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THE PRODUCT THEORY FOR INNER PREMEASURES

HEINZ KONIG

Abstract. The paper extends the product formation for inner premeasures, developed in the
recent monograph of the author 1997 for the case of two factors, to arbitrary products.

In the recent book [4] (henceforth cited as MI) the author attempted to restructure those
fundamentals 1in measure and integration theory which serve to produce true contents and
above all measures from more primitive data. The text contained basic implications from
all over measure theory and beyond. One of the achievements was the resultant method of
product formation for mner premeasures, which allowed to incorporate the Radon product
measure into the abstract measure theory. The treatment in M1 chapter VII was restricted to
products of two tactors. The aim of the present paper 1s its extension to arbitrary products.

In traditional measure theory one has on the one hand the abstract formation of arbitrary
products of probability measures, with regularity not involved, and on the other hand the
more or less topological product formation rooted in compactness, which is known to be
quite delicate. We shall see that as before the approach in the spirit of Ml leads to a unified
development. The decisive new fact is that the inner tightness properties have an immediate
transfer from the factors to the product formation.

On the other hand we shall be restrictive 1n a different respect: The second-mentioned
earlier product formation rooted in compactness has been treated in the more comprehensive
form of so-called projective systems; besides the standard references Bourbaki [1][2] and
Schwartz 8] we refer to Lamb [6] and Stromberg [9]. For this particular extension the uni-
fied treatment n the spirit of MI turns out to produce new aspects, which call for separate
treatment. Thus we shall be confined to products in the proper sense this time.

The paper consists of four sections. Section | extends the product of two factors to finite
products, and section 2 contains some turther compiements to MI. Sections 3 and 4 then treat
the inhnite product formation. There is a natural subdivision, because in section 4 the basic
assumptions will be somewhat wider than before. which in particular involves the so-called
Prokhorov condition.

I Finite Products

The present section extends the relevant portions of MI sections 20 and 21 from products of
two factors to finite products. This 1s a routine procedure. We recall the former notations. As

in MI a nonvoid set system will be called a paving. We use the multiplication on R with the
usual convention O tee) = (=40 )0 := (. One verifies that this is an associative operation.
We assume nonvoid sets X, ---. X, and lattices &¢.---. 6, with @ n X, ---.X,. Then the

paving &) X --- x G, in Xy x --- x X, fulfils N, and hence (& x --- x &,)* is a lattice with &
in X; x--- xX,.



b
fbd
-t

Heinz Konig

Proposition 1.1. Let ¢; 1 &) — [0.00] be isotone and modular set functions with ¢;(3) =
OVl = 1.---.r. Then there exists a unique isotone and modular set function @ : (&) X -+ %
S, )" = |0,00] such that

(p(f)'f XKoree X S,-) . (PE(SI ) (pj('ﬁj) for all S € G; VI = [,---. 1

Of course ¢(2) = 0. We write @ =: @ X -+ X @,.

Proof of existence. The proot is via induction. The case r = 1 is trivial, and r = 2 is contained
in MI 20.4. For the induction step | < r = r+ 1 we assume Xy, -+, X,V and &,,---.6,.F
and @y.---, @, as above, and ¢ : (&) x --- X &, )* — [0, eo] from the induction hypothesis.
Then MI 20.4 furnishes the 1sotone and modular set function

Sy

=X y: (6 X xG,) xT) =((6] x---xG,) xT)" — |0,
ForS,e 6, Vli=1,.--.rand T € T we have
G((S) x--- X S)xT)=0(S; X xXSIWT) =0 (S5))-¢,(S)w(T).

Thus under the identification (X| x - - x X, ) xY =X; x---x X, xYand (6| x---x5,)xT =
O X - X 6, X the set function U 15 as required.

Proof of uniqueness. This proof is as for M1 20.5. Let o. B : (& x - - x G,)* — [0, 0] be as
assumed. Fix £ € (&) x--- X &,)", that 18

H
E=|])S)x--- xS with §fe&Vi=1,--r
k=1

To be shown is a(E) = B(E). If the value
Q1 (Sh) - @p(SP) = (8K x - x S = B(SE x - x 8K

is = oo forsome k =1,---,n, then o(E) = B(E') = oo. If the values are < e forallk=1,--- n,
then oL(E), B(E) < oo. In this case we form the lattice R :={A € (&, x---x6,)*:ACE}.
From MI 2.5.1) applied to &|9 and B|R we obtain a(E) = B(E).

Consequence 1.2. Assume Xi,---. X..Y).---Yeand &y.---.6,,%,.---.F; and Q.. @y,
Wy, e as above., Under the identification

(Xp X x X ) x (Y x---xYy) = Xy x--- XX, XY} x--- XY,

(G X+ XG,)x (T x--xT,) = G x-- X6, xT; x---x%,
we have then
(@1 X -+ X Q) X (W] X XY ) =@ X oo Xy XY X Xy,
the domain of definition of which is

(G X X6, X (T, x---xTH")"

— (O X xG, ) x (T X xXTN)=(6; X xE, xT| x-- - xT )"
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This 1s an immediate consequence of the unigueness assertion i 1.1, In the sequel we
shall be less pedantic with obvious identifications.
Proposition 1.3. Let ¢; 1 &) — [0, 00| be isotone and modular with ¢;(2) =0Vl =1,---.r,
and hence

Q=@ X XQ (6] X xXG,)" = |0,00].

O If@y.---,Q, are downward e continuous then
Pe{A] X - XA)=(0))e(A]) - (@,)e(A,) forall A, CX;¥l=1,---,r

Ly If ©1,---,Q, are downward e continuous then ¢ is downward e continuous as well. 2) If
©,---,Q, are ® continuous at I then @ is ® continuous at & as well.

Proof. 1) and 2) have obvious inductive proofs from MI 21.4 and 21.5 as above. Then
likewise () has an obvious inductive proof from MI 21.7. However, the iatter MI 21.7 has
been an exercise without complete proof. Since 1t 1s a basic fact, we think that we should
include a proof of 1t. We do this with the lemma which follows.

Lemma 1.4. Let G in X and T in'Y be lattices with &, and @ : & — [0,00] and y : T — [0, o0|
be isotone with @) =W(D) =0. Let O =@ x ¢y : R = 0,0 on R = (G x T)* be as in M1
20.4. If @ and y are downward e continuous then

V(A X B) = Qo (A)We(B) forall ACX and BCY.

Proof. Fix AC X and BCY. £) Let R € R, with R C A x B. From MI 21.6.iii), and from
MI 20.4.2) applied to @, and \y,, we obtain

A

9.(R) = ]lw. (R(-))do 7[14;. (A% B)(-))do
= (Qo X Wa)(A X B) = @s(A) X Yu(B).
Since U, is inner regular R, the assertion follows. =) We can assume that

Pe(A)We(B) > 0.

and fix real r with @4 (A)We(B) >1 > 0. Thus @.(A), W (B) > 0, and we can find real a. b with
0e(A) > a > 0,y,(B) > b >0, and ab = r. By inner regularity there exist

SeBG,with SCA and @.(S) > a,
I'eTowith T CB andvy,(T) > b.

Then SX T € G4 X Ty C (6 xT)y CNR,. Once more from MI 20.4.2) and MI 21.6.111) we
obtain

= ab < Qu(SVe(T) = (@uxya)(SXT)
— ff‘F‘- (SXT)(-)d@s = Bo(S X T) < 0u(A x B).

The assertion tollows.
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We conclude with the extension of the former fundamental theorem MI 21.9.

Theorem 1.5. Let @; : &; — [0, 0] be inner o premeasures with ¢;(2) = 0 and with maximal
inner ® extensions ¢O; = (0;)e|C((Q)e) VIi=1,---.r. Then @ = @ X --- X @, : (& X --- X
S,)* — |0,00| is an inner ® premeasure, and ¢ := QPo|€(Ps) is an extension of

01 % o x Ot (C((@1)e) X - X E((9)e)) — [0,09)].

Proof. Once more the proof is via induction. For the induction step 1 < r = r+ 1 we
assume Xy,--- . X, Yand Gy, -+, 6, Tand @y, -, @,y with ;. --,0,,V as above. From the
induction hypothesis we obtain the inner ® premeasure @ = @) X --- X @, with ¢ := Q4| (P, ).
Then MI 21.9 says that 3 := @ Xy = (@) X - X @Q,) X Y = @; X --- X @, X Y is an inner
e premeasure, and that 8 := 3,|€(,) is an extension of ¢ x ¥, and hence by MI 20.7 an
extension of (¢ X --- x ¢, ) x ¥ =¢; x --- x ¢, x ¥. The proof is complete.

2 Preparations for Infinite Products

We start with the relevant product formations for set systems. We assume a nonvoid (for the
most part infinite) index set /. Besides the common notation V¢ € I we define ¥ ¢ € 7 to mean
Vi € I'\ F with some finite ' C I. Also define §(/) C P(/) to consist of all nonvoid finite
subsets of /.

We assume a family (X;),¢; of nonvoid sets X, and put X := I1,;X,. For a family (2,),¢;
of pavings ¥, in X; we define in X the product pavings

ﬂ;Ele; e {n!EjAjr ;A; E Ql}' \?’f E !!}.
{nfejA; :A; - Q[.; Vf E;W!thA; :XHEE." - [}.

1

Xrer?dy

the latter one under the assumption that X, € 2, Vr € . In this case we have x, /2, C M1,

and the two pavings are equal when 7 1s finite. We want to prove some useful formulas which
extend MI 21.2 and 21.3.

Remark 2.1. For the product of a family (A,),¢; of subsets A, C X, we have

(HIE.’Ar)f — U (A{. X [IIEIH{J.'}X!)-
sl with A #X

This 1s obvious. It uses the somewhat abusive but common notation

Ay X Thep X =Tl B, with Bo:=A, and B, :=X,Vi#s.
Remark 2.2. For each paving © in a nonvoid set X we have (&%), = (&, )*. This is a routine
vertfication.

Proposition 2.3. Let (U,),c; be a family of pavings U, in X, with @.X, € A, Vi € I, and
o = xOT. Then the pavings U := X1, and B 1= X,¢; (A, L) fulfil

(,)°) L =(B")e and hence likewise ((A")e)L = (B,)°".
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Proof. 0) From 2.1 we have 2l L C B* and *B_L C 2A*. We also recall MI 1.5.2). 1) From 0)
we obtain

((2)7) L = ((AL)")e C(B7)")e = (B ).

i1) From 0) and 2.2 we obtain
((B7)e) L = ((BL),)" C((A7),)" =((~)")" = (A,)°,

and hence ((2L,)®)L D (°B*),. The assertion follows.

Special Case 2.4. Assume that the X, are topological spaces and that X carries the product
topology. 1) Then
Op(X) = (x/es Op(X;))" and  CI(X) = ((x:esCL(X,))").

2) Assume that the X, and hence X are Hausdorff. Then

Comp(X) = ((M;e,Comp(X;))*)..

Proof. 1) The formula for Op(X) 1s the definition of the product topology. Then from the
fact that the Op(X;) fulfil N and from 2.3 we obtain

CI(X) = ((Op(X))L = ((XrEfOPer))T)J— - ((XIEIC](XI))*)T-

2) The inclusion D is obvious. In order to see C let A € Comp(X). Then i) A € ClI(X),
and 11) A 1s contained in some member of M,¢;Comp(X;), for example in the product of its
projections. From these facts and from 1) the assertion follows.

The next topic 1s the so-called e compactness for ¢ = x6T. A paving G 1n a nonvold set
X 1s called e compact iff each paving I C G fulfils @ € M, = & € M,. The case ® = % is
of course trivial. In case G fulfils N an equivalent formulation 1s the one in Ml before 6.34,
which requires that each paving 9 C G of type e with Il | & has @ € 9. We recall that to
be of type e means finite when ® = x, countable when e = ¢, and no restriction when e = 1.

Theorem 2.5. If the paving & in X is @ compact, then S, and &* are ® compact as well.

Proof. 1) The first assertion is simple. In fact, if 9 C G, 1s a paving with & ¢ 901, then
M:={Se€G:SDsomeM e M} C S isapaving with @ ¢ N, as well. Now M, C N,,
so that @ ¢ I, implies that @ &€ M,. 2) The second assertion is a well-known fundamental
fact. For the sake of completeness we include a sketch of the proof attributed to Mokobodzki
in Meyer [7] II1.T4. Fix a paving 9 C &* with @ € 91,. Then 9 is contained in a maximal
paving & C PB(X) with @ ¢ ,. 2.1) One verifies that (1) U has N, and (2) if A C X is not
in 4 then A’ € Y. 2.ii) Each M € 9 contains a set S(M) € & which is in 4. In fact, if
M=S§8U---US, with §;.---.5, € G, then one deduces from (1)(2) that at least one of the
Si,--+,S, must be in 4, 2.ii1) The paving I := {S(M) : M € 9N} is contained in 4 and hence
fulfils @ & N, and is contained in G and hence fulfils @ € N,. It follows that @ ¢ 9,

Consequence 2.6. Let (U,),c; be a family of ® compact pavings A, in X;. Then M2, and
hence (M) are o compact pavings in X = Il,¢1X, .
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Proof. We have to prove that IM,/%; is e compact. Fix a paving 9 C M, with @ & 901,
Thus cach M € 91 1s nonvoid and hence has a unique representation M = I'l,¢;M, with M, €
Q0,. This furnishes the pavings M, = {M, : M € M} C A, in X, Vt € I. Now we have

NagemM = 11 ¢; ( (Masem J’W,) for all nonvoid R C 9N.

Therefore @ & (9, ), and hence @ & (9N, ), forall r € 1. It follows that @ ¢ Ni,.

The above consequence will be one of two sources from which we shall deduce that
certain product set functions are e continuous at &. We turn to the other source, which is
based on the so-called horizontal integral of Ml section 1.

Lemma 2.7. Let & be a lattice in a nonvoid set X with @ € &, and ¢ : & — [0,00] be
an isotone set function with (&) = 0 and sup¢ = | which is e continuous at . Assume
that - C UM(G) is nonvoid of tyvpe o and downward directed in the pointwise order with
ffde <eoVfecE. Ifinfrep+fd>€e >0, then there exists a € X such that infreg fa) > €.

Proof. 1) We know from M1 11.1.2) that {(f —¢&)" : f € E} C UM(&). This set is nonvoid
of type o and downward directed, and hence | some F € [0,e0]*. The claim is that F is not
constant = (). Let us assume that F = 0. 2) For / € E we have

1\

frao= [ "~ o(fzddr= [ olrzhdr+ [ ollf
: ) - JE

ol )4 e

The last term 1s

W — £330

ez |

)i S ()

o(I(f—&)" Z)di = f(/~e)* do

Thus f fdo = e+ F(f —¢€)"do. Therefore by MI 11.22 it would follow from F = 0 that
nf{+ fdo: f € E} = €, which contradicts the hypothesis.

Consequence 2.8. Let G in X and ¥ in'Y be lattices with &, and @ : & — [0, 00 and y : T —
{0, 00| be isotone with (@) = Yy(&) = 0. Assume that sup@ = 1, and that ¢ is ® continuous
at . Let O = @ x Y : (G xT)* = 0,00 be as in M1 20.4. Assume that M C (G x T)* is a
paving of type & and downward directed with QM) < co VM & IN. If infpycon HM) > € >0,
then there exists a € X such that nfycon W(M(a)) > €.

Proof. We know from MI 20.3.2) that w(M(-)) € UM(&) for M € 91; and by definition
MWM) =Fwy(M(-))de. Thus the assertion is an immediate consequence of 2.7.

The remainder of the section consists of complements to the inner e extension theories of
M1 section 6 which will be needed in the sequel, but also deserve some interest of their own.
Let X be a nonvoid set.
Remark 2.9. Define €(X) .= {@,X}, and e : E(X) — [0,00] 10 be e(F) =0 and e(X) = 1.
then €4(X ) = 1 and €4(A) = 0 for the other A C X. Furthermore € is an inner e premeasire
1h €410 (€e) = E.

The proof consists of obvious verifications. We conclude with an extension result.

Proposition 2.10. Let & and T be lattices in X with @ € &6 C T C 6T6S,. Assume that
¢ : S — [0,00] is an inner o premeasure with ¢(&) = 0, and that \ := ©4|T < oo. Then
VT = 0,00 is an inner o premeasure which extends @, and Yo = Q.
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Proof. 1) We have even T, C G TG, and @, |T, < co. By M1 6.7 and 6.27 @, T4 1s downward
e continuous; in particular Yy 1s downward e continuous. 2) y 1s supermodular by M1 6.3.5).
3) From 1) we have We =y = s 0n L. Thus e = e 0n L,. since both ye | Ty and @, T, are
downward e continuous by MI 6.5.111) and 1). It follows that W. = .. since both sides are
inner regular T,. 4) We |C(We) = Pa|C(@s) is a crude extension of @S T &, and hence of .
Thus MI 6.31 says that ¥ 1s an inner e premeasure.

Special Case 2.11. Ler © be a lattice in X with @ € G, and © : & — 0,00 be an inner o
premeasure with O(&) = 0 and sup@ = 1. Define T 1= GU{X}, and y : T — [0.20] to be
WIT =@and y(X) = 1. Then \y is an inner ® premeasure, and s = Q.

Proot. It 1s obvious that @.(X ) == 1. Thus the assertion 1s contained in 2.10.

3 Infinite Products

We start with the standard assumptions and notations for the remainder of the paper. We
assume as before a family (X, )¢ of nonvoid sets X; and put X :=TI',.,X,. For nonvoid U C [
we put Xy :=Ilcp X, sothat X; = X. In case @ £ U g V C I weidentity X;; x Xy s and Xy
via the obvious canonical map. which once more is somewhat abusive but common practice.

We assume a family (%, ), of lattices T, in X, with @.X, € T,. Then x,¢;'<, tulfils N,
so that ¥ 1= (x,¢;%,)" 1s a lattice in X with @. X € T, For nonvoid U C I likewise €,/ =
(Xie )" 18 alattice in Xy with @, X € T, and T, =%, Incase @ £ U % V' C [ the above
identification furnishes

‘IV - (X;Ep{f;)t ({X;H_’-"IF) X (xrifl-"m{-"l-fj)*

= ((XevZ) X (Xpev o T)") =Ty xTv)™

%

{l

it will be convenient to define for nonvoid U g [ the related formation
.y, . , .
o= {AXX 0 AeTU =T x E(X ) = (Tu x E(X )
which 1s a lattice in X with @, X € 'E‘F- The map %y, - I}r A= A X Xy 18 abijection. We
put of course T/ := T, = T For nonvoid U C [ then

= ({g T eX, Vel with T,=X¥rel and Vi¢gU})

We emphasize two obvious properties.
Properties 3.1. 1) For nonvoid U C'V C I we have T}, C T, € T, =%, 2) We have T =
Uuez( I‘F and therefore {‘3_']; U € §()} 1T in the obvious sense.

We assume at last a family (y, );¢; of isotone and modular set functions y; : T, — [0, co]

with v, (@) = 0 and y,(X;) = 1. Then 1.1 furnishes for each U € §(/) a unique isotone and
modular set function yy : Ty — |0, o such that

Vo (Ilep D) = ey (Tr)  forall ThepT € X,cps,

Of course Wy (@) =0 and yy (Xy) = 1. We write Wy =: X,cp\y,. For U g Vin §(/) we
see from 1.2 that gy = yyy X Yy g [t will be convenient to define tor U € §({) the related
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formation \uL = Yy X €y, where ex : E(Xg) — [0.e[ for nonvoid K C [ is the primitive
set function from 2.9. By MI 20.5 this is the unique isotone and modular set function 7, :
Tl — [0, 00 such that \41‘;;(/1 x Xy ) = vy (A) forall A € Ty, Of course w{(ﬁ) = () and
w{f,(X) = |. An obvious consequence is that for U g V in §(7}) we have

W (AX X)) = wu(A) =y Ay v (Xy ) = Wy (A x Xy )
=y ((Ax Xy v)xXpv) = Wy (Ax X; y) VA ET.

that 1s wi; = y!,|T7,. This furnishes at once the first main result of the present section.

Theorem 3.2. There exists a unique isotone and modular set function \y : T — [0, 00| such
that
V(e T ) = ey, (1) forall The T, € X,¢/%,.

It is defined by W| X!, =i, =y x e, forallU € F(I). Of course y(2) =0 and y(X) = 1.
We write [ =: X, \,.

Likewise one has for each nonvoid K C I a unique i1sotone and modular set function
Yk : Tk — 0,00 such that

Wk (Tlek Tr) = hexy (7;)  forall TlegT: € xek T

[n case K € &(/) this is the former one. Of course Wi (@) = 0 and yg(Xx) = 1. We continue
to write Yg =: X;exVW,. The uniqueness assertion has the immediate consequence which
follows.

Consequence 3.3. In case O # U g V C I we have Yy = iy X Yy .

The main problem is of course to extend the fundamental theorem 1.5. The decisive new
fact 1s that inner e tightness carries over {from the factors y, to the product formation . This
1s the next result.

Proposition 3.4. Assume that the \y, are inner ® premeasures ¥t € . Then \f is inner e tight.
Thus yg for nonvoird K C 7 1s inner o tight as well.

Proof. Fix A C B in ¥, and then U € §(/) such that A.B € Ii Thus A = P x X;_ ¢ and
B=0xX;_y with PC Qin%;y. We know from 1.5 that y, : Ty, — [0,00] is inner o tight,
Thus for € > 0 there exists a paving 91 C Ty of type o with 91 | some D C Q\ P and
M C Q VM € 9N such that

Yo (OQ) —wy(P)—e <inf{yy (M) : M e M}

[t follows that {M x X,y : M € 9} C T}, C T is a paving of type e with | D x X,y C
(Ox X )\ (PxX;_ ) =B\ A and all members C Q x X,y = B such that

W(B)—w(A)—¢e = vYylQ)—vyy(P)—e<inf{yy(M): M e I}
= inf{yM xX;_y): M e M},
This proves the assertion.

Next we return to section 2 in order to obtain the conclusion that y 1s e continuous at &,
First of all 2.6 and the trivial remark MI 6.34 have the obvious consequence which tollows.



The product theory for inner premeasures 243

Proposition 3.5. Assume that the ‘%, are ® compact and hence the \y, are e continuous at
@Vt € 1. Then X is @ compact and hence \J is e continuous at & as well.

We turn to the second result which follows from 2.8.

Lemma 3.6. Assume that the \y, are ® continuous at @ Nt € 1. Let DN C T be a paving of type
o with N | & such that I C ‘3."[ for some nonvoid countable K C I. Then infycon w(M) = 0.

Proof. We can assume e = o1 and that / is infinite, since for hHIIL [ the assertionis 1.3.2). 1)
[et / be countable, so that K = I = N. We assume that inf{y(M) : M € 91} is > 0 and heme
> some € > 0. 1) We form via induction a sequence (a;); of pﬂin[s; a; € X; such that

inf{yy, . (May, - a,)) :MeMp >¢e for neN;

note that M(ay,---,a,) € $ypqy ..y by M1 20.3.1). The case n = 1: We have y =y X3 .
on T = (T} x Ty ..y)*. Thus from 2.8 we obtain a; € X; such that inf{y> .y (M(ay)) : M €
M} >e. Thestep ] < n=n+1: We have

Vinet o) = Woed X Wipaooy on Ty o = (T X Ty )™

Thus from 2.8 we obtain a,,.; € X,,;; such that

Inf {40 (M(ay,---,ap)(ans1)) - M e M} > ¢,

where M(ay. - .a,)(a,1) = M(ay,---,ay,a,4+ ) 1s obvious from the definition. This termi-
nates the inductive choice. 11) Now put a 1= (a;);en € X. We claim that ¢« € M for each
M € O; this will contradict the assumption that 91 | @. In fact, for fixed M & 21 there exists
an n € N such that M = A X Xy, ..y with A € Ty, . Then M(a,.---.a,) # @ implies
that (a;.---.a,) € A and hence a € M. 2) We tum tn lhe case that 7/ 1s uncountable. From
3.3 we have W = yg Xy g on ‘L = (T X Tpg)*. By assumption each M € 9 1s of the
form M = A(M) x X;_x with some unique A(M) € Tx. Thus y(M) = yg(A(M)). Now
{AM) M € M} C Tk is a paving of type o with | &. Thus from ) we obtain

inf{y(M) : M e M} =inf{yg(AM)): M e M} =0.
The proot 1s complete.
Proposition 3.7. Assume that the \y, are e continuous at I NVt € 1. Then likewise \y Is »

continuous at &

for e =0 in all cases, and
for e =T when I is countable.
In fact, each countable paving 9 C ¥ has a nonvoid countable K C / such that 9t C T}
The question whether = 1 does need an additional assumption must remain open.
The aim of the present section requires one more consideration.

Remark 3.8. Assume that y is e continuous at &. For each nonvoid K C I then Yk is o
continuous at & as well.

Proof. Let K #1. From 3.3 we have y = yg x Wy g on T = (T x T k) HIM C Tk isa
paving of type e with 9 | &, then {M x X;_x : M € M} C T is a paving of type e with | &
as well, and we have W(M x X;_x) = wg (M) for M € 9. Tt follows that

lﬂf{WK(M} M € E}ﬁ} — lﬂf{w(M X thmﬁ__f) M € gﬁ} = U
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which is the assertion.

Proposition 3.9. Assume that the y, are inner ® premeasures ¥Vt € I, and that y is e con-
tinuous at & and hence an inner o premeasure as well. Then \Wo|C(We) is an extension of

<rer (W)l €((W)e)).

Proof. 1) We recall 3.2 for the tamily (9, ),¢; of the set functions

O = (W)e | €((Wr)e)  on &= (W) )e),

and form the respective ¢, and €, and ¢, for U € F(I). From 3.1.2) then {¢],: U € F(1)} 1 €,
The product ¥ 1= X, ;0 satisfies

ﬁ[{;’:y = (X;epWy) xeypy forall U e gF().

2y Fixnow U € §(1). Wehave yw =vyp x vy on® = (T, x Ty )", and by 3.8 both factors
are inner e premeasures. We use 1.15 twice. On the one hand y,|C (W, ) is an extension of

((wo el €((wir)e)) X {((Wrew)e €W 1)s)).

and hence of (W )e|¢ {(HJ{, )) x €7 p. On the other hand (Wy )« |€({W)e) Is an extension
of X,cy 0, and thL (( Je|C({Wi)e)) X €/ is an extension of (X, 0,) X & = t‘}IL’.";
3) Therefore W, |€(y, ) 1s an extension of ﬁlﬂ{ for all U € (7). The assertion follows.

The abovs results combine to the fundamental theorem which tollows.

Theorem 3.10. Assume that the Y, are inner ® premeasures ¥t € 1. Then likewise \ is an
INNer & premedsure
for e = %G in all cases, and
for e =t when I is countable,
and also when the L, are o compact ¥Vt € I and hence T is ® compact as well. If y is an inner
o premeasure, then o |E(\e ) is an extension of X,¢ ((lp,).|l.’.',((wir).)].
We continue with an important addendum.

Proposition 3.11. Assume that \y is e continuous at &. For each nonvoid K C I then

(W)e(A) = Wa(A X X, k) forall A C X

Proof. By 3.3 we have yw = yg x y; g on T = (T x T, _g)*, and both factors are e contin-
uous at @ by 3.8. 2) Let 9 C Tk be a paving of type o with 90t [C A. Then {M x X; g :
M €9} C T is apaving of type e with |C A x Xj_g, and we have w(M x X;_g) = yg (M)
for M € 9. It follows that

\,FJ.(A X Xfmh') z Illf{W(M XX;RK) M € Dﬁ} — II‘lf{lp'_;;(MJ M e ‘.DE}

and hence the assertion. <) We can assume that We(A x X;_x) > 0. We fix € > 0 with
Ve l(A X X; k) > €. and then a paving M € T of type ® with [C A x X;._g such that inf{y (M) :
M € 9} > e. Then 2.8 furnishes an a € X;. g such that inf{yg (M(a)) : M € 9N} > &; note
that M(a) € T by MI 20.3.1). Now {M(a) : M € M} C Tk is a paving of type e which
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L some D C Xg. We have DD C A, because each v € D tulhls v € M{a) or (u.a) € M for
all M € M, and hence (u.a) € A X Xy g oru € A. Thus by definition (Wg)a(A) > €. The
assertion follows.

The importance of the last result rests upon its connection with the so-called image mea-
sure theorem obtained 1in Konig [5] theorem 3.5. Let us recall the basic notions. We assume
nonvoid sets X and ¥ and a map H : X — Y. One defines tor a set system 2 in X the set
system

HA == {BCY: H '(B)cA} in Y

and for a set function o : A — R the image set function = Hlo : H[A] — R to be B(B) =
o(H ' (B)) for B € H[]. There are numerous properties which carry over from 2 and o to
H[2] and H[o]. for example to be a ¢ algebra and to be a measure, in MI called conventional
measure =: measure. 7|0 appears to be the maximal natural image of o under the map
H. The above-mentioned image measure theorem relates this notion to the inner e extension
theories of MI section 6. We combine 1t with the present 3.11 to obtain the result which
tollows.

Theorem 3.12. Assume that the Y, are inner e premeasures Nt € [, and that \y is e continuous
at & and hience an inner & premeasure as well. Let K C I be nonvoid, and H : X — X denote
the natural projection. Then

(WK )e|[C((Wk o) = H|We|C(Wa)|.

Recall that g 1s an inner e premeasure as well.

Proof. [Sketch of proof] One verifies that H{T) = T, and H '(Tx) = ‘% C L. Thus ¥
1s a Lusin skeleton for # at 'Y and ‘T in the tformer sense. and it fulfils condition ) in the
image measure theorem. Furthermore Wy = W(H ' (-))|Tx < 0. Thus 3.11 says that the final
condition in the tmage measure theorem is fulfilled as well. The assertion follows.

The present mamn result 3.10 contains the two most prominent traditional theorems on
infinite products. For the abstract measure situation we refer to Hewitt-Stromberg [3] sec-
tion 22 and Stromberg [9] chapter 7. Here the y, are measures on ¢ algebras %, in X, with
W, (X;) = 1 Vi € I. The present theorem e = ¢ says that y is an inner ¢ premeasure. This con-
tains the traditional theorem which furnishes the restriction of Wq|E(ys) to the generated ©
algebra Ac( x,¢;%,) = Ac('Y). Asitis usual in the traditional abstract situation, the aspect of
regularity 1s not considered. For the earlier topological situation we refer to Bourbaki [ 1] sec-
tion 111.4.6. Here the X, are compact Hausdort! topological spaces with S, = Comp(X, ) Vi € [
and X carries the product topology. so that T = Comp(X) by 2.4. The v, are Radon pre-
measures on X; with (in essence) W, (X;) = 1 Vr € [. The present theorem o = T (and even
3.4 without the subsequent results) says that yf is an inner T premeasure and hence y¢|T+ 18
a Radon premeasure on X, and thus refurnishes the earlier result. The more recent topologi-
cal sttuation of Bourbaki [2] section [X.4.3, where the X, are arbitrary Hausdorff topological
spaces Vi € [ and [ 1s assumed to be countable, will be contained and enframed 1n the subse-
quent final section.
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4 The General Situation

The standard assumptions of the present section are somewhat wider than those of the last
section, but can at once be connected with the previous ones. We assume as before a family
(X;)ie; of nonvoid sets X;, and form X and the X;; for nonvoid U C /. Then we assume a
family (&, );e; of lattices &, in X, with @ € &,, and a family (@, ),¢; of isotone and modular
set functions @, : &, — |0, with @,(2) = 0 and sup@, = 1. Thus we doe not assume that
X; € &,, and hence of course not ¢;(X;) = 1. We are faced with the problem to extend the
infinite product formation and results of the last section.

There 1s an obvious connection with the standard assumptions of that section: We form
the family (T, )e; of the lattices T, := &, U{X;} in X, and the family (y,);es of the set
functions , : T, = [0,e] defined to be y,|&; = ¢, and y,;(X,) = 1. This puts us into the
previous situation. One notes some obvious facts, for example that e compactness carries
over from &; to %;, and that to be e continuous at & carries over from @, to y,, and likewise
to be an inner ¢ premeasure after 2.11.

From the last section we inherit the lattice T and the set function y : T — [0, 0|, and
their satellites. These formations will remain the fundamental ones in the present context. It
is quite clear that there are no crude counterparts in direct terms of the new initial famihies
(S,)rer and (@, ),¢;, because the formation x,¢;&, and its satellites need not be defined. The
present section rather sets out to root the set function y : T — [0,c0 in the family (&,)¢;.
We shall see that this 1s a somewhat delicate task, tn particular when 7 1s not countable. We
emphasize that the earlier theorem 3.10 will remain the fundamental source in order to see
that W 1s an inner ® premeasure.

For the more technical part we fix a nonvoid subset K C /. We define

o

Vi = ((MexS) x Ty k)
which in case K = I 1s to mean *B; := (,£;6,)"; in the sequel we shall retain this convention.
The basic relations between 5 and T are as follows.

Remark 4.1. 1) *Bx is a lattice in X with @ € Pg which fulfils 'L CVr T VRx. 2) If K is of
fype o then Py C L.

Proof. 1) is obvious. 2) We can assume that P € P is of the form P = (I1,c¢S,) x T with
S;Se,VieKand T € Ty k. For F € §(K) then Pr := (ILcrS;) x Xy p x T € T, and
{Pr:F € §(K)} CTisapaving of type e which | P. The assertion follows.

We turn to the consideration of the set function y : T — [0, eof.

Lemma 4.2. Assume that \y is downward e continitous, and let K be of type o. Then P =
(TLex S ) x Xj x € Br with S, € &, Vr € K has

We(P) = Tlick@ (S;) = inf{IT,cr@(S;) : F € J(K)}.

Proof. For I € §(K) we have

Pr o= (TLerS) x X ped
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with W(Pr) = Yr(TlepS:) = iep @ (S;). Then {Pr: F € §(K)} C T is a paving of type o
which | P. Thus inf{wy(Pr) : F € §(K)} = yo(P) from MI 6.5.1i1). This is the assertion.

Proposition 4.3. Assume that \y is downward e continuous, and let K be of type o. () We
have either Yo |'Bx = 0 or sup(W, "By ) = 1.

1) If K is countable (which is implied when e = xG) then sup(Wo|'Rx) = 1. 2) If K is un-
countable (which implies o = 1) and ©,|S, < 1Vt € K then y,|'Bx = 0.

Proof. 1) Fix 0 <& < 1, and then 0 < g < 1 Vr € K such that },.x & = €. There exist
S; € 6, with @,(S;) =2 1 —¢ Vi € K. Then P := (I1,c¢S;) x X;x € Rk as formed in 4.2
fulfils We(P) 2 [ljcx (1 — &) = 1 — €. The assertion follows. 0) Assume that y,|"Bg is not
= (). Thus ye(P) > 0 for some P € ‘Lg. We can assume that P = (I'l,cxS;) X X;_ g as formed
in 4.2, 0.1) The subset C := {r € K: ¢,($,) < 1} C K must be countable. In fact, otherwise
there exists 0 < € < 1 such that {r € K: @,(5;) < €} is uncountable and in particular infinite,
which implies that
YelP) =Thex @ (S) = 0.

0.11) Now the above proof of 1), apphed to C instead of K, furnishes sup(w,|"Bx) = 1. 2)
follows from the above 0.1).

Next we exhibit some properties of y and K which are equivalent to sup(y,.|*Rx) = | and
relevant to the present purpose.

Proposition 4.4. Assume that the ¢, are inner & premeasures Nt € I, and that \y is e contin-
uous at & and hence an inner ® premeasure as well, and let K be of type o. Then likewise
Tk = We|'Vx is an inner ® premeasure. Moreover the following are equivalent.

) sup(We B ) = 1, that is supmg = 1.
2) W, is inner regular (P e.

3) (ke = e.

4) (g )e|2 = .

Proof. 1) We prove 1)=>2). Fix A C X and a real ¢ < yo(A). There exists a paving 91 C ‘%
of type e with 9t | C A such that inf{y(M) : M € M} > c. Fix € > 0 with inf{y(M) : M €
M} > c+e. By assumption there exists P € P such that gy (P) > 1 —¢€. Then 4.1.1) implies
that {M NP : M e M} C Pk is a paving of type e with | some D C A, so that D € (*Bg ).
For M € 9t we have W(M) — e (MNP) = W (MNP') < yolP') < €, where we have used
Pec %, CC(y,) from4.1.2). It follows that We (D) = inf{y,(MNP) : M €M) > ¢ and hence
the assertion. 11) We assume 2) and prove that mg := 'Rk is an inner e premeasure with
3). In fact, we see from 4.1.2) that g 1s a restriction of Y, |T, and hence of y,|€{y, ) with
even (‘P le C Ty C E€(W,). From the assumption and MI 6.5.111) it follows that ye|C () 18
an iner @ extension of T, so that g 1s an inner e premeasure. Furthermore M1 6.18 implies
that (g )e = We On T4 and hence on all of B(X ). since both sides are inner regular ¥,. 111)
The implications 3)=-4)=>1) are obvious. iv) We have seen that the properties 1)2)3)4) are
equivalent, and that in their presence the set function mg s an inner e premeasure. In the
opposite case 4.3.0) says that mg = 0, so that likewise g 1S an inner e premeasure. This
completes the proof.

We also have the related uniqueness assertion which follows.
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Remark 4.5. Assume that y is downward e continuous, and let K be of type . Assume that
the isotone and supermodular set function © : Bg — (0,00 is downward ® continuous and

fulfils e [T = . Then T = Yo |'Rk.

Proof. From 4.1.1) we have T C g MPx and hence T, C Pr TPk )e. Thus me| T is
downward e continuous by Ml 6.7 and 6.27. By MI 6.5 therefore me = Yo on ‘f,. Now
Vr C L from 4.1.2), since K 1s of type e. The assertion follows.

The above results provide an answer to the present concern. Assume that the @, are inner
e premeasures Vi € I, and that y is e continuous and hence an inner  premeasure as well.
The natural idea is to ask for an inner e premeasure 7 : 3; — [0, o[ which produces the basic
product formation y : T — |0.ec[. In our frame this means that ©,|T = . The above 4.1.2)
and 1ts consequences recommend to assume that / be of type s, that 1s finite 1n case ® = % and
countable in case @ = ¢. Then 4.5 leaves a unique candidate for 7, to wit m; := Y, |*I3;, which
turns out to rematn an inner e premeasure. But the assumptions do not sutfice to ensure that
(17)e|T = y; it can also happen that r; = 0. We see from 4.4 that (1;),|T = W is equivalent
to the so-called PROKHOROV condition sup(W,.[*};) = 1. By 4.3 the Prokhorov condition 1s
fulfilled and hence m; : *}; — [0, 0] is the desired product formation when 7 1s countable, but
this need not be true beyond.

The results thus described are in Bourbaki [2] sections 1X.4.2 and 3 m the special case
that the X, are Hausdortf topological spaces with &, = Comp(X,) and the ¢, are Radon pre-
measures on X, Vt € I, and where X carries the product topology, so that (*33;). = Comp(X)
by 2.4.2). However. this work and Schwartz [8] section 1. 10 treat that special case 1n its more
comprehensive version for projective systems, a context which we decided to postpone as
pointed out 1n the mtroduction. In return we perform the extension to the frame of the n-
ner e extension theories of M1 section 6. An additional extension is the incorporation of the
nonvold subsets K C 7, to which part of the conditions can be relegated.

We conclude with the main results 1n separate formulations for e = «G and & = T.

Theorem 4.6. (e = xG). Assume that the ©, are inner o premeasuies ¥Vt € [. Then L —

ool (s an inner emeasure. For nonvoid K C Type e likewise = e M g 1S aninner
0, 00| is an inner ® premeasure. For nonvord K C I of type e likewise Tk e is an innei
e premeasure, and it fulfils (g )o = We and hence (Mg Je|'T = .

Theorem 4.7. (e = T). Assume that the ©, are inner T premeasures Vi € 1, and that either [ is
countable or the T, are T compact ¥t € I. Then \y : T — [0. 0] is an inner T premeasure. For
nonvoid K C I likewise Tty = Y|'Vy is an inner T premeasure, and it fulfils either g = 0 or
(Ttk Ve = Wy and hence (g )T = . The latter case holds true whenever K is countable, but

if K is uncountable and @,|G, < | Vit € K then wg = 0.
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