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COUNTABLY ENLARGING WEAK BARRELLEDNESS'

STEPHEN A. SAXON, L.M. SANCHEZ RUIZ, IAN TWEDDLE

Abstract. If (E.C) is a locally convex space with dual E" and 1y is the coarsest topology finer
than € such that the dual of (E. M) is E' + M for a given Rg-dimensional subspace M C E~
ransverse to E’, thenm is a countable enlargement (CE) of &. Here most barrelled CE (BCE)
results are optimally extended within the fourteen properties introduced in the 1960s, "/0s,
'80s, '90s and recently studied in “Reinventing weak barrelledness”™, et al. If a CE exists,
one exists with none of the fourteen properties. Yet CEs that preserve precise subsets of these
properties essentially double the stock of distinguishing examples. If a CE exists, must one
exist that preserves a given property enjoved by 7 Under metrizability, the fourteen cases
become two: the metrizable BCE question we answered earlier, and the metrizable inductive
CE (ICE) question we answer here (both positively). Without metrizability we are as vet
unable to answer Robertson, Tweddle and Yeomans’ original BCE question (1979), the ICE
guestion and four others. We give negative answers for the eight remaining general cases,
those between Rg-barrelled and dual locally complete, inclusive, under the ZFC-consistent
assumption that X < b.

1 The fourteen properties

A decade ago Pérez Carreras and Bonet [8] segregated into Chapters 4 and 8 what they and
others such as Robertson. Tweddle, Yeomans, Tsirulnikov, Husain, Webb, De Wilde. Ruess,
Valdivia, Dierolf. Saxon, Levin had iearned about BCEs and weak barrelledness (WB). Late
breakthroughs in both areas cultivate (i) a promising partnership between BCEs and small
cardinals [ 15, 18, 19, 20, 27]. and (i1) a clearer, more comprehensive WB view |21, 22, 23,
24, 25, 26} whose Mackey aspect alone answers questions from 1971, 1982, 1991, Surveys
[12, 30] supply additional definitions/motivations. After the initial BCE/WB encounter [29]
comes now the full-scale union.

Countably enlarging just three WB properties |29] repaid BCEs with, e.g., this theorem:
a CE preserves barrelledness when it retains the weaker property (S). For the best possible
version within a much larger WB context, we substitute the yet weaker property of being
dual locally complete (dlc). Here, in fact. most BCE results find optimal expression as they
borrow from. and then add distinguishing examples to, all the WB wealth depicted in |23]:
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also from DGICYT PB94-0535, IVEIL 033/003, and EPSRC GR/L67257 1s gratefully acknowledged.



218 Stephen A. Saxon, L.M. Sdnchez Ruiz, lan Tweddle

barrelled; (py )b = barrelled; ( fo,)b

U y
X o-barrelled; (p, )b — (= -barrelled; ( f,,)b

| ) separable

J g
C-barrelled: (p,)0 = co-barrelled; (f,,) 0
y b |
property (L); pla, — dlc; f|a,
2) Mackey
3) metrizable
U ¥
inductive; p|g, - primitive; f|g

4) Mackey

The mnemonic symbols after the semicolons recall seminorm p vs. linear form f defini-
tions/characterizations for left vs. right sides; e.g., a locally convex space is (X(-) [C-] bar-
relled if and only if every pointwise (bounded) [null] sequence of continuous seminorms is
equicontinuous, while the definition of (£*°-) [¢(-] barrelled spaces replaces “seminorms”™ with
“linear forms”. Again, a locally convex space E (has property (L)) [is inductive] if and only
if, given a seminorm p and an absorbing sequence ({A,}) [{£,}, consisting of linear sub-
spaces] with each (p|a,) [p|g,] continuous, it must happen that p itself is continuous; while £
is (dlc) [primitive| if and only if the preceding holds with linear form f in place of seminorm
p. (Recall that a (closed) absorbing sequence is an increasing sequence of (closed) balanced
convex sets whose union is absorbing.)

Beside the nine in the table, [7] defines two more weak barrelledness properties (C) and
(S), with £~-barrelled = property (C) = property (S) = dlc. And Baire-like (BL) = quasi-
Baire (QB) = barrelled [13, 16] suggests two sfrong barrelledness properties that would also
fit inside the table’s box 3), where concepts coincide under metrizability (ctf. {5}). Finally,
a locally convex space is Sg if it is the union of an increasing sequence of proper closed
subspaces, and quasi-Baire = non-Sg = inductive [23]. The property of being non-Sg 18
neither stronger nor weaker than barrelledness, but completes the total of fourteen properties
we are concerned with here and in other recent papers on weak barrelledness. [A space (lo-
cally convex, Hausdorff, with real or complex scalar field) is OB if it 1s barrelled and non-Sg,
is BL if some member of every closed absorbing sequence 1s a neighborhood of zero.] Five
of the fourteen are duality invariant properties, comprising properties (C), (S), dlc, primitive
and non-S5. However, we will see here, as in other recent papers, that the property of being
non-Sg and the nine non-duality invariant properties exhibit similar behavior opposite to that
of the four duality invariant properties between property (C) and primitivity. Another be-
havioral dichotomy separates those spaces that are non-Sg, inductive or primitive from those
having one of the eleven other properties. Exceptional behavior 1s often exhibited by C- and
co-barrelledness.
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2 Criteria for property-preserving enlargements

Let (E,&) be a space with dual £ and let M be a subspace of E* transverse to E’. The topology
N =sup(E,6(E,E"+M)) is the coarsest locally convex topology finer than § which makes
each element of M continuous, and a basic n-neighborhood of 0 is formed by intersecting a
C-neighborhood of 0 with the polar of a finite subset of M. The dual of (E,n)is E' + M.

Theorem 1 If M is finite-dimensional, then, since all fourteen properties are preserved by
quotients and by products with finite-dimensional spaces, (E,1) has a given one of the four-
teen properties if and only if (M 'L,'l]) = (M L_f;) has the given property.

When M is finite-dimensional, M is a finite enlargement of € and the finite-codimensional
M-~ must preserve precisely twelve of the fourteen properties [23].

Corollary 2 Finite enlargements preserve all fourteen properties except C- and co-barrelledness.

It M is Xy-dimensional, we say that 1} is a countable enlargement (CE) of £. Though at a
shight variance with Tweddle and Yeomans’ usage [31], the present is more generally suitable,
as suggested by Tweddle and Cataldn [29]. For & barrelled, the CEn = sup(§.6(E,E'+M))
is barrelled (a BCE) if and only if the Mackey topology T(E,E"+ M) is. Indeed, [31, Theo-
rem 2] (in [30], Theorem 1) shows that if the latter topology is barrelled, it must coincide with
the former, and every barrelied space 1s Mackey. Thus these definitions are interchangeable
when discussing the long-standing BCE problem, which asks if every barrelled space E with
E' # E* (1.e., with E non-trivial [30]) must admit a BCE. More generally, if a space E with a
given one of the fourteen properties admits a CE, must it admit a CE that preserves the given
property? Beyond the BCE question, three of these fourteen CE questions were considered
by Tweddle and Catalan [29].

The CE answers are emphatically not of the simple positive sort found in the Corollary,
as proves the following theorem, the most general form possible of [ 10, Theorem 3] and |29,
Proposition 5] within context.

The sequel preserves notation and assumes 1 is the CE sup (.0 (E,E' +M)).

Theorem 3 If (E.E) admits a CE, it admits one that is not primitive.

Proof. If  is not primitive and n is, then there exist an increasing covering sequence {£,},
of subspaces, f € E' and g € M\ {0} such that each (f+¢)|g, € (E.,E). If M isa I-
codimensional subspace of M with g ¢ M, then f + g ¢ E’ + M and the corresponding CE 1
1S not primitive.

If (E,<) is primitive and admits a CE, it has a dense X-codimensional subspace H [23]
with cobasis {x,}, . Let M be the span of {f,}, C E*, where each f, vanishes both on H
and at x; (j > n) and has value | at x; (1 <i<n). By density M is transverse to E’. The
corresponding CE 1 1s not primitive, since the linear form that vanishes on  and 1s 1 at each
x,isnotin E' + M.

We say that a subset of a vector space has a certain dimension, or codimension, Or 1S
transverse to some subspace, if its linear span has the corresponding property. Several times
we will use the following elementary fact:
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(*) A barrel 1s a neighborhood of O 1f 1t intersects a finite-codimensional subspace 1n a
relative neighborhood of 0.

Tweddle-Yeomans [31] and Tweddle-Catalin [29] showed that if & is barrelled, is Xg-
barrelled, is £7-barrelled, or has property (S), then 1 has the same property if and only if
N satisfies the Tweddle-Yeomans Criterion (given below). Thus 1 preserves the stronger
properties 1t it preserves the weaker property (S). We shall replace property (S) with dual
local completeness to obtain the best possible result in this context.

Definition 4 The topology M satisfies the Tweddle-Yeomans Criterion if there is no infinite-
dimensional 6 (E'+ M, E)-bounded set transverse to E'.

Theorem 5§ Suppose (E.C) has a given one of the eleven properties between BL and dlc,
mclusive. (E.n) has the same property if and only if

I. M satisfies the Tweddle-Yeomans Criterion and
2. (L. fi';) has the given property for each finite-dimensional subspace I. C M.

Note: Part (2) 1s superfluous except for C- and cp-barreliedness [23]. Consequently. if

(E£,&) has one of the properties stronger than dual local completeness, excepting the C- and
co-barrelled cases, then (E£,1) has the same stronger property if [and only if] (E.ﬁ] 1s dual
locally complete.
Proof. {Necessity|. If (£,C) and (£.m) are both dlc and N is a 6(E’ + M, E')-bounded set
transverse to £, its balanced convex o (E’ + M., E)-closed hull B is the unit ball of a Banach
space X and BN E’ is likewise a Banach disk. Therefore ¥ = E'N X is a closed subspace of
X. Since dim (X /Y) <dim((E'+ M) /E") = Ry, we have dim (X /Y) < R (no Banach space
has dimension Ng), and thus N has finite dimension. That 1s, the Tweddle-Yeomans Criterion
holds.

Part (2) needs proof in the C- and cp-barrelled cases only. Since a dense ¢g-barrelled
subspace of a C-barrelled space 1s also C-barrelled [23], the proof reduces to showing that
if (E£,£) and (E.m) are both ¢y-barrelled, so is (L~.&) for each finite-dimensional L C M.
By Theorem 1, this is equivalent to showing (E,1T) is ¢g-barrelied, where T is the finite en-
largement of § corresponding to L. 1f {f,}, is a 6(E"+ L, E)-null sequence, its polar B is
a t-barrel. Now B i1s an n-neighborhood of 0, and thus, by definition of 11, meets a finite-
codimensional subspacc of £ in a relative &-, hence a relative T-neighborhood of 0. From (),
then, B 1s a neighborhood of O in (E, 1), as desired.

|Sutficiency]. For the remainder of the proof, assume 1 satisfies the Tweddle-Yeomans
Criterion. Consider a ¢ (£’ + M, E')-bounded sequence (f;,),,, necessarily contained in £/ + L
ior some finite-dimensional subspace L of M. If & has property (C); has property (S) and
{fu}, 1s o (E"+ M, E)-Cauchy; or is dual locally complete and {«,}, € (' then, since the
finite enlargement sup (&, 0 (£’ + L)) has the same property as &, in the 6 (E' + L, E) topology
the sequence {f,}, is such that, respectively, it has an adherence point; it has a limit; or
the series 2, a, f, converges, using |21, Theorem 2.3]. The same is thus respectively true
in the 6 (E' + M. E) topology, which proves 1 preserves properties (C), (S) and dual local
completeness.
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et {A, }, beaclosed absorbing sequence in (£.1). Taking polars in the duality (E.E"+ M),
there must be some ¢ for which A} C E'+ L with L C M finite-dimensional. Otherwise, we
could inductively find { f;,}, C £"+M witheach f,41 € A] N E +sp({/1...fu})], contra-
dicting the Criterion. Now {;’1”}”_:_}{}, 1s a closed absorbing sequence in (£.7). where T 1s the
finite enlargement of £ corresponding to L. If € is BL: is QB and each A,, is a subspace: or
is barrelled and each A,, = A, then, since T has the same property as &. some A,, (n > ¢) is
a T-neighborhood. hence an n-neighborhood of 0 in £. This shows that 1} preserves BL. QB
and barrelled spaces.

Finally, let {U, }, be a sequence of absolutely convex closed O-neighborhoods in (£.1)
whose mtersection U is absorbing. The Criterion provides a finite-dimensional L. € M such
that U° C E'+ L, so each U; C E"+ L. Thus cach U, is closed for the corresponding finite
enlargement T. From the definition of 1, each U, meets a finite-codimensional subspace of £
in a relative -, hence a relative t-neighborhood of 0. From (*), then, each U, is a (closed)
ncighborhood of O in (£.7). (1) If £ is Ry-barrelled, so is 1 (Corollary 2). Therefore U is
a T-, hence an n-neighborhood ot 0: i.e., N s also Xy-barrelled. (i1) Similarly. replacing U
by N,nl, preserves property (L) as characterized in [23]. (i) If & is (T-barrelled. proceed
as in (1) but with each U, = {/,,}° for some f,, € E" + M. (iv) If  is C-barrelled or (v) ¢y-
barrelled, we assume that each x € E 1s1n U, for almost all 7 and, in the latter case. that each
U, =1{f.} forsome f, € E' + M. In both cases, (2) and Theorem 1 imply that T inherits the
given property of &, so that U is a t-, thus an n-neighborhood of 0, which proves that 1 also
has the property. [

The following proposition motivates the next theorem.

Proposition 6 The topology W satisfies the Tweddle-Yeomans Criterion if and only if there
. . . . . .o d ~f 4

is no infinite-dimensional subset N of E" + M transverse to E' such that N° is couniable-
codimensional in E.

Proof. If N is 6 (E’ -+ M. E)-bounded. then N is O-codimensional, so one direction is clear.
For the other, suppose N” 1s countable-codimensional in £ for some infinite-dimensional
N C E'+ M with N transverse to E'. Let {f,}, be a linearly independent sequence in N and
let {x, }, beasequence in £ whose span is complementary to sp(N?) in £. For cach n, choose
| > ¢, > 0suchthat {g,f, (x;)] <1 for 1 <k <n. Then {e,f, (x;) p,, 1s bounded for cach k.
as is {€,f, (v) }, foreach y € N°. Hence {g,/,}, denies the Tweddle- Yeomans Criterion. [

Lemma7 When £ is inductive, a o(E' 4+ M, E)-bounded set R is T-equicontin-
uous if and only if P is &-equicontinuous and Q is finite-dimensional, where (P) Q| is the
projection of R into (E" along M) M along E'].

Proof. (< ). Since P is S-equicontinuous, it 1s 6 (E' + M. E)-bounded, as is R. which implies
the same, then, for Q. Thus P” and Q" are n-neighborhoods of zero, as is, theretore, R” D
(P+0)" D5 (P°NQ°).

(=). If R” is an n-neighborhood of zero. then there is a finite subset 7 of M and a <-
neighborhood U of zero such that UNT® C R°. Thus RC R C (UNT")" C (UNT- )':
implies the set of restrictions R|,. is equicontinuous on (7+.&). Density of 7+ yields a
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unique &-equicontinuous set (R|,. ) of extensions to £ and, because 7T is finite-dimensional,
RC(R|;1) +sp(T), which implies P C (R|,.) and Q C sp(T). ]

The necessity part of the following theorem generalizes [ 1, Theorem 4].

Theorem 8 If (E,C) is non-Sg, inductive or primitive, then (E.N) has the same respective
property if and only if there is no infinite-dimensional subset N of E' + M transverse to E'
such that N+ is countable-codimensional in E.

Note: Consequently, if (E.&) is non-Sg or inductive, then (E.n) is also non-Sg or induc-

tive, respectively, if (and only if) it is primitive.
Proof. [Necessity]. Suppose E is primitive under both £ and n and N is a subset of E/ + M
transverse to E’ with N+ countable-codimensional in E. Let G be an algebraic complement
in £ to the &-closure N1 of N1, The space Q of linear forms which vanish on N* + G is
contained in E’ + M, since these linear forms vanish on N+ and (E,1) is primitive. Similarly,
since (E,) is primitive, the space P of linear forms which vanish on N+ is contained in £’
Now N C N-— = P+ Q and N is transverse to P C E’, so the dimension of N cannot exceed
that of Q: we need only show that Q has finite dimension. Clearly, the dimension of Q is
either finite or > ¢, according to whether the dimension of N /N is finite or infinite. The
latter is impossible, for Q C E' + M is transverse to E’ by density, and therefore dim (Q) <
dim (M) — N“.

|Sufficiency]. For the remainder of the proof we assume the non-existence condition on
N.

First, suppose (E,G) is non-Sg. If there is a strictly increasing sequence { £, },, of n-closed
subspaces covering E, we may choose f, € E' + M such that each f,, vanishes on E,, but not
on E,11. Some E, is &-dense in E, so that N = {j;i}”%f is transverse to E’, while N* is X-
codimensional in £ by a simple linear algebra argument (cf. [16, Theorem 1]), contradicting
our assumption. Thus (£.m) 1s also non-Sg, and the condition sutfices in the first case.

Next, suppose (E£,&) is inductive. Lemma 3.1 of [24] says that (E.7) is inductive if and
only if R = U,R, 1s N-equicontinuous whenever {R,}, is a sequence of N-equicontinuous
subsets of E/ + M such that each x € E is in all but finitely many R:-. Denote the projections
of R and R, into [E" along M] [[M along E']] by [P and P,] [[Q and O,]]. respectively
(n=1,2,...). By Lemma 7, each P, is E&-equicontinuous and each Q,, is finite-dimensional,
and we must show that P is &-equicontinuous and Q is finite-dimensional. If QO = U, 0, is
infinite-dimenstonal, then there exist a subsequence {n;}, of {1,2,...} and f; € R, such
that N = { f;}, is a linearly independent subset of E’ + M transverse to E’. The hypothesis
on {R, }, ensures that for each x € E, the equation f; (x) = 0 holds for almost all k, so that
N+ is again X-codimensional in E (cf. [16, Theorem 1]), a contradiction. Therefore Q
is finite-dimensional and the finite-codimensional subspace Q+ of (E,&) is inductive [6],
which implies by [24, Lemma 3.1] that the set of restrictions LJ,,R”|Q_ — U,,P,,|Q_, = P\Ql 1S
equicontinuous on (Q+,&). Now O dense in (£,&) implies P is equicontinuous on (E,&).

For the last case, when (E,§) is primitive, the Mackey topology & = t(E,E’) is inductive

e

[22], and so is its CE 1 = sup (E;,G (E E"+ M)) , by duality invariance and the previous case.

Hence 1 is primitive, as is 1|, again, by duality invariance. ]
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The dlc and primitive properties govern not only CE preservation of most properties (cf.
Notes of Theorems 5, 8), but similarly govern dense subspace inheritance [23]. In both
instances, C- and c¢y-barrelled spaces rebel. A variant in [23] avoids confrontation: If E has
any given property in the left column of the table and if every subspace containing a fixed
dense subspace F has the weaker property immediately to the right, then F also enjoys the
stronger given property. An equally tactful parallel variant of (the Notes to) Theorems 5, ¥
follows.

Theorem 9 If (E.C) has a given property in the left column of the table in Section I, then
any CE M with the weaker property immediately to the right also enjoys the stronger given
property.

Proof. Theorems 5 and 8 leave us to prove only that if £ is C-barrelled and 1 1s ¢y-barrelled.,
then (L*+,&) is C-barrelled for each finite-dimensional subspace L of M. Since L is finite-
dimensional and transverse to E’, we have F = L* is dense, and by part (2) of Theorem 5,
every subspace between £ and £ 1s ¢o-barrelled. The above-quoted result from [23] thus
shows that F' 1s, indeed, C-barrelled. L

A space F dominates a space E if the two spaces are algebraically the same and F has a
finer topology than does E.

Theorem 10 Suppose (E.G) has a given one of the fourteen properties and is dominated by
a space (F.nt) that has the property. If F admits a CE that preserves the property, then so
does E. Indeed, if M is an Ro-dimensional subspace of E™ transverse to F' such that the CE
sup (m.o (F'+ M)) preserves the property, then M is also transverse to E' (C F'), and the
CEN = sup (S, (E'+ M)) likewise preserves the property.

Proof. If the CE corresponding to F’ + M satisfies the Tweddle-Yeomans Criterion or the
condition of Theorem §, so does 1. This proves the Theorem for all but the C- and ¢y-barrelled
cases, where we only need to show that if & is C- or ¢g-barrelled and L is a finite-dimensional
subspace of M, then L+ is also C- or ¢g-barrelled, respectively. For this it is enough to show
that (L~,&) is co-barrelled under assumption that (£.§) is, using [23] as in the previous

: . | ! - . : . :
proot. Let {f,}, 6 beaoc ((! -.&) .Ll')mull sequence with unique S-continuous extension

f,, ofeach f,to E. Itisalsoa o ((LL,E)’:L'L) -null sequence, and so by (2) of Theorem 5

it is m-equicontinuous on L+, and thus so is { f," }, on F, since L= is dense in /. Now {f, },
is o (F'. F)-null, for if it were not, it would have a non-zero ¢ (F', F)-adherence point that
would necessarily vanish on the dense finite-codimensional subspace L=, an impossibility.

. - - -~/ - , - . o . . e o ] . -
Hence {f, |, [515(16 .E)-null, and therefore &-equicontinuous, as is, then, the set {f,}, of
restrictions to L. ]

Example 11 [n precisely the C- and co-barrelled cases, one cannot omit part (2) from The-
orem 5. Let E denote the space ¢ of convergent scalar sequences endowed with the Mackey
topology & = 1(c,¢"). Obviously dual ¢'-complete, £ is dlc [21], hence C-barrelled [22].
| Properties in Box 2) coincide under the Mackey topology.| If F denotes ¢ with its usual sup
norm topology, then F dominates £ and admits a BCE corresponding to some M transverse to
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F'. by any one of [15, 20, 31]. The preceding theorem concludes thatny = sup (&, 6 (E.E'+M))
1s also C-barrelled. Let f be a linear form such that f+ = ¢, a dense hyperplane of E which,
as observed in [23], is not cy-barrelled. Since f € F/\E’, we see that M = sp(M U {f}) is
transverse to £" and the CE Ty = sup (§,6 (E,E" +M)) is not cy-barrelled via part (2) of The-
orem 5, even though 1, as a finite enlargement of 1, is dic (Corollary 2) and hence satisfies
the Tweddle-Yeomans Criterion.

Theorem 12 The CE N satisfies the Tweddle-Yeomans Criterion (resp., the condition of The-
orem 8) if and only if. for each linearly independent sequence { f,}, C E'+ M transverse to
E', the mapping 8 : x — { f,, (x) }, from E into ® is onto a barrelled (resp., inductive) subspace
of .

Proof. Given scalars a;.,.... ay.. the linear independence of f..... fi yields x € E such that
filx) =a; (1 <i<k).so0is always onto a dense subspace of m, and is obviously linear.
it the 1mage under each such 6 1s barrelled, then, since the coefficient functionals are not
equicontinuous. they are not weakly bounded, which is equivalent to saying that {f, (x)},
1s an unbounded scalar sequence for some x € E: 1.e., {f,}, 1s not 6(£"+ M, E)-bounded,
and N satisfies the Criterion. It some such image 1s not barrelled, then there exists a lin-
carly independent sequence in the dual of ® that is bounded at each point in the 1mage of 6:
equivalently, there exists a linearly independent sequence insp({/,},) thatis 6 (£ + M E)-
bounded, which means 0 tails the Criterion.

If ©(£) is always inductive, then, being metrizable, it i1s always of uncountable dimension.
as is, then, £/0° ' ({0}) = E/N*, where N = {f,} . Heuce the condition of Theorem 8 is
satisfied. If for some 0 as above, 0 (F£) 1s not inductive, then it is an S space and contains a
closed Xp-codimensional subspace H [23]. Thus there i1s a linearly independent sequence S

in the span of the coordinate functionals on 8 (E) such that S& = H. There is a corresponding
linearly independent sequence N C sp({ /. },) such that N~ is Ry-codimensional in £, so that
N fails the condition of Theorem §. O

3 Maximal extensions of standard BCE results

The previous section noted that, within context, Theorem 3 maximally extends certain results
i [ 10, 29]. The following lemma and theorem prove that Theorem 35, which generalizes re-
sults 1 |31, 29], does not extend to non-Ss, inductive or primitive spaces, nor does Theorem &
extend to any of the remaining eleven properties: 1.e., netther theorem can be further extended
within our domain of fourteen properties.

It F1s a closed countable-codimensional subspace of a primitive space E. so 1s every
subspace between F and E. ("Between” includes F and E.) And if F is a dense subspace of
E which 1s either non-Ss or has one of the nine non-duality invariant properties, then every
subspace between F and £ has the same property, but the statement fails in the four remaining
duality invariant cases [23].

Lemma 13 Suppose F is a dense subspace of E and every subspace between F and E is
primitive. If G is a closed subspace of E such that G F is countable-codimensional in F,
then sois G in E.
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Proof. Let x € E. Since GN (F +sp({x})) is closed and countable-codimensional in the
primitive space £ + sp({x}), so is the intermediate subspace (F +G) N (F +sp({x})), and
since it contains the dense £, it is all of F' 4 sp({x}). Indeed, then, F + G contains all x € E,
and the codimension of G in £ = F + G s thatot G F in £, and so 1s countable. []

Each infinite-dimensional Banach space £ enjoys all fourteen properties and is barrelledly
fit [ 17], thus satisfies the hypothesis of our next theorem (cf. [14, 27}), thus is an example
showing maximality of Theorems 3, 8.

Theorem 14 Let (E.C) be a space with a dense X j-codimensional subspace F such that
every subspace between I and E is primitive. There is a countable enlargement © of C that
pieserves primitivity but denies dual local completeness.

Proof. Let B denote a cobasis for /. Choose a sequence {f,}, C E* such that {{Jfﬂ}n‘j-L —
Fand {(f, (X)), x€ B} is a Hamel basis for ¥, an &;-dimensional dense non-barrelled
inductive subspace of @ [25]. By density, M = sp({f,},) is transverse to £', producing a CE
7. From Theorem 12 1t follows that ) does not satisfy the Tweddle-Yeomans Criterion, hence
could not inherit dual local completeness from &. But (E,1) cannot be dual locally complete
in any case, since its quotient £/ F is isomorphic to the metrizable non-barrelled, hence non-
dual locally complete space x, and quotients preserve all fourteen properties. (There 1s only
one compatible topology tor y.)

On the other hand, suppose N C £+ M with N* countable-codimensional in £. Let P
be the projection of N into £’ along M, and let O be the projection of N into M along E’.
We identify sp (8) with x via the map x —— (f, (x)),. By Theorem &, 1} preserves primitivity
if we can prove that dim(Q) is finite. Since N*NF = PN F is countable-codimensional
in 7, so is P~ in E (Lemma 13). Therefore P Ny is countable-codimensional in . as is
O-NP-Ny=N"n(P*Ny)in PNy, so that O NP+ Ny is countable-codimensional in
%. Thus so 1s the larger O My in . and it 1s also closed in the non-Sg space ¥. We conclude
that O Ny is finite-codimensional in y, and then, of necessity. O is finite-dimensional. O

A related theorem maximally extends the classic [ 10, Theorem 5] and 1ts codimensional
refinement [ 19, Theorem 5]. The proof suggests S. Dierolf’s three-space technique [2, 2.2].
[3]: see [8, 4.5.501)].

Theorem 15 /f (E.&) has a given one of the fourteen properties and contains a dense sub-
space F of codimension at least b such that all the subspaces between I and E have the saime
property, then there is a CE of & that preserves the property. If the given property is primitive,
inductive or non-Sq, one may replace b with X,

Proof. First, suppose dim (£ /F) = b. Let G be an algebraic complement to F in £ and choose
a subspace M C E™ such that M~ O F with (G.o(G.M)) isomorphic to the (metrizable)
barrelled subspace y; of @ [18]. By density MNE" = {0} so that | = sup(§,0(E,E'+M))
is a CE of &. Unchanged, F retains its given property under 1 and E/F is isomorphic to
the Baire-like space ,, because, by density, F~ = M and the metrizable space (G,c (G, M))
has only one compatible topology (ct. [8. 4.5.5(1)]). We claim that nj preserves the property
in all fourteen cases. Preservation is immediate for the seven cases [24] in which the given
property 1s a three-space property.
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In all cases, part (2) of Theorem 5 holds by hypothesis, and we only need to show that
preserves either dual local completeness or primitivity, which are duality invariant. Thus 1t
suffices to show that the CENYy = sup (1 (E,E") ,0(E,E’ + M)) for E with its Mackey topology
is either dual locally complete or primitive, respectively. If the given property for & implies
either dual locally complete or primitive, then T(E, E’) either has property (L) or is inductive
|22]. and induces on all the subspaces between F and E a dual locally complete or primitive
topology, so that F' actually either acquires property (L) or becomes inductive, respectively
23], while £/F remains Baire-like under 1. Since property (L) is a three-space property
and inductivity “nearly” is [24], it follows that (£.7) either has property (L) or is inductive,
and thus is either dual locally complete or primitive, respectively. The proof i1s complete for
dim(E/F) > b. [If dim(E/F) > b, replace F with a larger subspace whose codimension in
E 1s exactly b.]

Now suppose the given property is either primitive, inductive or non-Sg with dim (E/F) =
X . From Theorem 14, there 1s a CE that preserves primitivity, thus either of the other two
properties ¢ may enjoy (Theorem 8). []

Other maximal extensions derive from |8, 31, 19].

Theorem 16 If (E.C) has a given one of the fourteen properties, excepting the C- and cp-
barrelled cases, and contains a bounded set of dimension at least b, then there is a CE of C
that preserves the property.

Proof. We proceed precisely as in the proof of [19, Theorem 6] to find a CE that satishes
the Criterion, and thus also the condition of Theorem 8 (see Proposition 6), preserving the
property. L]

Question: For the above theorem, is it possible in the non-Sg, inductive and primitive
cases to replace b with X7

Theorem 17 If (E.C) and its subspace F have a given one of the fourteen properties, except-
ing the C- and co-barrelled cases, and there is a CE for (E.C) that preserves the property,
then there is a CE for (F.G) that also preserves the property, provided the codimension of F
is, in the non-Sg, inductive and primitive cases, less than X |, n the remaining cases, less
than b.

Proof. Let P be an Xy-dimensional subspace of E* transverse to E’ whose corresponding
CE preserves the property. Let £’ denote the dual of (F.), let M be a maximal subspace of
P|p transverse to F', where P|; denotes the restrictions to F of members of P, and let 1 be
the corresponding enlargement for (F.&). The Hahn-Banach Theorem provides a subspace
Q C E* with Q|p =M suchthat E' + Q =E" + P.

In the non-S5, iInductive and primitive cases we assume F has codimension less than .
Now if M were finite-dimensional, then O+ would be of codimension less than X, in E,
contradicting Theorem 8. Hence 1 1s a CE. Let {f,}, be a linearly independent sequence
in F' + M transverse to F'. For each n choose g, in E' + P whose restriction to F is f,,.
The subspace {{f, (x)},:x€ F} = {{g,(x)}, :x € F} of ® has codimension less than X
in {{g,(x)}, :x € E}, anon-Ss space by Theorem 12. Hence the countable-codimensional
subspace 1s also non-S4, and N preserves the property via Theorem 12.
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In the remaining cases, one proves precisely as in |19, Theorem 4] that n is a CE and
satisfies the Tweddle-Yeomans Criterion, so that the given property is preserved. L]

4 Dimension and the fourteen CE questions

[f, in some ZFC-consistent model of set theory, there exists a non-trivial barrelled space E
with dim(E') < b, this would provide a negative answer to the still-open BCE question [19].
However, we were able to determine b as the least infinite-dimensionality for metrizable bar-
relled spaces [19] and answer positively the metrizable BCE question in every ZFC-consistent
model [15] (ct. [20]), although we as yet have no familiar identification of the least infinite-
dimensionality for normable barrelled spaces. In [235] we gave four characterizations of X
as the least infinite-dimensionality for: non-Sg spaces. metrizable inductive spaces, normable
inductive spaces, and metrizable non-normable inductive spaces. In this section we show that
Ny 1s the least dimensionality for non-trivial spaces £ having any given one of the properties
strictly weaker than barrelled. We give negative answers to the eight CE questions between
No-barrelled and dual locally complete, inclusive, under assumption that X < b, which 1s
ZFC-consistent. In the second half of the section, we complement the positive metrizable
BCE answer with a positive CE answer for metrizable inductive spaces, so that the fourteen
metrizable CE questions, which collapse to just two distinct ones, all have positive answers
in every ZFC-consistent system.

4.1 Eight negative CE answers

The least infinite-dimensionality for non-trivial spaces having one of the strictly weak bar-
relledness properties 1s always Xj. Certainly, 1t 1s at least as big as N, since each Ry-
dimensional primitive space is the union of an increasing sequence of finite-dimensional sub-
spaces, making every linear form continuous.

Example 18 Let E be a vector space with Hamel basis B of size x > X,. We give E the
topology G generated by the seminorms on E that vanish on all but countably many members
of B. Clearly, & is Rg-barrelled, but is not barrelled, since the balanced convex hull of B is a
barrel. Moreover, there exists a dense Ro-barrelled subspace G with dim(E /G) = dim (E).

Note: Since |f] is a seminorm for each linear form f, the dual of E is just the Xg-
dual with respect to the basis B [1]. By [7, p.101], (E.&) is not Mackey, and when given
its Mackey topology, the space 1s £“-barrelled but not Xy-barrelled (cf.[23, 26]). Proof.

Let {Bqu}ye, be a partition of B into k = |/| pairwise disjoint sets each of size x. Each
Ey = sp(Bg) is 1somorphic to E, thus is Xg-barrelled and contains a dense hyperplane Hy,
also necessarily Xg-barrelled. Now G = sp(UqH) 1s clearly dense and x-codimensional
in £ we show it is Xg-barrelled. Let {U,}, be a sequence of closed absolutely convex 0-
neighborhoods in G whose intersection U is absorbing in G. By density, each closure U,
1s an absolutely convex O-neighborhood in E. Each U M Hy 1s a O-neighborhood in the Xy-
barrelled space Hy, and thus so is each U N Ey in Ey, which proves U is absorbing in E.
Thus so is the larger N, U,,. which is therefore a O-neighborhood in the X-barrelled £. Thus
U=n,U,=0,(U,NG)=(N,U,)NG is a 0-neighborhood in G. O
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Tweddle and Catalan [29] gave negative answers to the CE problem for the Xg-barreiled,
£ -barrelled and property (S) cases, but under the assumption that measurable cardinals exist.
No one knows if there is any model of set theory consistent with the usual ZFC system
that warrants such an assumption, and thus 1t 1s possible that their examples are invalid.
Example I8 provides negative answers for all eight cases beiween Xg-barrelled and dual
locally complete, inclustve, under assumption that X < b, which 1s known to be consistent
with ZFC [4], as s the assumption that & | = 0, needed in {27], which implies X} = b,

Theorem 19 Let (E.E) be the space of Example 18. There exists a CE that preserves indiic-
tiviry. However, there exists a CE that preserves dual local completeness (and thus also the
stronger properties up to and including Ry-barrelledness) if and only if €K > 0.

Proof. Theorem 14 preserves primitivity and, by Theorem 8, inductivity.

Suppose K < b. If {f,}, is any linearly independent sequence in E* then, since b is
the least infinite-dimenstonality for metrizable barrelled spaces [19], {(f,(x)), :x € E} is a
non-barrelled subspace of @, and Theorem 12 implies that no CE of & satisfies the Tweddle-
Yeomans Criterion; i.e.. none preserves dual local completeness.

[t K > b, then Theorem 15 permits preservation of R-barreliedness (a three-space prop-
erty |8, 8.2.32] requiring only the first paragraph of the proof of Theorem 15). L]

4.2 The metrizable CE answers are positive

Six CE questions as yet lack a general answer. For metrizable spaces, however, precisely
eleven of the fourteen properties are equivalent to barrelledness, and the three remaining
properties, non-Sg-ness, inductivity and primitivity, are each equivalent to the other {8, 25].
Thus the metrizable CE questions ail reduce to the recently answered metrizable BCE ques-
tion and the metrizable ICE question, whose positive answer we discover below.

A space E 1s [(non-Sg)-1v] fir (ct. [ 17, 27)) if it contains a dense [non-S4] subspace whose
codimension is dim (£). Clearly, every infinite-dimensional non-Sg space is fit.

Theorem 20 /f a non-Sg space £ has infinite dimension less than b, then E is (non-S¢)-1v fit.

(Ct, grvei vincreasing sequence {EL YV, of subspaces covering E, s o 18 both dense
In fact, gtven any incredsing sequen Ey i, of subspaces covering E, some Ly is both dens
and non-Se.

Proof. Since £ 1s infinite-dimensional, it is the union of an increasing sequence of subspaces,
each having codiimension in its successor equal to dim (). Thus 1t suffices to prove the
second statement. By way of contradiction, if cach £ 1s either non-dense or S, then for each
k there exists an increasing sequence {HA,;' }f. of proper closed subspaces of E covering £j.

Let B be a Hamel basis for £. For each x € B, define f, € N'' by writing

D if x ¢ £y
fi (’{) __ n]in { v o o oI
J X € by } it x € £

. "t - . Ry . - " . . s
for each k € N. As |B} < b. there exists ¢ € N with f, <® ¢ for each x € B. Foreach 7 € N,
define

fp = F?A.E;Ek,m%
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Given x € B, there exists my € N such that x € £, . and thus x € Ej for all kK > myg. Also.
there exists ng such that g (k) > f, (k) for all k > ny. Setting [ = max (mg.ng). it & > 1 we
have x € [, hence x € Ey ;1) C Eg (1) and thus x € F;. It follows that { £}, 1s an increas-
Ing sequence of proper closed subspaces covering sp(B) = E. Thus a properly increasing
subsequence may be extracted, contradicting the fact that £ 18 non-Sg. L]

Theorem 21 Every infinite-dimensional metrizable inductive space E has an inductive couiit-
able enlargement.

Proof. If dim(£) > b, (the proof of) [15] provides a CE satisfying the Tweddle-Yeomans
Criterion, and thus the weaker criterion for inductivity. If dim(£) < b, the previous theo-
rem yields a dense inductive subspace whose codimension is dim(£) > ¥ and Theorem 15
completes the proof. []

5 Preservation with precision

A CE may have certain of the properties not enjoved by the original topology. These consist
of the duality invariant ones between property (C) and primitivity.

Example 22 [/ E is an Rg-dimensional vector space, then there exists, clearly, ¢ G(E™, E)-
dense R-codimensional subspace E' of E*, and we give E any topology & compatible with
the dual pairing (E,E"). Now E' # E* implies § is not primitive, but the CE sup (5.6 (E.E™))
obviously has property (C).

Theorem 23 If a CE N is non-Sg or has a given one of the non-duality invariant properties,
then so is or has the original topology &,

Proof. The non-Ss case is obvious. In all the non-duality invariant cases the argument 1s
essentially the same and quite casy. For example, if 1} has property (L) and {U,}, is a se-
quence of closed balanced convex neighborhoods of 0 in (£.&) with absorbing intersection,
then, since each [/, 15 also n-closed, a characterization [23] of the property (L) of 1 1s that
B = N,nU, is an n-neighborhood of 0. Thus (*) implies B is a &-neighborhood of 0, and &
has property (L). Or, if 1 is Baire-like and {A,,}, is a closed absorbing sequence in (E.&),
then some A,, is an n-neighborhood of 0. Thus (*) implies A, is a &-neighborhood of 0, and
& is Baire-like. Or, again, if 1 is inductive and A is a balanced convex subset of £ such that
each ANE, is a O-neighborhood in (£,.§), where {£,}, is a given increasing sequence of
subspaces covering £, then the closure B of 1A is a barrel in (£.&) with B C A, and B is
clearly a O-neighborhood in the inductive (£. n,u}, and, by (*), is likewise in (£.C). Thus so 1s
A, and (E.C) is inductive. [

Example 24 Thiere is a non-Sg space E that is not dlc, vet has a CE with property (C).

Proof. As in [28, Py (ct.{6, 23, 25]). let £ be a non-complete normable space dominated by
a Banach space F, with respective duals £/ and F’. The Closed Graph Theorem implies £
1s not barrelled, hence, by metrizability, 1s not dlc. Now F’/E" is infinite-dimensional, for
otherwise £ and F would mduce the same metrizable (Mackey) topology on a certain dense
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finite-codimensional subspace of E that is a closed (complete) subspace of the Banach space
I, forcing the contradiction £ = F. By [21, Theorem 2.3]. there exist a ¢ (E'. E)-bounded
sequence { f, }, and {a,}, € ¢! such that the pointwise limit f of ¥, a,f, is not in E’. Let
H be an Xy-codimensional subspace of F’ such that H D E" with f ¢ H. Then (E.c(E.H))
t1s dominated by the non-Sg space F, and hence i1s non-Sg, 1s not dlc, and yet the countable
enlargement o (£, F') has the duality invariant property (C). []

Theorem 25 Given a CE 1 of C, some CET of C preserves precisely the properties common
ton and C.

Proof. If there are no common properties, the conclusion is that of Theorem 3.

By Theorems 5, 8 and 23, only three cases remain to be proved. We must find a CE 1} of
¢ such that: (i) 1 1s primitive and not dlc when £ is primitive and not dlc and n is dic; (i1) 1 1s
dlc and without property (S) when & is dlc and without property (S) and 1 has property (S);
(ii1) N has property (S) and not property (C) when ¢ has property (S) and not property (C) and
N has property (C).

[n case (i), some pointwise limit f of an ¢'-sum of a ¢ (£’ ,E)-bounded sequence is in
E' + M but not in E’ [21, Theorem 2.3]. Let M be a I-codimensional subspace of M such
that /¢ E’ + M. so that the corresponding CE 1 of & is not dlc. Since 1 had to satisfy the
condition of Theorem 8, it is obvious that 1} must also, and thus is primitive.

Case (ii) is entirely analogous: f becomes the pointwise limit of a sequence from £’ with
fe(E"+M)\E" and Theorem 5 replaces Theorem 8.

Case (iii) admits in (E', o (E’, E)) a bounded sequence A with no adherence point. Since M
satisfies the Tweddle-Yeomans Criterion, the ¢ (E/ + M. E) closure A has a finite-dimensional
projection B into M along E’. Let M be a finite-codimensional subspace of M transverse to
B. The corresponding CE 1] satisfies the Tweddle-Yeomans Criterion since 1 does, and thus
has property (S) since & does. But A clearly has no 6 (E" + M, E)-adherence point, so 1 does
not have property (C). ]

Application of CEs essentially doubles the list of distinguishing examples in [23]. Most
of the examples are dominated by non-trivial Banach or (LLB)-spaces, which always have
BCEs [31, 20, 15, 17]. Each such example admits, by the last part of Theorem [0, a single
CE that preserves all its properties. and thus Theorem 25 yields a CE that has precisely those
properties. These CEs cannot be dominated by a Banach topology, since CEs so dominated
obviously fail the Tweddle-Yeomans Criterion. Therefore most differ significantly from the
original topologies.
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