yields (ii): (U) contains an open subgroup G whichrespects infraboundedness,
A C FG with finite F C A, etc. O

Corollary 6.25. Let X he a topelogical group und A an C A R-bounded subset meeting only

a finite number of L-pseudocomponents OF X Then A is bibounded.

Proof. If A meets finitely many £-pseudocomponents, it meets only finitely many left (resp.

right) H-cosets, for any open subgroup H. Hence the statement follows from 6.24(i). O
On account of Theorem 6. 10 and of 6.24 (ii) we have

Theorem 6.26. Let X be a topological group. Suppose that every open subgroup has finite
index. Then a subset of X is infrabounded iff it is bibounded.

Corollary 6.27. Atopological group is bounded iff it is infrabounded and every open subgroup
has finite index.

Proof. Thenecessity was stated in Remark 5.2 (1) and Proposition 6.3, and the sufficiency is
immediate from the theorem. O

Note that every open normal subgroup of an infrabounded topological group has finite
index.

Corollary 6.28. Every infrabounded topological group with open L-pseudocomponent P of
e is bounded.

Proof. P has finite index by the last remark. So 6.27 yields the result. 0
Corollary 6.25 applies in particular to groups With only one £-pseudocomponent. However,
in thiscontext a stronger statement iseasily obtained:

Proposition 6.29. Let X be a topological group whose L-pseudocomponent P of ¢ has finite
index, X = FP with finite F C X. [fA C X is infrabounded then for every U € U, there exists
n € N such that ACFU'"NU'FN F-'U"NU"F~'. Note the special case X = P.

Proof. As P is closed, P is open by the assumption. Let / = U~ ¢ I,, U c P without
restriction. Then (U) = P, so A C F(U), and the proof of 6.24 yields AC FU' with some
i € N. Since also A~!i's infrabounded, one deduces A~! C FU’ for some j € N. Since
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X = PF = F~!P, the full assertion follows. O
A further corollary to 6.24 is

Proposition 6.30. Let X be a topological group with open L-pseudocomponent P of e. Then
a subset A c X is bibounded if Ais £ N R-bounded and also if P respects infraboundedness
and A is infrabounded.
Proof. P being an open normal subgroup there are F C X fipite and 5 € N such that
A C P'"FP" = FP = PF, respectively A C (FPY' = F'P = PF", Therefore 6.24 applies and
gives the result. N
Concerning the hypothesis on P see end of Example 6.3 |. Regarding infraboundedness
of open connected £-pseudocomponents and for a discussion of the hypotheses of 6.30 we
present the following example similar to 6.5 which however does not yield the “contrast” at
the rnd of 6.6.

Example 6.31. of a topological group X whose £-pseudocomponent P of ¢ is open, connected,
and infrabounded. but not strongly infrabounded. In particular, the open normal subgroup P
does not respect infraboundedness. and in the second part of 6.30 (with A = P) the hypothesis
that P respect infraboundedness is not superfluous.

Let (B(R), &) be the bounded TVS constructed in 4.1, let S, be the vector space topology
induced on B(R) by the product RI"!l, and equip B(R) with the Hausdorff vector space
topology S := &, V &. The torus group T := R/ Z acts on [0, | naturally by “translation
modulo 1", (t, 5) — #{s) (t € T, s € [0, 1 [). Plainly, this yields for every 1 € Ta topological
automorphism g, of (B(R), &), 6,(f)(s) = f(7(s)), and a homomorphism o : T — Aut(B(R), §)
giving rise 10 the topological semidirect product X := (B(R), §)}x,T with T carrying the
discrete topology. The sets

We:= {f €BR): A 'Ue e) > 1= ¢} (e>0)
form a basis of Uy(B(R), Sy), the sets
VAE) =W, n{feBR) :I|f(s)) <eforsek}
with € > (Qand finite E C [0, || form a basis of L4y(B(R), &), and the sets U,(E) := V,(F) X {0}
form a hasis of U, (X). Clearly the L-pseudocomponent P of ¢ in X is equal to the open
connected normal subgroup B(R) x {0} of X. To prove that P is infrabounded consider

the basic neighborhood U, (E). There is n € N such thut W = B(R) since (B(R). Sn) is
connected. Choose ¢ € T such that r(E) N E = (). Then

(%) U ((E) = 0/(V(E)) x {0} = (0, NULEXO, )~

Using a function h € B(W) with A([0, 1[) C [0, 1], A(E) C {1} and h(x(E)) C {O}. every
(f, 0) € W, x {0} can be written as

(1,00 = (i + (f = 1), 0) € (V(t(E)) + Ve(E)) x {0} C (0, DULENO, 1)~ ' Uc(E),

by (). Hence ((0, DU (EXO, Yy *U.(E))" O W" x {0} = B(R) x {0} which proves that P
is infrabounded. But P is not strongly infrabounded. Otherwise P would be infrabounded in
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itself, and hence biboundedin itself (since abelian), hence (B(R), S;) would be bibounded, a
contradiction.- X is not infrabounded since otherwise X and P would be bibounded by 6.28:
In thisexample T may bereplaced by any dense subgroup of R / Z, inparticular by a cyclic

dense subgroup.

Questions 6.32. Are Z and SL(2, C) bounded, non-precompact for some group topology ?
SL(2, C) admits no L-precompact Hausdorff group topology, see [20], Corollary 9.12.

(i) Is there an abelian group X with two group topologia S and 7 such that S s bibounded,
T is precompact, and 7 v Sisnot bibounded ?
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