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A NEW APPROACH TO CONSTRAINED SYSTEMS WITH A CONVEX EXTENSION

SEBASTIANO PENNISI

Abstract. Systems S of N partial differential equations are considered, with M differential
constraints and satisfyving a convex supplementary conservation law. When M = 0O, it is well
known that these systems assume the symmetric hyperbolic form if the components of the
mean field are taken as independent variables. To extend this property to the case M # 0, a
new system S is here proposed with M supplementary variables x4 such that the solutions of
S* with x4, = 0 are those of the system S. Moreover S* can be expressed in the symmetric
hyperbolic form. This methodology is tested by applying it to the equations of the superfluid,
modified from the classical Landau’s formulation.

1. INTRODUCTION
Some important physical problems are described by a set of field equations such as
3rfo + 0ifyy = Pa for n=1,...,N, (1)
subject to differential constraints of the type
0i g4 = qa with A =1,... M. (2)

By using a suitable invertible change of variables, we can take f, as independent variables;
fi, g4, pu» qa are given functions of f..

Usually this system is considered hyperbolic if the problem —Adf,+ n; df} = O has real
eigenvalues A and N L. i. eigenvectors df,, for all n; such that n;n' = 1,

Now this condition is too much restrictive; for example, it 1s not satisfied by the equations
of the superfluid, as proved by Boillat and Pluchino [1]. They have also proved that the same
equations assume the symmetric hyperbolic form 1t the components of the mean field are
taken as independent variables.

Obviously, hyperbolicity must not be affected by invertible changes of variables; therefore
a less restrictive definition of hyperbolicity for constrained systems is required. To this end
we notice that eq. (1) can be substituted by the sum of eq. (1) and of eq. (2) multiplied by an
arbitrary function 779, i.e.,

dfo +0ifi + T 0,8 = pu+ Thqa. (3)

We can now apply the above definition of hyperbolicity to this modified equation (3);
we cannot expect that it will be satisfied for every choice of T4, but only for a particular

one. In other words, an appropriate definition of hyperbolicity for constrained systems 1s the
following one,
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“The system (1), with the constraints (2), is hyperbolic if the functions 7% exist such that
the problem | |
=Adf, + nidf,, + T, dgy) = 0 4)

has real eigenvalues A and N [. i. eigenvectors df,, for all n; such that nnt =17,

The constraints (2) have to be imposed only on the initial manitold 2, after that they will
be satisfied also off X2 [2].

In the section II it will be shown that the functions 7% can be easily found if the system
(1,2) satisfies a convex supplementary conservation law, i.e. if the functions h, ', g exist such
that the relation

hh+dh=g (5)

holds for every solution of the system (1,2); moreover /4 1s aconvex function of the independent
variables f,.
In sect. III a new system 1s obtained of the type

ar.f;r + !:.? ,i + T:;! afg,{l = P + T::' A (6)
A X4 + 0i &'y = qa,

in the independent variables f,,, x4 this system can be expressed 1n the symmetric hyperbolic
form and reduces to the equations (3,2) for x; =

The equations (6) are more elegant than (3), because the differential constraints (2) appears
also, even if in the transformed form (6),. The new variables x, are only auxiliary quantities.
The 1dea of considering an increased number of independent variables comes from a similar
approach followed in extended thermodynamics (see, for example [3-3]).

This approach to constrained systems, has been already applied successfully to the cases of
relativistic magnetofluid-dynamics [6] and to covariant Maxwell electrodynamics [7]. Here
the general case 1s considered and another example of physical application 1s given, 1.e., the
equations of the superfluid.

However, | emphasize that the most important and original aspect of this paper is that 1t
furnishes a general method to deal with the constrained systems with a convex extension, while
the other published papers on this subject dealt only with particular physical problems. The
equations of the superfluid furnish another physical example which confirm the potentiality
of this method.

In sect. IV the problem (4) for the superfluid is investigated (Note that the problem (4)
deals with the modified system, while the original one was —Adf,, +n;df’ = 0).

I conclude this section noticing that (6);, by using (6)> becomes 9,(f, — T xx) +x4 9, T;’:‘
+0i Fy = Pn.

Now the hyperbolicity of the system (7), (6). amounts to some inequalities and to some
equations depending on T9, x4 ‘3} ;H jit, i‘;‘: ﬂf}i these inequalities and these equations
hold for every value of the indepehaent variables, also for x4 = 0. Therefore the system

af(f;'! — ﬁ}-’ff‘l) + 0; F_:r, = Pn

OrXa + 0i g4 = ga
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1s still hyperbolic, at least in a neighbourhood of x4 = 0. It has the advantage, with respect
to system (6), to have preserved the conservative form.

2. CONSTRAINED SYSTEMS WITH A CONVEX EXTENSION

Let us consider the system (1,2) satisfying the supplementary conservation law (5); accor-
ding to the results of refs. [8-10], the functions A", ud exist such that

——

Y T Y A Y Y A

: W ; ;
0 — A" 0n — A a m A atil.-—l o= ?'k.”j.?” 4+ I—Lﬂff,—t- (9)

Eq. (9); and the convexity of h, assures that A" are invertuible functions of f"; therefore
we can take A" as independent variables, an 1dea already applied in other physical contexts
| 11-13]. The variables A" are also called the "mean field".

We can prove now that the system (4), with 7%} = g*:l 1s symmetric hyperbolic. In fact,
eqs. (9);.» can be written as
dh = N'df,,, dh' = N"df', + ndg', (10)
or, equivalently, as | | |
dh' = f,d\', dh'" = £ d\" + g'.dp” (11)

with /', h"" defined by
W= —h+N'fy, i = =0+ N"f], 4+ u'el.

. e Lo oW i i dpt 9k
From eqs. (11) 1t follows f, = 257,/ + 84 55 = v

written in the symmetric hyperbolic form

3 I o ,- o ,

. o i’ nom ah' no__ ¥l ahy. . . ah’ : et
(Note that O AN AN = d ( : A”) dN' = (df") d ( (”) therefore Sxrg o 1S positive
definite).
Let use apply now this method to the case of the superfluid, whose equations [1,14] are

which allow the system (4) to be

0 P+ 0x(pPsvsk + Pavak) = 0

O vsi + (L 4+ vs /2)8 = 0

0/(Psvsi 4+ Pavnai) + 0k (Pdri + PavarvNi + Psvsivsi) = 0
0,(pS) + dk(pSvar) = 0

(13)

and the differential constraints are

Eakj Ok Vs; = 0. (14)
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In these equations the independent variables are P (pressure), T' (temperature), V¢ (su-
perfluid component of the velocity) and v, (normal component of the velocity).
The other functions are generated by the chemical potential p = p (P, T, «), by means of

the relations
—1
. ol ou
j— 2 — = 2 —_— 1 - -
x = (vy —Vs) /2,Ps ( +am) (aP) ,

A AN TR d .
L o U L
- — — —_— . - - S ; S = -,
PN aﬂt(aP> P=PsT PN (E)P) 5T
Ekqj 18 the Levi-Civita symbol.
Moreover the function w 1s a concave function of P, 7, & and such that [15-17]
I 0ps 0 Ds)
1 +2x — —— | >0 16)
(Ps 0 X oF (

The quantities p, vs;, Psvs; + Pnvvai, PS are invertible functions of P, T, vs;, v;; this property
can be proved by considering the system

dp = 0,dvs; = 0,d(psvs; + pyvai) = 0,d(pS) = 0. (17)

From (17);-3 we obtain O = d(psvs; + pyvni — Pvsi) = dlpy (Wvi — vsi)] = (vyi — vsi)
dpy + pny d(vy; — vs;), from which it follows 2adpy + py dx = 0, or equivalently,

d(—pn / p) — pndx /(2ap) = 0. (18)

Eqgs. (17); 4, (18) can be written as

2 2
O M mp L O ar

2
0" doo =0

o P? oPoT PO«
0% 1 07 1 07 p
dP 4 dT 4 doe = 0
QPOT 3 T2 0T« (19)

07 W 0% U P’ U pw
4P 1 dT + [ == — 22X ) goe = 0,
dP0x oxoTl +<arx2 20&9) >

from which it follows dP =dT =dux =0

because u(P, T, &) 1s a concave function. From egs. (19) it follows that the system (17) has
only the solution dP = dT = dvg; = dvy; = 0, which fact proves the invertibility of p, vg;,

PsVsi TPN Vnis PS.
The system (13,14) satisfies the supplementary conservation law (35), with

h=pST — P+ (u+ v§ / 2)p + pnvni(v; — Vs))

f ST | | (20)
ho= (1 +vs/ 2)(psvi + paviy) + pSTVy + paviyvn(Va; — Vsi)-
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In fact the relations (10) hold with A" = (8, L§, v, T),

0 = 4 vs/2 — Vi, Lg = —ps(vy; — vg),

A . |'r.‘-' [ by
L = PsEuheVyVg = Er::b.:"'”’NLS-

Moreover A 1s a convex function of the variables f,;; in fact

o

l az }'? 1 I a h ] 1
— = —df,df,, = =d - | dfn = ZdAadfy =
T afu a.fm f / T ( a-f” ) f r f

~ | -

{d(]-l + "-*’E‘ / 2 — "'}Nr'”.”ir')dp + (J‘r[‘“ pS(UN:' — 1""'5:')]d1”55_|_

-

—+ d'IJ’N;'d(p};lf'g -+ FJN‘V’:;;) + de(pS) ;= (21)

A

l |
d [?—ﬁ(l—l +v5/2 - UNH”.S';']] dp+d {—ps?(‘v’m — L’S'E)J dvsi+

l : - l
+ d (UM;?) d(psvs + pyviy) — d (?—") dh

1

8

and this quadratic form is positive definite, as proved in ref. [17]. We see now that

i

et

= (0, €4pi 1';‘;} — g5 L2, 0): therefore the system (4) becomes

0r P+ Ox(Psvsk + payvar) = 0

31 Vsi + k(1 + 5 / )84 + v vsi — divs) = 0

0:(Psvsi + pavni) + 0x(Pdri + pyvakvai + Psvsivsi)+ (22)
+ ps(vy; — vs))(Qj vsi — 0ivsj) = 0

0:(pS) + Ax(pSva) = 0,

where the identity &4 €j,, = 20, Ok)y has been used, and the underlined terms are those
responsible of the modification of the original system (13), where they don’t appear. They
have been obtained by adding, to the second and third equation, a linear combination of the
differential constraints (14), following the general guidelines of the methodology exposed in
this paper.

The eigenvalues and eigenvectors problem, for this system (22), will be exploited in sect.
IV.

3. AN EXTENDED APPROACH FOR THE SYSTEM (4)

Let us consider the system (6) with

i A
i aé.:ax/\ T.q:apf

e T = (23)

Fy =1,
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in the independent variables f,,x*. The solutions of this system, with x* = 0, are those of
the system (4). If we impose that x* = 0, 9; ¢’y = ga hold on the initial manifold o, they
will propagate nicely off 0. Moreover the system (6) becomes symmetric hyperbolic, with a
suitable change of variables. In fact, let

1 | .
H = —h+ N'f, + 3,&,1*,1,;1“ = —h + N4+t + gl (24)

e

By using egs. (10) we obtain
dH' = f,dN' + Xdxy, dH" = f! dN" + ghdp? + g'dx* + X dg,,
or, equivalently,

oH’
a ;!\u

“ﬁr + gATH T X O AH ) a-r,'! — j‘l

oH  oH" 408 oH"
—f”! : — A, ah”

(A", x* have been taken as new independent variables).
Therefore the system (6) becomes

aHI aHH ; a B
a!(a?w> | af( )_gﬁai - — Pa JT"TH‘Z’H

a%u a}\;r
aHi a H.I'a" a '_]_H (25)
a;(a'ﬁ) | af<axﬂ)—ggﬁfaxﬂ = A

where, vamualy, = 0.

This new ay%lem 1S ﬁymmetric hyperbolic, also because H'(A", x) is a convex function; in
fact

aﬂ Ha“ az H." | az HI ;
IN'AN" + 2 IN" dx dx*dx® =
J Al d )\m{ ¢ T 0 AN o _14‘1 ¢ ax: = d rf’l a_xB A X
H' H’ . |
=d (g X ) dN" + d (Z . ) dx* = (df"YdN" + dxpdx* =
n 0%
0 h

dfsydfy + dxadx”.

 0fudfm

Let us now apply this methc}dﬂlﬂgy to the case of the supertluid.
From the relations 8 + ,,vw f;h, = W+ &; Lsils; = 952::}:, we Dbtaln = (dP + psdo) = do
—}_'l*'h;f{ﬁf‘,\_,r _i_ Sij,

0 Ps d Ps , 0 Ps
2 — P 2 — < | dx = LeidLg; — 2 —dT 26
D{D.ﬁapf +(C%P.aa{x+r35>fﬂ‘{ sidLg ﬂipﬁ'an (20)
from which
2o I J Ps Vsi — Vpni 0Ps ; , .
dm- = EK — pa—PdE' = 2o EILSE‘ — pﬁ”m’d"’w+




A new approach to constrained systems with a convex extension 179

— (Eﬂps [ QS%> dr |,

ol aP
NNT ps K Vni — VSi
dP = 20K~ —— + — | db dLs;
° ( oF N 2:}:) ” 20 i
ops . K\ ; 0 Ps 0 Ps K -
| wdvy | FpSs— | dT
+p<aP 2&:)1’\“‘“+(a}" pSaP pSZﬁ)d ’

. _ 9 1 dps  dps
with K = | 4+ 2« (p,; 5 5P )

. 2
From these relations and 2ecps = Lg;Lg;, we have also

20 oT 0P
(27)
Finally, from these relations and g% = p.;' Eaijls; + €aijvn;, We have
a g"q — | — 1] a Ps
E}E‘; = — g E.—'hj('l".ﬂ_'j — 1’;\{;)3{ pa—P’
o0& ~ 1 L1 =K —1
3 Ler = P €a;i{vsi — vap)K 2o (Vsk — Vivk) + Pg  €aik,
0 gt _ _1_0Ps
8 _ o5 ea(vg — vap)K ™ 'p Vak + Eaik,
0 Vi
08 _ i 1 [ 90s d Ps
*é*ii' = Pg  Eaij(vs; — v)K 5T | F’Sa—P :
Therefore, the system (6), in the case of the superfluid, is
] w o — | a Ps A
Or P+ O | Psvsk + PNV — P Eakj(vsi — vn)IK P"é“)g-l =0, (28)

f —

O Vsi + 0k § (KL + 1"?} / 2)di + Pg EakiT

w, L.

P¢ Eaki(vsi — v)K o (Vsi — Vi +

+vni(0) vsi — Qi vsy) = 0,

-

0:(Psvsi + Pavai) + Or § Pdri + PavaeVNi + PsVskVsi+

%

B . )

- ~1,.0Ps )
+ | Py IE;‘iﬂj("’Sj — vnj)K ]Pa—Pl*’fw + eap | X S+

- . /
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+ps(vy; — vsi) Q) vsi — 0i vsj) = 0,

_ 1 { 0 0 P:
0:(pS) + O« {DSVNJ: + p5  eari(vsj — vy K (6_? + IUS-a—F;E) JEA] = 0,

Oy lﬂ + aﬁg(Eﬂngﬁj) = ().

Similarly, the system (10) becomes

_ _1_0Ps
0 P + Ok [Ds“s& + Pavnk — 05 Eari(Vsj — vai)K IDB—PE'«‘LJI] = 0, (29)

rl p—

01(Vsi — EapiX V) + 3k < (W4 v5 /)8 + | p5 ' Earit

. .

(vsi = vwi) [ X' o =0,

- A

2

£

— 1 —1
+Pg  €aki(vsi — va)K

dilpsvsi + Pavai + PsEanix (Vi — va) ]+

.

+ Ok § Pori + PnVNKVNE F PsVskVsit

L

_ _1 _OPs ﬁ
+ [Ps "eari(vs; — vaK Ip“g};‘f’m + Eﬂk:} =0,

/

—1 ~1{0Ps | :
0/(pS) + Ok [DSVNA- + Pg  Eari(vs; — vwpK ( 3T PSa—P) XA} = 0,

0r X + Orearivsi) = 0.

4. WAVE SPEEDS AND EIGENVECTORS OF THE SYSTEM (22)

Let us consider now the system (22), where the underlined terms are those responsible of
the modification respect to the original one. The wave speeds, associated to this system, are
the eigenvalues A of the problem

— Adp + md(psvsk + pavm) = 0,

— Advg; + nid(u + 1{%- / 2) + vni(nidvs; — nidvsy) = 0,

— Ad(psvs; + pyvni) + md(POgi + pnvakvni + PsVsiVsi)
+ ps(vy; — vsi)(nidvs; — nidvs;) = 0,

— Ad(pS) + npd(pSvy) = 0.

We will see that A = vyeny 1s one of these eigenvalues, and has multiplicity 4. The equation
for the other eigenvalues will be indicated; in two special cases, this equation is a biquadratic
one. The general case can be subdivided in the following particular cases:



A new approach to constrained systems with a convex extension 181

Case 1: y¢ = vy. The system (30) becomes

(—=A + vame)dp + mi(psdvsy + pydvag) = 0,
(—A + vaprp)dvs; + nidp = 0,

(—A + vmen)(psdvs; + pydvyg) + nidP = 0,
(—A + vaeng)pdS + Spsngd(vve — vse) = 0,

3D

where (31)3 1s the sum of (30),, multiplied by —vy;, and of (30)3; similarly, (31)4 1s the sum
of (30);, multiplied by —§, and of (30)4. Moreover, do = (vy; — vs;) d(vy; — vs;) = 0.

We see that A = vy 18 an eigenvalue with multiplicity 4; a set of 4 [.i. eigenvectors
(dP,dT,dv., dvy) corresponding to this eigenvalue are

(03 05@1 5Q)3 (01 03 QE& Q)T (01 01 Qa EI )a (01 01 Q} {'_}2)

where ¢,, ¢, are 2 [. i. vectors orthogonal to n.
IfA # ving, (31)23 give dvs; = (A — vagre) ™ dung, dvy; = (A — vgi) ™! (AP — psdi)pyy
n;, and (31), 4 become

2 0° L [ ] 2 Gl L
(—A + vy ) Yol 2 dP + (—A + vanyg) ~Pa TdT = (J,
PN azu i 2 PN E)EI.L ?{35}
—A + v ) dP + | (=N + vapiyg)” S — | dT = 0.
( Nk ) 5 3PaT -( Nk Y .
Therefore, we obtain 4 other real eigenvalues, given by
I [ A9 9 . 21! ¢ '
O"HLO H g° u 0" L ., Ps
A+ vaitn): = — _ ! g2
( VM) = o | SR 3 (aPa.T) 3 P2 o

- - g
2 2 2 ],{....w

o' 1 aEHSgF)S 1\ A 1\ S ps
T2 2 2 A T2 p2 + 2 0 g
0l°p oP- ov 0o1°p oPol/ p°pw

- - o

2 3

] c + - . e o B T UEI._ﬁEEE}";_ .
these eigenvalues are distinct, except for the subcase —"—H FOT = 0, —L{,_”g = P S —Lﬁ_ 2z . In this

2 —1/2
particular subcase, the eigenvalues distinct from vy 1 are A = vy g (E‘; !;’3" pz) with

multiplicity 2 and 2 /. i. eigenvectors (dP and dT are arbitrary).

In the next cases we shall have v¢ # v,. Therefore we can define W from y¢ = V2« W
~+vy, trom which 1t follows W;W; = 1.

In this way the system (30) becomes

— Adp + mpd(pvsi + V2o0pyWi) = 0,

(Vi — Ndvs; + nid(n — V20Wdvg) = 0,

(v — NA(V 20 W;) + ni(pSAT + pyd o+ (32)
+ oy V20Widvs;) + nV20epn Wid(V20 Wy, + vg) = 0,

(varix — A)pdS + Smed(V20psWy) = 0,
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where (31); 1s the sum of (29)3, (29); multiplied by —vys;, (29); multiplied by —p; similarly,
(31)4 1s the sum of (29), multiplied by —S and of (29),.

Case 2: yg # vy, (g — vy)* = [i(vs; — var))* = 0.

In this case we have W = Wn with W = 4+1. We see that A = vygny 1S an eigenvalue with
multiplicity 4 for the system (31). The corresponding eigenvectors are dP = dT = dx = 0,

{f‘i’g; = X|€,r,- + Xﬁ{n“dW; — X?EH T X4€?”

where ¢, ¢, are two [. i. vectors orthogonal to n and X, X», X3, X4 are arbitrary coethcients;
therefore, we have 4 /. i. eigenvectors.

If A = varng, eq. (31); gives dW; = Yn;; but W;W; = 1 implies W;dW; = 0, from which
Y = 0 follows. Therefore (31); 3 give dvs; = Y| Whn;: dW; = 0 which allow the system (32)
to be written as

(vaenk — Ndp — Wd(v2ops) + pW(Y) + dV2a) = 0,

ety — YW + du — V2aY, = 0,

(aeite — M[pYI W + pWd V2 — Wd(vV2xps)] + dP + psdot (33)
— 2V 2aps(Y) + dV2x) + V2ad(V2xps) = 0

(varite — N)d(pS) + pSW(Y; + dV2a) = 0

where (33); 1s the sum of (32), multiplied by p, of (32), multiplied by —W+/2«, and of (32)3;
moreover (33)4 1s the sum of (32); multiplied by S, and of (32),.
Let us consider the change of variables

: S
szp(l—i—ZcxK a;;)x,drw\/ K 'X5 + 20K~ (ap‘s - 0590 | kP ).;n,

oT 0P 2
(34)
dT = X.,
1
doo= —20k ' 2905 % W aakT x4
ps 0P Dg
1 {0ps apv)
— 2Kt — - pS—— | X4,
Ds (aT P 0P )

Yi +dv2a = WXs,

. - A dps  dps
where K == | + 2« (m o =P )

The system (33) becomes

4
> by + (v — NaglX; = 0 (35)
j=1
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where
2> 1 _10pPs , 07U 1P 0ps
3 1 2 1
= — = | 1+ 20K —— | + 20K ,
ain= TP e ( aP) P aPoa " s aP
iy = dr») = W EE{K_I P aps}ﬂig — 3] =0
Ps 0P
o(pS) _1 0 Ps
=S — T | +20 K~ ' ——=
(14 = g 3P ( + )—I—
_APS), 1 P 205
0 & Ps 0P
]
() = ——,d13 = azn = 1,
Ps
J Ps 0 Ps | (36)
dra = Q47 = FpS—— | V2K T — W,
24 42 (E:)T P aP) 0

azy = P,a3 = agz = 0,

0(PS) ., 1 (a Ps . o3Ps KDS) - 0(pS) |

3P 37 PP ap TRy ) '

| aT

S !

LG Py (a Ps. psﬁ) |
0 X ps \ 01 0P

b1 =0,b12 =02y = 1,013 =b31 = p, D14 = by =0,
by = 0,b23 = b3y = —V2aW, by = by = 0,
biz = —2psV20W,b34 = by3 = p5,b44 = 0.

Moreover, Zi_;=| a;XiX; = dpd(1 + o) + dTd(pS)+ d(ps V20) dV2x +p (Widvy)® —2
d(ps V2x) Widvy; which is equal to the quadratic form Q in eq. (21), multiplied by 7 and
calculated for dvi, = W; dvs; W', dviy, = dvi +W' dv/2o (from which dW' = 0). Therefore,
a;, b;j are symmetric and a;; 1S positive definite; consequently, the problem (37) has 4 real
eigenvalues and 4 /. i. eigenvectors. These eigenvalues are distinct from A = vy 1y, because

det (b”) — DESE #+ 0.
Case 3: vg # vy, (g — vy)* —[mi(vs; — vai)]* # 0.

In this case W and n are [.i.. We see that A = vygng.1s an eigenvalue with multiplicity 4 for
the system (32). The corresponding eigenvectors are given by

dW, = X,|n, — Win; W, | + XzE;;;ijWja
dlr‘gg; — X}HJ{- -+ X4 W,{; -+ X5 Ek“”fwlt

dp = -2 5847 — peda,
PN
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where (X, X3, X4) 1s the solution of the system
ocvV 20X |1 — (an) | + Winid(psv2x) =

X3+ XyWin; = — Wf”f V2adps,
Ps

S
XaWin; + X4 = — P di — dv2«,

PNV 2'1

while X5, X5, dT, do are free unknowns; consequently there are 4 [. i. eigenvectors correspon-

diﬂg oA = VNEITE.
[fA # VLI, from (32)3 we see that d‘b’g,' = X1y, dW, = X> (n;— H’L.'HJ.' W;), where W;,dW; = 0
has been also considered. By using these relations, the system (33) becomes

(Vi — Ndp — V2o Widps + mWipnd V2 + pX) + V20xpnl ]l — (i We)*1X2 = 0, (38)
du + (v, — MX; = 0,
dP — pdu + nkapN\/To:X, + (v, ity — ?&)QN\/ZTxXg = (),
V20w — Ndon + pnvOaeite — A + V2aWn )d V2 o+
+ {\/ZTI['I — (mWe)*] — miWilvpeny — ?\J} onV 20X+
V2axpnX) =0,

S S
pdS + Sdp — p—de — p—dcx + pSn;W:X> =0,
PN 2x
where the sum of (38)4 multiplied by — —P—v,_ of (38), multiplied by S, and of (32)4 has been

taken; the result, divided by (vai ny — ?\) gives (38)s.

Obviously, the system (38) can be put in the symmetric form; the resulting expression is
very long to write. Consequently, I just notice how the subcase W;n, = 0 1s enough simple
and elegant. In fact, in this case (38), 3 give

X, = —(neie — N7, Xa = [V2apy(vae — A1 (pdp — dP).
By using these expressions, the eqs. (38), 4 become

— (vyeng — N)*dp + dP = 0,
; (39)
(ke — A pd(—pn / p) — (vaghy — ?\)"p—Nd + de — psdp = 0,

where (39); is the sum of (38), multiplied by (vpxre — A), and of (38), multiplied by — &
\/ﬂ (Vi — A).

Let us consider the change of variables ¥, = dP, Y» = pS \/p;.-;/ on (dT + %dc{), Y5
= dx. Eq. (38)5 can be written as

_ P2 piS dtp °un  piS tu Y\ |
Y- = | — Y — | — -
(40)
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with

[ .0 . 2 A0 7]
! - S B S - \
g PN K0S oTm ,(P_) G -0

S 972 pwamaT' on/ o pZD'iDN

By substituting this expression in eqs. (39), after having multiplied (39)> by p/ /pPspw,
this system becomes

2
[(vaxie — A a; + 851 = 0 (41)
j=1
fori = 1,2 and with

0K 4 S 3% 1 Py 07 M ’
@i =P sE T L H(apam_psaPaT) ’
(y»y — P azu |
T psS? 0T o
o ’n pv  pyv 0’ 0’1, p°S '
' psSq (pami_za_ S aram) (_parl " oN Ej»::&;a]"“)’
djp = dp) = - 0" 1 |

Vv PsPN 0P 0«

N (p:azu_pmp_pwp 0 1 )(_p 1 p°S T )
Q‘U"p_ﬁ'pﬁ a{xz 2{1 S aTaﬂ a .

Now the quadratic form

G, 0° Gt GRETIE
= P)+2 PdT + 2 | .
0 aP?-(d ) aPanf d apa&dem aTz(dT) +

alu azll PN .
-2 1Tdo A — —— | (do)”
dTaw 0 (Brxi ZLIp)(m{)

1s negative definite; moreover

070 = a, (Y))* + 2a12Y Y2 + an(Y>)” — %fﬁ Y3+

J4 /

by using eq. (40), we see that the matrix A = (a;;) 1s negative definite. Let w; >0, w> >0
be the real eigenvalues of the matrix —A; we have det(—A — w;/) = 0, from which det(w;"
A + I) = 0. Therefore, for the system (41) we have 4 real eigenvalues, i.e., A = -

—1/2
— (D
!
—1/2
+var i and A = Tw, + v g
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In this way, the eigenvalues and eigenvectors problem for the system (22). has been
completely investigated.

Obviously, the present methodology can be applied to many other physical problem and
this will be the object of future works.
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