ON THE "THREE-SPACE PROBLEM" FOR SPACES OF POLYNOMIALS1

JOSÉ M. ANSEMIL, FERNANDO BLASCO, SOCORRO PONTE

Abstract. The problem of when equality between any two of the usual topologies on spaces of homogeneous continuous polynomials on a real or complex locally convex space is a "three-space property" is considered. For all possible cases a positive result or a counterexample is given.

1 Introduction

The study of when a property is a "three-space property" (3SP) has drawn the attention of several authors. For a recent survey on the particular case of Banach spaces see [9] and for the locally convex space case see [22]. We recall that a property is a 3SP for a space E if E has the property when E and E/E have it for a subspace E of E. We will say that a property is a 3SP for closed (resp. complemented) subspaces if E has the property when for a closed (resp. complemented) subspace E of E, E and E/E have it.

For a given real or complex locally convex space E and a natural number n, denote by $\mathcal{P}(^nE)$ the space of all n-homogeneous continuous polynomials on E (recall that the elements in $\mathcal{P}(^nE)$ are the restrictions to the diagonal of the n-linear continuous mappings from $E \times \cdots \times E$ into the scalar field). On $\mathcal{P}(^nE)$ we consider the natural topologies τ_o , τ_b , β and τ_ω (see the definitions below) and we study when the equality $\tau = \sigma$ for two of those topologies is a 3SP. We give an answer for all possible choices of τ and σ . The topologies on $\mathcal{P}(^nE)$ we consider are defined as follows:

 $-\tau_o$ is the topology of uniform convergence on all convex balanced compact subsets of E. When E is quasi-complete, τ_o is the compact open topology.

 $-\tau_b$ is the topology of uniform convergence on bounded subsets of E. When $n=1, \tau_b$ is the strong topology on the dual E' of E.

-β is the strong topology on $\mathcal{P}(^{n}E)$ as the dual space of $\hat{\otimes}_{s,\pi}^{n}E$, the completion of the n-fold projective symmetric tensor product of E by itself n times (see [23], [13], [14]). For n = 1, β and τ_b agree.

 $-\tau_{\omega}$ is the Nachbin ported topology defined as the inductive limit of the normed spaces $\mathcal{P}(^{n}E_{V})$, when V ranges over the family of all open, convex and balanced neighborhoods of 0 in E (note that the natural normed topology on $\mathcal{P}(^{n}E_{V})$ agrees with τ_{b}).

It is easy to see that $\tau_o \le \tau_b \le \beta \le \tau_\omega$ on $\mathcal{P}(^nE)$. Sometimes these topologies agree, but in general do not (see [12]). It is even possible that $\tau_o < \tau_b < \beta < \tau_\omega$ on $\mathcal{P}(^nE)$ for a Fréchet

¹1991 Mathematics Subject Classification. Primary 46A03, 46G20. Secondary 46E10.

Key words and phrases: three-space problem, spaces of polynomials.

First and third authors partially supported by UCM grant PR295/95-6140. Second author partially supported by DGES grant PB96-0651-C03-02.

Grothendieck: A pair (E, F) of locally convex spaces has property (BB) if every bounded subset B in the completed projective tensor product $E \hat{\otimes}_{\pi} F$ is contained in the closed convex balanced hull of $C \otimes D$, being C bounded in E and D bounded in F.

For every bounded subset C in E and for every polynomial $P \in \mathcal{P}(^{n}E)$,

$$|P|_C = \sup\{|P(x)| : x \in C\} = \sup\{|Q(x \otimes \cdots \otimes x)| : x \in C\} = |Q|_{\tilde{\Gamma}(\otimes^n C)},$$

where Q denotes the linearization of P through the tensor product $\hat{\otimes}_{s,\pi}^n E$ and $\bar{\Gamma}(\otimes^n C)$ denotes the closed convex balanced hull of $\otimes^n C$. So, for a locally convex space E we have $\tau_b = \beta$ on $\mathcal{P}(^n E)$ if and only if E has the $(BB)_{n,s}$ property.

Counterexample 3 Let E_1 be the cartesian product $\mathbb{C}^{\mathbb{N}}$ and E_2 the direct sum $\mathbb{C}^{(\mathbb{N})}$. Then $\tau_o = \tau_\omega$ on $\mathcal{P}(^nE_i)$ for i = 1, 2, but $\tau_o \neq \beta$ (and hence $\tau_o \neq \tau_w$) on $\mathcal{P}(^n(E_1 \times E_2))$.

Proof.

The space $E_1 = \mathbb{C}^{\mathbb{N}}$ is in fact the first known example of an infinite dimensional Fréchet space such that $\tau_o = \tau_\omega$ on $\mathcal{P}(^nE_1)$ [4]. On the other hand, $E_2 = \mathbb{C}^{(\mathbb{N})}$ is the strong dual of the Fréchet-Montel space E_1 and for such spaces τ_o agrees with τ_ω [11]. Both are classical results in infinite dimensional holomorphy which can be obtained easily using the $(BB)_{n,s}$ property: E_1 and E_2 are Montel spaces and both have the $(BB)_{n,s}$ property which follows straightforward from [15, 1.3 Prop. 7 and Cor. 2], then $\tau_o = \tau_b = \beta$ in both cases. $(\mathcal{P}(^nE_1), \beta)$ as the strong dual of the Fréchet Montel space $\hat{\otimes}_{s,\pi}^n \mathbb{C}^{(\mathbb{N})}$ is bornological and $(\mathcal{P}(^nE_2), \beta)$ as the strong dual of the DFM space $\hat{\otimes}_{s,\pi}^n \mathbb{C}^{(\mathbb{N})}$ is also bornological. Since τ_ω is the bornological topology associated with τ_o , and hence with β , for metrizable or DFM spaces [12, Ex. 1.37 and Ex. 1.38], we have that $\tau_o = \tau_\omega$ on $\mathcal{P}(^nE_i)$, i = 1, 2.

To see that $\tau_o \neq \beta$ on $\mathcal{P}(^n(E_1 \times E_2))$ we are going to see that $E_1 \times E_2$ has not the $(BB)_{n,s}$ property. It is known that this particular couple (E_1, E_2) has not the (BB) property [15, 1.1.2] and when a couple of spaces (E_1, E_2) , each of them with the $(BB)_{2,s}$ property, as this is the case, does not have the (BB) property, then $E_1 \times E_2$ does not have the $(BB)_{2,s}$ property. This follows from the following formula (see [2]) which holds for every pair of locally convex spaces E_1, E_2 :

$$\hat{\otimes}_{s,\pi}^2(E_1 \times E_2) \cong (E_1 \hat{\otimes}_{s,\pi} E_1) \times (E_1 \hat{\otimes}_{\pi} E_2) \times (E_2 \hat{\otimes}_{s,\pi} E_2).$$

Since the $(BB)_{n,s}$ property implies the $(BB)_{2,s}$ property [7] this gives that E does not have the $(BB)_{n,s}$ property. Another proof of this can be found in [12, Ex. 1.39].

Remark 4 In the context of Fréchet spaces we don't know if it is possible that any of the equalities $\tau_o = \beta$ or $\tau_o = \tau_\omega$ on $\mathcal{P}(^nE)$, for $n \geq 2$, are 3SP (for n = 1 the answer is yes and follows from Theorem 2). For Fréchet spaces, β and τ_ω are different in general but we have the following theorem.

Theorem 5 If E is a Fréchet space, the equality $\tau_o = \beta$ on $\mathcal{P}(^nE)$ is a 3SP for closed subspaces if and only if the equality $\tau_o = \tau_{\omega}$ is.

Proof.

Assume $\tau_o = \beta$ on $\mathcal{P}(^nE)$ is a 3SP. Let F be a closed subspace of E and assume that $\tau_o = \tau_\omega$ on $\mathcal{P}(^nF)$ and on $\mathcal{P}(^n(\dot{E}/F))$. Then by hypothesis $\tau_o = \beta$ on $\mathcal{P}(^nE)$. But, as we have seen, since E is a Fréchet space, the above equality implies that E is Montel and for Fréchet-Montel spaces E with the $(BB)_{n,s}$ property, $\hat{\otimes}_{s,\pi}^n E$ is also a Fréchet-Montel space, hence its strong dual, which is $\mathcal{P}(^nE)$ endowed with β , is bornological. Then $\beta = \tau_\omega$ on $\mathcal{P}(^nE)$.

If we now assume that $\tau_o = \beta$ on $\mathcal{P}(^nF)$ and on $\mathcal{P}(^n(E/F))$, then F and E/F are Montel spaces with the $(BB)_{n,s}$ property. Hence the spaces $\hat{\otimes}_{s,\pi}^n F$ and $\hat{\otimes}_{s,\pi}^n (E/F)$ are Fréchet-Montel spaces and their strong duals $(\mathcal{P}(^nF),\beta)$ and $(\mathcal{P}(^n(E/F)),\beta)$ are bornological. So $\tau_o = \tau_\omega$ on these spaces. The hypothesis gives $\tau_o = \tau_\omega$ on $\mathcal{P}(^nE)$ and then $\tau_o = \beta$ on $\mathcal{P}(^nE)$.

4 The 3SP for $\tau_b = \beta$ and $\tau_b = \tau_{\omega}$ on $\mathcal{P}(^nE)$

As we mentioned in section 3, for a locally convex space E the equality $\tau_b = \beta$ on $\mathcal{P}(^nE)$ is equivalent to E having the $(BB)_{n,s}$ property. Property $(BB)_{n,s}$ is inherited by passing to complemented subspaces [7]. Now we are going to see that this property can be lost by passing to cartesian products. This implies that $(BB)_{n,s}$ is not a 3SP even for complemented subspaces or, equivalently, that $\tau_b = \beta$ on $\mathcal{P}(^nE)$ is not a 3SP for complemented subspaces.

Counterexample 6 Consider as E_1 the Fréchet space given by the projective limit $\ell^{p+} := \bigcap_{q>p} \ell^q = \operatorname{proj}_n \ell^{(p+\frac{1}{n})}$, with $2 \le p < \infty$ (see [20]), and let $E_2 = C_2$ be the ℓ^2 -sum of a sequence of finite dimensional Banach spaces dense in the set of all finite dimensional spaces with respect to the Banach-Mazur distance [18]. Then $\tau_b = \beta$ on $\mathcal{P}(^2E_1)$ and $\tau_b = \beta$ on $\mathcal{P}(^2E_2)$, but $\tau_b \ne \beta$ on $\mathcal{P}(^2E)$ where $E = E_1 \times E_2$. So $\tau_b = \beta$ on $\mathcal{P}(^2E)$ is not a 3SP even for complemented subspaces.

Proof.

 E_1 has the property $(BB)_{2,s}$: It is proved in [10, Ex. 5] that (E_1, E_1) has the (BB) property and hence E_1 has the $(BB)_{2,s}$ property. On the other hand, since E_2 is a Banach space, (E_2, E_2) has the (BB) property [15, 1.3. Prop. 5] and hence E_2 has the $(BB)_{2,s}$ property. Let us see how $E_1 \times E_2$ does not have the property $(BB)_{2,s}$. It is proved in [21, Count. 2] that this particular couple (E_1, E_2) does not have the (BB) property, then the argument at the end of counterexample 3 gives that $E_1 \times E_2$ does not have the $(BB)_{2,s}$ property.

Remark 7 For the particular spaces we have considered in the above counterexample it happens that the strong topology on the corresponding spaces of polynomials agrees with the Nachbin ported topology τ_{ω} . Note that E_1 has the Heinrich density condition (DC) [16], a consequence of the fact that E_1 is quasinormable which follows from [20]. This implies that $\hat{\otimes}_{s,\pi}^2 E_1$ has the (DC) [5, 1.7] and then it is distinguished; so its strong dual is bornological and then $\beta = \tau_{\omega}$ on $\mathcal{P}(^n E_1)$ ($\hat{\otimes}_{s,\pi}^2 E_1$ is Fréchet). On the other hand since E_2 is a Banach space $\beta = \tau_{\omega}$ and both agree with the natural normed topology on $\mathcal{P}(^n E_2)$. Then the above counterexample also shows that the equality $\tau_b = \tau_{\omega}$ on $\mathcal{P}(^n E)$ is not a 3SP (even for complemented subspaces).

5 The 3SP for $\beta = \tau_{\omega}$ on $\mathcal{P}(^{n}E)$

The next counterexample shows that $\beta = \tau_{\omega}$ on $\mathcal{P}(^{n}E)$ is not a 3SP even for complemented subspaces.

Counterexample 8 Let E_1 be the Banach space ℓ^1 and let E_2 be the Köthe sequence space $\lambda_p(A)$, where p is any real number greater than n and A is the Grothendieck-Köthe matrix [19, Ch. 31] (or any Köthe matrix which does not satisfy condition (D), see [5, Th. 2.6]). Then $\beta = \tau_{\omega}$ on $\mathcal{P}(^nE_1)$ and on $\mathcal{P}(^nE_2)$ but $\beta \neq \tau_{\omega}$ on $\mathcal{P}(^n(E_1 \times E_2))$.

Proof.

Since E_1 is Banach, $\beta = \tau_{\omega}$ on $\mathcal{P}(^nE_1)$. On the other hand, since p > n, the Fréchet space $\hat{\otimes}_{s,\pi}^n \lambda_p(A)$ is distinguished [8] and then $(\mathcal{P}(^n\lambda_p(A)),\beta)$ is bornological, so $\beta = \tau_{\omega}$ on $\mathcal{P}(^nE_2)$). Let us see how $\beta \neq \tau_{\omega}$ on $\mathcal{P}(^n(E_1 \times E_2))$. The space $\hat{\otimes}_{s,\pi}^2(E_1 \times E_2)$ is complemented in $\hat{\otimes}_{s,\pi}^n(E_1 \times E_2)$ [7] and the formula at the end of counterexample 3 gives that $\ell^1 \hat{\otimes}_{\pi} \lambda_p(A)$ is complemented on this space. Since $\ell^1 \hat{\otimes}_{\pi} \lambda_p(A)$ is not distinguished (it is distinguished if and only if $\lambda_p(A)$ has the density condition [6, 2.4] and because of our assumption on A, $\lambda_p(A)$ has not this condition), we have that $\hat{\otimes}_{s,\pi}^n(E_1 \times E_2)$ is not distinguished which gives that $(\mathcal{P}(^n(E_1 \times E_2)),\beta)$ is not bornological and then $\beta \neq \tau_{\omega}$ on $\mathcal{P}(^nE_1 \times E_2)$.

Remark 9 If we denote by $\mathcal{H}_b(E)$ the space of all entire functions of bounded type on a complex locally convex space E endowed with its natural topology τ_b of uniform convergence on bounded subsets, then the arguments in the proofs of Counterexample 1 and Theorem 2 show that the equality $\tau_0 = \tau_b$ on $\mathcal{H}_b(E)$ is not a 3SP in general, but it is a 3SP for Fréchet spaces with respect to closed subspaces. The argument in Counterexample 3 also shows that the equality $\tau_0 = \tau_\omega$ on $\mathcal{H}(E)$, the space of all entire functions on a complex locally convex space E, is not a 3SP. For the definition of τ_ω on spaces of holomorphic functions see [12, Def. 2.33]. Note that $(\mathcal{P}(^nE), \tau_o)$ (resp. $(\mathcal{P}(^nE), \tau_\omega)$) are complemented subspaces of $(\mathcal{H}(E), \tau_o)$ (resp. $(\mathcal{H}(E), \tau_\omega)$) [12, 2.40 and 2.41]. According [3] $\tau_0 = \tau_\omega$ on $\mathcal{H}(E)$ for Fréchet spaces E is a 3SP for closed subspaces if and only it it is a 3SP for closed subspaces on $\mathcal{P}^n(E)$ for all n.

References

- [1] J. M. Ansemil, F. Blasco, S. Ponte, *About quasinormability and topologies on spaces of polynomials*, J. Math. Ann. Appl. **213** (1997), 534-539.
- [2] J. M. Ansemil, K. Floret, *The symmetric tensor product of a direct sum of locally convex spaces*, Studia Math. **129** (1998), 285-295.
- [3] J. M. Ansemil, S. Ponte, The compact open and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. 51 (1988), 65-70.
- [4] J. A. Barroso, *Topologias nos Espaços de Aplicações holomorfas entre espaços localmente convexos*, Anais Acad. Bras. de Ciencias **43** (1971), 527-546.
- [5] K. D. Bierstedt, J. Bonet, *Density conditions in Fréchet and DF-spaces*, Rev. Mat. Univ. Complut. Madrid **2** (1989), 59-75.
- [6] K. D. Bierstedt, J. Bonet, Stefan Heinrich's Density Condition for Fréchet Spaces and the Characterization of the Distinguished Köthe Echelon Spaces, Math. Nach. 135 (1988), 149-180.
- [7] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997), 165-173.
- [8] F. Blasco, Polynomials on Köthe echelon spaces, Arch. Math. (Basel) 70 (1998), 147-152.
- [9] J. F. Castillo, M. González, *Three-space Problems in Banach Spaces Theory*, Lecture Notes in Math., vol. 1667, Springer, Berlin, 1997.
- [10] A. Defant, A. Peris, Maurey's extension theorem and Grothendieck's problème des topologies, J. London Math. Soc. (2), 58, 3 (1998) 679-696.
- [11] S. Dineen, Holomorphic functions on strong duals of Fréchet-Montel spaces, Infinite Dimensional Holomorphy and Applications (M.C. Matos, ed.), North-Holland Math. Studies, vol. 12, North-Holland, Amsterdam, 1977, pp. 147-166.
- [12] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Studies, vol. 57, North-Holland, Amsterdam, 1981.
- [13] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monograph in Mathematics, 1999.
- [14] K. Floret, Natural norms on symmetric tensor products of normed spaces. These proceedings.
- [15] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1995).
- [16] S. Heinrich, Ultrapowers of locally convex spaces and applications, I, Math. Nachr. 118 (1984), 285-315; II, Math. Nachr. 121 (1985), 211-229.

- [17] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
- [18] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345.
- [19] G. Köthe *Topological Vector Spaces I*, Springer-Verlag, Berlin, 1969.
- [20] G. Metafune, W. B. Moscatelli, On the space $\ell^{p+} = \bigcap_{q>p} \ell^q$, Math. Nachr. **147** (1990), 7-12.
- [21] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn., Series A, I. Math. 19 (1994), 167-203.
- [22] W. Roelcke, S. Dierolf *On the three-space-problem for topological vector spaces*, Collec. Math. **32** (1981), 3-25.
- [23] R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy. Ph. D. Thesis, Trinity College Dublin, 1980.
- [24] J. Taskinen, Counterexamples to "Problème des Topologies" of Grothendieck, Ann. Acad. Sci. Fenn, Series A, I. Math. Dissertationes, 63 (1986).

J.M. Ansemil

Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense de Madrid 28040-Madrid SPAIN

E-mail address: JM_Ansemil@mat.ucm.es

F. Blasco

Departamento de Matemáticas Aplicadas a Los Recursos Naturales E.T. Superior de Ingenieros de Montes Universidad Politécnica de Madrid 28040-Madrid SPAIN

E-mail address: fblasco@montes.upm.es

S. Ponte

Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense de Madrid 28040-Madrid

SPAIN

E-mail address: Socorro_Ponte@mat.ucm.es