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NATURAL NORMS ON SYMMETRIC TENSOR PRODUCI3  OF NORMED SPACES’

KLAUS FLORET

Abstract. The basics  qf  the theory of symnetric  tensnrproducts  of norrned  spaces and .rorne
appl icat ions  are  presented.

0 Introduction

0.1. Though known for quite  a while to algebraists (at least since  Chevalley’s monograph [C]
in 1956), it was only in 1980 that R. Ryan in his doctoral thesis [RI  introduced  symmetric
tensor products for the study of polynomials on Banach spaces; before Gupta [Cu] had dis-
covered  in 1968 that the space of nuclear  n-homogeneous polynomials on a Banach space
E is a natura1 predual (via trace  duality) of the space of continuous n-homogeneous poly-
nomials on E’ (if E’ has the approximation property). Unfortunately, Ryan’s  thesis was not
published and 1 have  the impression that  many researchers do not  feel  at tracted by symmetric
tensor products and prefer to  use other methods.  I  think,  however.  that  a consequent  (but  not
exclusive!) use of  tensor  products  wil l  give good and new insights  into the theory - exactly as
Grothendieck did it successfully in his “résumé” ([Gro], see  also  [DF]) for the theory of linear
operators. Moreover, there  are already various “metri? results and SO i t  seems to be adequate
to develop a “metric theory” of n-th symmetric tensor products in the spirit of Grothendieck.
Therefore the purpose of this paper is two-fold: presenting a thorough introduction of the
algebraic basics of symmetric tensor products and the two extreme natura1 norms  (the sym-
metric projective norm ns  and symmetric injective norm E,~) in order to facilitate the use of
symmetric  tensor products  and  to prepare a theory of so-called s-tensor  norms the beginning
of which will appear in (F2].

0.2. This paper starts with a study of the algebraic aspects, the norms n,  and E,,  continues
with the duality between E, and n,  and applications to the polarization constants  and finishes
with extensions of polynomials to the bidual. Though many of the results are explicitly or
implici t ly  known,  the thorough construct ion of  the theory gives various s implif ìed proofs  and
also new information - not only for the theory of symmetric tensor products but also for the
study of  polynomials .

0.3. If El,. . . j E,, and F are vector spaces over IK  = IR  or K = 62 the space of n-linear map-
pings cp  : El x ... x E,,  4 F is denoted by L(El,...,  E,,;F). If al1  El = ... = E,,  =  E
Nachbin’s notation  L(‘E; F) := L(E, ,E; F ) will be used;  ‘E  should be read  as  n-times

n
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E. The subspace  L,(“E;  F) C L(“E;  F) is the space of those <p  which are symmetric, i.e.
‘Pb1 , . . . ,x,) = cp(xn(r),  . . . ,~n(~))  for al1 permutations q E S,,  (the group of permutations of
{l,... ,n)).  If the Ej and F are normed spaces the subspaces of continuous n-linear maps
will be denoted by L(E1,.  . . ,E,;  F), L(“E;  F) and &(nE;F) respectively; E’ :=  L(E;K).
The closed  unit ball of E is BE.  If G c E is a subspace  IE : G 3 E and Qc : E ---+  E/G
denote  the natura1 injection and quotient mapping. E g  F means topologically isomorphic,

E =!= F isometrically isomorphic, E 4 F denotes  an (iso-)metric injection and T : E ’- » F a

metric  surjection (i.e. T BE=;,).  The set Ck is := {- 1, l} if R = Iw and n  is even and
:= { 1) otherwise.
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3/97 at  the Mathematics Department of Unicamp, Campinas,  where 1 had also the opportunity
to present it in a series of lectures; 1 thank the Functional Analysis Group, in particular
M. Matos, for the invitation and the foundation FAPESP of Sao  Paulo  for support. 1 am very
grateful for helpful discussions  with J. Ansemil, A. Defant, S. Dineen, P. Harmand, U. Harms,
M. Matos, and J. Mujica. 1 also thank C. Boyd and R. Ryan for allowing me to reproduce
some arguments (see  4.5.) from their not yet published paper [BR].

1 The algebraic theory of symmetric tensor products

1.1. If n E N and El,... , E, are K-vectors  spaces, then an n-fold tensor product  (Ho,  ~0)
(where HO  is a Kvector  space and ~0 E L(E1,. . . , E,;Ho))  is defined by the following uni-
versa1 property: for every K-vector  space F and every cp  E L(El , . . . , E,,;  F) there  is a unique
T E L(Ho;F) with cp  = T 0~0. The pair (Ho,~o) is unique up to isomorphisms and exists.
The following notation  will be used: @(El,.  , E,), @I;=,E,,  Ei  @.  . . @E,,

@“E  := @(E >...> El and  @3(x, .“‘, x,)  =x1  @...@X,~,

as well as @Yx := x@. . . @x.  TO distinguish it from the symmetric tensor product  (which will
be defined and constructed in a moment) it is reasonable to cali  &‘E the full n-fold tensor
product  of E. The isomorphism

L(E1  ,...>  E,;F)  = L@‘&E,;F)

will be denoted by cp  -+ ‘pL.  Clearly, @‘E  = E.

1.2. The symmetric tensor product  will linearize only symmetric n-linear mappings.

Definition. Let E, H be K-vector spaces and ~0  E  ,Cs(“E;H).  The pair (H,wo)  is called  un
n-th symmetric tensor product  of E if for every Kvector  space F and every cp  E  L,s(nE;  F)
there  is a unique T E  L(H; F) with cp  = T o ~0.

The algebraists cali (H,w)  also an n-th symmetric (tensor) power of E. If it is clear
which n  E N is used, the adjective “n-th”  will be omitted. The universa1 property immediately
implies the following aftirmations for fixed n:
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(1) If (Ho,t#o)  is a symmetric tensor product of E, then spany~(E~)  = He  and, for al1 F
andTt,T2éL(Ha;F),onehas:  Tt =T2ifandonlyifTl  o~o=T~o~~o.

(2) If (Hj,vj) are two symmetric tensor products of E, then there  exists a unique isomor-
phism tonto)  S E L(Ht ;H2)  with ~2 = S o ~1  and ~1  = S-t  o ~2.

(3) Let WO,  VO) be a symmetric tensor product of E and S E L(Ha;Ht)  and T E  L(F;E)
isomorphisms. Then (Hl ! S o ~0 o (T, . , T))1s  a symmetric tensor product of F.

The statement (2) gives the same  kind of uniqueness as for the full tensor product. Once
one  has existence,  i t  is  therefore reasonable to speak about the (n-th) symmetric tensor prod-
uci of E.

1.3. TO prove the existence, the following operation will be helpful: if rl E S,, then the n-linear
map E”  t  @‘E  defined by

(X1 )“‘)  x,) “$X~-l(l)~.“‘~X,,-l(n)

has a linearization @‘E  --+ @‘E  which will be denoted by z ycf  zq.  It is easy to see  that
(23)” = zooq. The use of rl -’ in the definition instead of TJ  is sometimes practical (see  also
[Gre]). For x1 ,...,x, E  E define

x1 v . . . VX,  := 1 C  Xq-l(,)  @“‘@Xq.-i(n)  E @“E
n! qcsfl

and for z E @YE

which clearly is the linearization @“E --+ &YE  of the n-linear (even symmetric) map V :

En  ---+ @Y’E.  We shall show that (im$,V)  is an n-th symmetric tensor product of E. Note
that o$ ( CYX)  = @x.

1.4.  Before doing this ,  let  us state the

Polarization formula. Let E be a K-vector space, (Q,  P) a probability  space, ~1,.  . . , E, :

Q  +  K,functions  in b(P)  which are  stochastically  independent, centered (i.e.  sn Ek  dP = 0)
and normalized  (i.e.  sn lEk12dP  = 1). Then, for every  x0,x1:.  ,x,  E  E

1
x1 v...vx,  = 7 Jn.  n

Q(W)...E,(W)@”  X0+  tek  k P ( d w ) .
[ k=,-x]

It is clear that the Bochner-integra1 exists in the finite dimensiona1 subspace  @[spari  (x0,.  . .,

x,}] of @YE.
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Proof. The proof is straightforward: if pk is the distribution measure on K of &k,  then using
to:= 1

Jn.  ‘P(dW)  =

since the iterated integra1 is 1 if {kt  , . . . , k,} = { 1,. . . , n} and 0 otherwise.

Many special  s i tuat ions are of  interest :

?

(a) P the countable product measure on R := IK?  of the normalized Ga&measure  on IK  and
~k being the k-th projection;

(b) the Rademacher functions: 62  := { - 1, + l}”  with P the product measure of i (6-t $-6+x )
and Ek := rk the k-th projection;

(c) more general - the n-Rademacher functions which were tìrst  used by Aron and Globevnik
[AG] for the study of polynomials: Substitute { - 1,  l} by the n-th unit roots hk  := exp (y  ),
hence  Q is the set {ho,. . . ,&-l}N and &k  := SC is the k-th projection. These  n-Rademacher
functions are often useful in the complex theory of n-linear mappings and polynomials since
they are n-orthonormal, i.e.

J “k, . . SE,,  dP =
1 ifk, = . . . = k,,

R 0 otherwise

(P being  the product measure of A  (&, + + &J),  hencc

and satisfy a Khintchine inequality (see  [ALRT], [FMI  and [MeT]).

1.5. Using the Rademacher functions one  obtains the classica1 polarization formula

x1 v...vx,,  = -n;2,, c  6,...6,@
&,,...,&E{-l;l}

and in particular the

Corollary.

O$(cyE) = span{x, v.. . Vx,~x~EE}=span{~‘lx~xEE}=

= {wv3~‘/m E  N,  x1  E  E, a, E  CL }

where C&  := {-1,l)  ifIK=R  dun n  is  even and Ck  := {l} otherwise.
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Now everything is prepared for the

Theorem. (imo;, V) is an n-th symmetric tensor product of E.

The embedding imo;  + @“E will be denoted, if necessary,  by r$.
Proof. The unique factorization of every <p  E L,(‘*E;  F) through a linear 7’ E L(imoE;  F) has
to be verified. Clearly T := cpL  o tE satisfies

TO  v(x,,....x,) =  T(x, v...vx,,)  =q+ +,(q  @...@x,,)”  =
( )

= +&q+((XI  @G...@Qx,,)~)  =<p(x,....,x,)

since  <p  is symmetric. If the mappings Tl,  T2 E L(imoE;F)  satisfy Tl  o V = T2 o V, then
Tl  (@%)  = Tu  for al1 x and hence,  by the corollary,  Tl  = T2. 0

Though there  are clearly other “realizations” of the n-th symmetric tensor product we
shall - if not otherwise stated (and if the full tensor product @‘E  is fixed) - consider  the
subspace  imo: c @PE together with V as & n-th symmetric tensor product: @*l’E  := imo;.
It  is obvious that @‘>$E  = @‘E  = E. Note that oE  : @PE  + R”,‘E  is a projection and
oE  o E = V, but clearly @ #  tE o V if n > 1. It is easy to see  that if (Hu,vu) is an n-th
symmetric tensor product and (Hl,  ~1) a full n-fold tensor product of E, then

defines the natura1 injection J : HO  ---+  Hl

1.6.  The universa1 property of  the n-th symmetric tensor product  gives an isomorphism

I!,~(“E;F)  -, L(@PE;F), cp  + q+” := cpL 01;;

its inverse is T -++ T o V. Since  oF  is the linearization of V it follows that the embedding

L(c@;‘~E;F)  = L,,(‘*E;F)  clr  L(‘*E;F)  = L(@E;F)

is the mapping T u-t  T o oi.  For F = IK  one  obtains

(oE)*  : (,‘71,‘E)*  = L,Y(nE)  3  L(‘!E)  = (,“E)*.

1.7. If T E L(E;F),  then there  is a unique S E L(wO”~~E;W~F)  with S(@“X)  = @Tx for al1
x E E: just take S := @‘T 01%  and note that imS c &“‘F;  uniqueness comes  from the fact
that the elements #x span the space @f*.‘E.  Notation: c$Y.~T  : cWsE +  @““F.  It is easy to
see  that @.ST(~t  V...Vx,)  = Txl V-..VTx,,  and ker@“T  = oE(ker@‘T).

1.8. It is worthwhile to note, see  [Cl, that dim~(@YK’)  = ( J1~~~l).

1.9. The elements in W’E  C cVE are called symmetric.
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Remark.

(1) z E  @“E  is  symmetric if and only if z = $l  for al1  q E  S,.

(2) Letxl,...,xn  E  E\(O).  Thenxl@... @x,,  is symmetric if and only  if spari  (x1,  . . . ,x,}
is one-dimensional.

proof.  (1) is immediate; for (2) assume that x2 $ Z span {x1  } and t&e x; E  E*  with  (x;  ,xk)  =  1
forallkand(xT,x2)=0.  For<p:=x;¢9...~xnE(~nE)* one  gets the contradiction 1 =
(cP,xl~x2~...~x,)=(<P,X2~X~~xg...~xX,)=Osincex~~x2~x3...~x,=x2~xxl~
x3 8..  @3x,,  by (1). 0

1.10. The symmetric tensor product  @YJE  is a complemented subspace  of the full one  cYE
with the projection oE. Vice versa, take F := JJy=,  E, and I, : Ei + F and P,  : F ---+  E,  the
natura1 inject ions and projections,  then

(this  construct ion is ,  for  IZ  = 2,  due to Bonet-Peris  [BP] and was successively extended to the
present form by Defant-Maestre [DM], [AlFl]  and Blasco [Bi]). It follows that &&E,  is
isomorphic to a complemented subspace  of @‘JF (with “natura]” mappings, which is impor-
tant  in view of the topologica1 si tuat ion).  In part icular:  @VE  is  isomorphic to  a  complemented
subspace  of @f7~sE”.  If E Z E”,  then @“E and WrE  are complemented in each  other. One
can even show more [DD]: if E Z E2,  then UE  Z cW’E; this result is also a consequence of
the formula ([AnF])

(again  with natura1 mappings and the convention @‘“E  := K).

1.11. Blasco [B2] showed  that @‘JE  is isomorphic to a complemented subspace  of @$!”  E
- also  with natura1 mappings; in particular: E = @‘JE  is complemented in al1 @VE. The
dual result (i.e. for n-homogeneous polynomials) was proved in 1976 by Aron-Schottenloher
[ASI.

1.12. Reca11 that q : E t  F is an n-homogeneous polynomial (notation: q E  Pn(E;  F)) if
there  is a cp  E L(nE;F)  with q(x) = cp(x,.  . ,x)  for al1  x E E; notation: q := cp’  := <p  o A where
A(x) := (x,  . . . ,x).  It is clear that also the symmetrization <p,,  E L,(“E;  F) of cp  defined by

satisfies q(x) = cps  (x, . . . ,x).  Note the relation

(*)
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The polarization formula implies that there  is a unique  q E L,7(nE;F)  with q = qA.  The
following notation  will be used:

P”(E;  F )  =  L,(nE;F) =  L(@‘.“E;  F )

4 --+ 4 u)  qL  :=  (#’

<p us  q+.+(PLt;.

Applying q  = qL  o V to the polarization formula gives

4(x1,...,&J  = ~Jn&,(M’)-E,(W)  q
(
XofCg, QdW)Xk P(a’w) =

-3

= ~Cs,..,6,,E{-1,1}81...6nq (xo + Ei=, 6kxk)

forallqEP”(E;F)andxo,...,x,EE.

1.13. If (EJ  , FI) are dual systems of vector spaces,  then (@J=,  EJ,  &$,  F,)  forms a dual system
with the duali ty bracket

(cx;E+43x;, CyIL...~yn)=Cii(x~,yk)
1 J i,J  k=l

If al1 (E,,  , F/) are separating, then (@y=  t E, , @‘&  t Fj)  is also separating (for a proof, by induc-
tion,  reduce to n  = 2). In particular: (cVE>  cVF)  is separating if (E, F) is. Clearly, the restric-
tion  (via tg  x tF> to @VE  x @“$‘F  gives a duality bracket. It is clear that (un,\>)  = (u,v~-‘)
for al1 (LI,  v) E @‘E  x @‘*F  and q E S,,,  whence

(G(U),4 = hG(V))~ (*)

Proposition. !f (E. F)1s  a separating dual  system, then (@C’E,  cW”F)  is  ulso  a separuting
dual  system with the duali ty  bracket

Proof.ForO#uE~n~~EC~nEthereisavE~nFwith1=(u,v)=((3E(u),v)=(u,~nF(v))
whence oF ( V) E BnJ F c @“F  separates u  from 0. 0

In particular: the natura1 map JE  : @“~“E  c+ (@Y).‘F)*  = P”(F)  is injective and

J~(x,V...Vxn)(y)  = ,&(xJ,Y)

JE(@x)(Y)  = (x>Y)“.
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Following the notation  of [DF], the polynomial JE(@x)  will be denoted by @‘x, hence
(@x)(y) = (x,y)“; this notation  is helpful since  the extension of JE to the completion of
&‘JE (with respect to rcY,  see  chap.  2) may fai1 to be injective (see  4.3.). If E is normed, then

JE/  : @“:“E - !P(E)  c P”(E)

(P”(E)  are the continuous n-homogeneous polynomials) is injective. In particular: (@PE,
T”(E)) is a separating dual system with the duality bracket

Having in mind the tensor product  description of the trace  and the trace  duality for linear
operators (see  e.g.  [DF, 2.5. and 2.6.1)  one  may cali this last duality and the duality in the
proposi t ion  trace  dual i ty  as  wel l .

A polynomial q E P(E;I;)  is called of jinite type (notation: q E PT(E;F)) if there  are
(.$,yrn) E E* x F with

It follows that PT(E;F) = (@JE*)  @F and for normed space?  E. F

P’(E;  F) := Pj(E;  F) rl !Pn(E;  F) = (,nl,‘E’)  @F;

for a proof use (@E*)  n L(‘E)  = @V’E’  (which can be proved by induction) and the polar-
ization formula. The relation L(‘*(E,  o(E, F))) n @E* = 8°F  for a separating dual system
(E, F) and the weak topology o(E, F) implies

Pn(E,o(E,  F)) n @‘E*  = @“.“F.

In particular: the weak-*-continuous n-homogeneous polynomials on E’ of finite type are
,c?Y’JE.  These  formulas were first observed by Ryan [RI.

1.14. It is worthwhile to note that 1.6. and the formulas (*)  in 1.13. and 1.12. give that the
following diagrams commute for each  dual system (E, F):

@‘VE J, (,‘V,)* = L,(“F)  3 <p

J
@‘E  - (@“F)*  = LJnF)  3 Cp
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J
&‘E - (@nF)*  = L(“F)  3 <p

where J, and J are just the mappings coming  from the respective duality brackets;  they are
injective if (E, F’) is separating.

1.15. Just for the sake of a certain  completeness of  this  introduction to the algebraic theory of
symmetric tensor products: the addition  formula

(xl+y,)~~~~@(xn+yn)  = 2 (zy@-~@zzn))
Lx{l....,n}

(where zé,  := Xe if e E D and := yp  otherwise) gives

@(x+y)  = i ; Xk.y’z-k
h=O 0

with the definition xkynPk  := :V ‘,’ VsVw  It follows that
k-times n-k-tiwres

k n-h

for allq  E P>‘(E;F) andx,y  E E.

1.16. As a consequence of these  formulas every cp  E Lw(E1,.  . . ,E,,;  F) and every 4 E PG(E;  F)
(where E,,  E and F are rea1 vector spaces) has a unique extension cpC E Lc(Ey,  . . , E,@;  F”)
and q’ E Pt(‘E’;  F”) to the complexification (CC  := G@ iG) given by ($ is as in 1.15.)

qqx,  +ijY  . ...) x,, +iy,) := &{l,  ,,i)i’D’cp(?y  )...) Zf)

q”(x+iy)  := c;=.  (;)i”q”(x”yn-“).

Kirwan [Ki] and Mufioz-Sarantopoulos-Tonge  [MST] studied  the behaviour of the norms
ll<pC/l  and l/qcjl  if the complexifications EJ”  and Fc are equipped with (possibly different)
“complexifìcation norms”.

2 The projective s-tensor norm

2.1. Let E and F be normed spaces. Then the projective norm rc(.  ; %“E)  on the full tensor
product  satisfies

L(‘!E;  F) i L(c$E;F)



(A  means isometrically equal).  .&(??Z;F)  C L(YE;F)  has the induced  norm. For the natura1
norm

lldFyE,F) :=  SUPM~NF I x E RE)
of a continuous n-homogeneous polynomial q E  !P”(E;  F) one  has

Ilh?“(E;F) ISUP{I/~(XI,...,xn)IIF  I4,~~.,& E&) =
= 11411L.~(%F> 5 ~Ilsll!P~~(E;F)

by the polarization formula. It follows that the n-th polarization constant  of E defined by

c(n, E) := sup  { Il~ll~(~)  1F normed,q  E  B~j~(E;F)}  =
= SUP  { IML,(“E)  14  E &FyE)}

is < 5. It is well-known that c(n$t)  = $ and c(n$i)  = 1 (Harris [Ha] comments  in the
Scottish book, that this can easily be deduced  from results of Kellogg 1928 and from van der
Corpurt-Schaake 1935, but that also Banach [B] proved it). In particular: c(n,H)  = 1 for al1
Hilbert spaces;  conversely, Benitez and Sarantopoulos [BeS]  showed  that each  real  normed
space with ~(2,  E) = 1 is pre-Hilbert. For other examples see  [SI,  [D2], [D4].

It follows that Ilqll  #  [l@ll  ’m g eneral. If rc)  F denotes  the restr ict ion to @“>‘E of the projective
norm on @VE,  then

Il$  : @iE +  &Jii:Ell  =  1

(if E f (0)).  Since  qL(o$(z))  = (4)L(~)  E F for al1  q E P”(E;F)  one  obtains

IIYIIL,(‘B:F)  = IlqLIl~(~~i~~~Fj

This  shows that  nl,  is  not an appropriate norm fora metric  theory of  continuous rz-homogeneous
polynomia ls .

2.2. For this one  needs a norm 7c,,  on @‘JE such that

!P(E;  F) A L(&yE;  F) .

The key calculation is the following:

Il&?“(E:F) = SUP{ 114(~)llF  j x  EBE}  = SUP{ lIclLW411F  / x EL}  =

= sup{  llqL(z)IIF  1 z E W’ id}

(where A”  is the “diagonal” map E ---+ @l’E  defined by x 6 @x).  For the absolute con-

vex hull C := l?(A”  ;E) one  has spanC = @“L’E  (by Corollary 1.5.). The Minkowski-gauge
functional of C on @“JE  will be denoted by n,(  .; @V>‘E)  (or shortly n,; notation: &rE)

It is clear that
ll~ll~yw) = sup{  Ilq%)Ib  1 Q;@-‘E) i ‘}
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Since  (@“JE,P”(E)) is a separating dual system (see  1.13.) this implies that rcY  is even
a norm. 7~,~  is called the projective s-tensor norm (or shortly: the projective s-norm). The
completion of @JUVE  will be denoted by gl:E.

The following properties of rrY can be proved in rather the same  way as the analogous
ones for n: on @‘E  (see  e.g. [DF, $3 and $51) for al1 normed spaces E:

Proposition.

(1) For ull  normed spaces F one  has

!P(E;F)  L L(&fE;F)  ;

in particular: P(E;  F) is complete if F is and

in this  case.

This “universa1 property” of 7c,  can also be formulated as follows: 11q(x)llF  < cllx/l~  for al1
x E E if and only if ljqL : &:‘E  --s FI1  5 c.

(2) n, is  the unique seminorm C C  on @“l’E  which satisfies

(@‘z,sE,~)’  L !P(E)

(3) ~c,~(C~~X;@~‘*~“E)  = Ilxll”forallx  E  E.

(4)

= inf

m E  N,z  = cJ!l h, CVX~
1

=

z = C,, h, CYx,  (n,  - convergente)

Note that h, @“x,  can be written as 6, @,u~x~  with 6, E Ck (see  1.5.) and /hIII/x,lln  = [l~~x,I/‘.

(5) The open unit hall  with respect to 7~,  is r(A” BE).  In particular: ifQ : E --+  F is a

metric surjection  (notation: Q : E A  F), then

1

( 7Cy  respects  metric  surject ions”).

This justifies the name “projective”. But it does not respect metric injections, see  2.9.
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(6) IfT  E  L(E;F),  then

(3,  satisjìes  the metric mapping  property “).

(7) x,$  is,finitely  generated in the following  selzse:

n,(~;@‘*  ‘E) = inf{x,(z;@7.SM) 1 M  E FIN(E),z  E Bn”M}

(reca11 from [DF] the notation  FIN(E) for the set of @ite-dimensiona1  subspaces of
E).

See  2.5. for the somehow dual situation. The norm in the completion GirE  will also be
denoted by 7c,$.

(8) IfK  C g:rE  is compact and E > 0, then there  are a zero-sequence (xj)  in BE  and a
compact set D C ei  with sup 11011  5  (1 -te)  supx,(K)  such thatfor every z E  K there  is
a (hj)  E  D with

Z = C  ?Lj @"X,j.
j=l

(9) In particular:  every z E  sE;‘E  has a representation

with CIJ.jllIxjlln  < mand

(10) For every compact set K C &zrE and E > 0 there  is  a compact set C C E with sup IlCll <
(1 +~)(supz,~(K))‘/”  and lY(AnC)  > K.

2.3. The “full” projective norm on @“E can be calculated by

n(z;@E)  =inf i fi  IIx~,~II  1 z= ixk,l  @...@x+}
k- I m= 1 k=l

and therefore n(z) < n,(z) for al1 z E @‘JE.  On the other hand it follows from the definition
and 2.2.(3)  that
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hence  V : E”  --+ &fE  is continuous and therefore also its linearization 0;  : @E  -+ &fE.
From 1.10. one  obtains

and this mapping is just q + 4. Altogether:

Proposition. Let E be a normed space. Then

(1) IItE  : &fE  --+  @ElI = 1 (ifE#  (0))

(2) 110;  : @;E  --+ &;Ell = c(n,E)

(3) &fE  is  a topologically complemented subspace  of @zE.

In particular: rc],  5 7c,  < c(11, E)&  and n, #  ~1, in general but rcn,  = nl,  for Hilbert spaces.
For z E @“JE  it is not difficult to see  that

7r(z)=inf

and that 7~1, is the quotient norm of OE : @RE  --+  cVE.

2.4. It is well-known (see  e.g. [DF, 5.8.1  for 12 = 2) that GnT : &iE  + 6$F  is injective if
T E L(E;F)  is injective and E is a Banach space with the approximation property. Hence
2.3.(3)  implies the

Corollary. Lj E is a Banach space with the approximation property  and T E  L(E;  F) is
injective, then &tT  : &irE  +  c$$~‘F  is also injective.

2.5. Denote  by COFIN(E)  the set of closed  finite-codimensional subspaces of a normed
space. It is clear that 7c,  (z;  @PE)  > sup{n, ((@PG)  (z);  @JE/F)  } (where the supremum
is taken over al1 F E COFIN(E)),  but - ’m g eneral - there  is no equality: as in Example 2 in
4.3. below this can be deduced  from the respective fact  for full tensor products (see  e.g. [DF,
16.2.1).

Proposition.  If the normed space E has the metric  approximat ion property,  then

x~(z;@“‘~E)  = sup{rr,(  (cS?~~@)(Z);@,~E/F)  ) F E COFIN(E)}.

Proof. For E > 0 take a representation z = zy=t  hj @“xj  with C lhj]  ]lxjl(l  5 (1 + E)~c,(z)  and
- using the m.a.p. - a T E L(E;E)  of finite rank, IITI]  5 1 + E and Txj  = xj (see  e.g.  [DF,
16.9.1).  Then T = ? D  Q&, and
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which implies the result. cl

2.6. A polynomial q E  P(E) is called nuclear  (notation: q E !P$,(E))  if there  are h,  E IK
and ,& E E’  such that

q(x)  = c L(~n,,4” for al1 x E E
m=l

with  Z=, ILIII-klln  < 00,  i.e. q = CZ=, hm@‘.&  (see  1.13. for @“).  It is well-known and
easy that

l1411nuc  = ini( iI  IbIlI-&X  / 9 = i, h..Bni.J

is a nom and (i&,,  Il Ilnuc) is a Banach space. The description 2.2.(9)  of Q?ijE’  shows
that the map J’&  (see  1.13 .) extends to a metric surjection

TS, : &;rE’ A  Z?&,(E).

Reca11 6PE’  = PT(E) from 1.13.. In 4.3. the injectivity of this map will be investigated.

2.7. For a set D c P(E)  = (&fE)’  = (&ifE)’  the following are equivalent if E is a Banach
space (Mackey theorem for polynomials):

(a) D is norm-bounded.

(b) D is o(P(E),%~~E)-bounded.

(c) D is o(P(E),@PE)-bounded.

(d) {q(x) 1 q E D} is bounded for al1 x E E.

The proof is immediate from this kind of theorem in IL and the polarization formula.

2.8.  The construction in 1 .lO. shows that  the ful l  project ive tensor product  @E i s  i somorphic
to a complemented subspace  of @ifE”. The formula for @P(F  c9  G) at the end of 1.10. holds
topologically (see  [AnF])  which implies that &fE  2 @E if E 5 E2  (a result which is due
to Diaz-Dineen [DD]).

2.9. The construction 1.10. is also quite  useful to transfer counterexamples from it to z,;
example: if G c E is a subspace, but the norm @iG is not equivalent to the induced  norm
from @ICE,  then the same  holds for @XSSGn  and @kfE”:  the projective s-tensor norm does
not respect subspaces topologically. However, 18~~“‘$E  q @fE” is always an isometry (see
6.7. below), in particular dense subspaces are respected (this can also easily be deduced  from
2.2.12)).

2.10. Blasco’s construction [B2] mentioned in 1.11. gives that @ztE is topologically isomor-
phic  to a complemented subspace  of &rl” E. In particular,  E is isomorphic to a comple-
mented subspace  of %$fE  for al1 n E  N.
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3 The injective s-tensor norm

3.1. The metric theory of full tensor products of normed spaces, due to Grothendieck and
Schatten treats “reasonable” norms a  on @“(EI,.  . . ,E,)  with E 5 cx  < 7~ and allows, for ex-
ample, to treat interesting subclasses of multilinear forms or operators via duality. TO follow
such strategies for polynomials, x was substituted by 7c,  since  the latter is more appropriate
for polynomials. In this sense, the injective s-tensor norm E, on @FE  is defined to be the
induced  norm from

J : @P”E  Y p(E’)  A (&;E’)’

hence
E.&;  @PE) := I(J(z)l(p(E’) = sup{((z,@“.xf))  1 x’  E BE’}  =

= sup  (cg1  k&hJn( id E BE/
i 1 1

if z = Cr&  hk  @‘kk.  Notation: c&;~E  and %iiSE  for the completion. From the commutative
diagrams (see  1.14.)

and the same  with the roles  of E and El  interchanged one  obtains from 2.3. the

Proposition.

(2) Ilo; : @E  ---+  @‘El/  = 1 ifE #  (0)

(3) @%“E  is a topologically complemented subspace  of @E.

If ~1,  denotes  the restriction of the injective norm E of the full tensor product  to the sym-
metric one,  one  has in particular

G 5 ~1,  L c(n,E’h;

in particular: E, = &ls  for Hilbert spaces. For equality in (1) see  5.3..

3.2. More properties of Ei are collected in the
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Proposition.

(1) E~(&‘x;@PE)  = (~~II”fi~rallx  E  E; inparticulur:  &S  5  x,.

(2) E,~  satis$es  the rnetric mapping property,  i .e .

II @n,s  T : @;fE  -+ @%“Fll  = IIT  : E +  Flln.

(3) If E is a Banach space and T E  L(E;F)  is injective, then

&fT  : &;fE  ---+  G;;F

is injective as well.

(4) VI  : G 4  E is a metric injection, then @‘JI : &fG  &  @E,fE
( ‘kS  respects  metric injections “).

(5) &,(z;@‘E)  = inf{&,(z;@WM)  1 M E FIN(E),z  E CP1
The in$mum  is  a t ta ined .

(6) IfC  C BE/ is <r(E’,  E)-dense, then

E>(z;@“‘“E)  = sup{  ](z,@x’))  1

far  al1  z E  @VE. In particular:
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M} (i.e. E, isjnitely  generated).

x’ E  c}

E.~(z’;@PE’)  =  SLIP{  I(z’,@x)~  ) x E  BE}

far  al1  z’  E  @‘E’  - in other words:

The proofs of these  statements are straightforward; for (6) one  uses that  for z =  cr=  i 3Lk  MO”
xk the function E’ 3 x’ -+ (z,@“d) = xk=i  hk(&,x’)”  is  o(E’,E)-continuous. Reca11 that
D c BE/ is called norming if ]]x]]  = sup{  ](x’,x)]  ) x’ E D} which is equivalent to TD being
@E’, E)-dense in BE/.

However, (6) does not hold for norming C c BE/:  take E = C[O,  l] and C := {& IO < t 5
11, since

c32”c[o,  l] c C[O,  112

one  obtains ~up{](h,@~6,)]  IO  5 t 5 l} = sup{lh(t,t)l  IO  5 t 5 1) but there  are 0 #  h E
’ ‘C[O,  1] which are 0 on the diagonal.

lt  can be seen as in 2.9.  that cS  does  not  respect  quot ient  mappings topological ly .

3.3. A neat application of the basic  properties of E, (in particular its injectivity 3.2.14)) is the
following: it is straightforward from the definition that (for n >  2)

n
Es c hk  @ek;  @“‘e; =maX{(hkl  (k= l,...,n}

k=l



hence .!?k  & &fe$. Dvoretzky’s theorem (P-j  is (1 + E)-’lsomorphic  to a subspace  of every

infinite-dimensiona1 normed space E) implies that [M  & @$;?P;  ‘$ @$fE. It  follows that !,

is finitely represented in @$;‘E  and in !7?(E) & @$fE’; this result is due to Dineen [D3]. In
particular: none of these  spaces  have  proper  type or cotype.

3.4. As in the n-linear case the description of the dual will be crucial. Since E, < K,  one  has

(@‘E)  c (&:‘E)  = Z’“(E).

A polynomial 4 E P”(E)  is called integra1 if qL  E ($$;‘E)‘;  notation  q E y;,(E). It  is clear
that with 11 . IILnt  defined by

P$(E)  becomes a Banach space. Note that it is obvious from the Hahn-Banach theorem and
the fact  that  E,\  respects subspaces (see  3.2.(3))  that  every integra1 polynomial  q on a subspace
G CE has an integra1 extension SE q”,(E)  with Ilqllint = l/q[lint.

Theorem. [Dineen [Dl]]. Let q E  P(E).  Then  q is integrai  ifand  only  fthere  is  LZ  signed
Borel-measure p on Bp  (with the o(E’, E)-topology)  such  that

q(x) = lE (x’.x)“&W
I

for al1  x E  E. Moreover:
/l$llint = min{llpll I Pa.7  in (*Il.

If IK  = (l2  or: R  = IR  and n  odd, then a  hest  measure  ,LI can he  chosen positive, hut  otherwise,
in general ,  not .

Proof. If q (and hence also qL)  has such an representation, it is immediate that llq/lint  5  /IpI/.
Vice versa Z(Z)  (?)  := (@ “x’, z) defines an isometry Z : c$;‘E  v  C(Bp)  and the Hahn-Banach
theorem gives a signed (regular) Borel-measure ,u E C(BE,)’ which extends qL  (i.e.: Z’(p)  =
sL> and IL4  = l/~Lll~~~~E~~. If IK  = lR and IZ is even, then positive measures represent (via (*))
only non-negative q. In the remaining cases  Defant’s proof for the @,-situation  ([DF, 4.6.1)
can be adopted: denote  by D the Dirac-measures, by Mi the probability measures and by
M := C(Bp)’ al1 signed Borel-measures on BE!. Then, by definition, Z’(D) is norming for E,
on W’E,  equivalent ly:

Z’(D)’  = BNe,\E.

For h E BK  there  is a  E BI<  with CP = h (this were not possible if K = B and IZ  even!) hence
hl’(&)  = Z’(&J)  for allx’  E Bp.  Since 0 E Z’(D) if follows that conv(Z’(D))  = r(Z’(D)). The
bipolar theorem and the o(M,C(BE,))-compacity  of Mi give for ci*  := o((@;‘E)‘,  &;‘E)

B( h;,\EJI = Z’(D)“’  = r/l’*  = convZ’(D)O*  c Z’(M])
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For X’ E E’ it is clear that W!’  E @rz,sE’  C L?(E)  is integra1 and lICJnX’Ilinr  = lIx’lln (by
3.2.(6))  hence (by the universa1 property 2.2.( 1))

and also
.i$ : &;E’  b  P&(E) L+ P;;,(E)

has norm 5 1.  It follows that 11qll 5 llqllini 5 ~/q~~nUC. In  sect ion 4 i t  wil l  be invest igated under
which circumstances Ji, is injective, an isomorphism (in) and onto.

3.5. The following example will turn out to be typical: let ,U  #  0 be a signed measure such
that I,u~  is strictly localizable (e.g.  if ,U  is o-finite), then cp,~  E L,,(“L,(R,  l,~l);k(Q, 1~1))  is
defined to be the multiplication

.

Remark.

(2) Ifp isjnite,  then the n-homogeneous “integrating”yolynomia1  qn  dejìned hy

is intesraland  Ilqnllint  = llsnll 5 IPI(Q).

Proof. If h : L(R, 1~1)  --+ L(Q, 1~1) is a lifting (see  e.g.  [Fl,  16.9.1),  then &,,(f) :=
h(f)(w) defines a functional in Bp, hence one  obtains for g = Ca,,,  @J”~~

lIvM(allI.- = Ilx~~nEIIL  5 suP,CR  l &v>c%?*E)l =
= SUP,,Q 1 (@J%!J, mm f8n.z, 1 L E,  (Z  @PLcu)  .

If p is finite and VI(~)  := Jfdp,  then 4: .-.- \VC 0 <PM  which gives that qn  is integral; the rest
is  easy. u

Corollary. For q  E  l?“(E)  the  fo l lowing s ta tements  are  equivalent:

(1) q is  integrai.

(2) There  exists  a signed,finite  measure ,LI  on some R and T E  L(E;  L-(IpI)  with

q(x)  = /j!T4(w)!“dW

far  al1  x E  E.
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(3)  As in (2),  hu t  wi th  a  s igned  Bore1  measure on a compact  set .

In this  case:
llqllint = rnin(llpll lITIIn  1 p,Tas  in (2)) =

= min{...  1 . ..(3)}

Proof. (2) implies (1) and Ilqllint  < 11~11  II  RE:” TII = l/pll IITlln.  If q is integral, then define

T : E 4 C(BE,) and Theorem 3.4. gives a representation (3) with Ilqljint  = llp\l  lITljn. 0

In other words:  q factors through the integrat ing polynomial

q : E r, L-(l,ul)  4n,  IK.

Conceming positivity of p the same  statements as in 3.4. apply; in particular: if IK  = @ the
measures in the corollary can be chosen posit ive.

3.6. Define  for a normed space and the canonica1 mappings 10 and J1  the mapping Q by

note that JO  is onto and J1  an isometry (in). It follows that the Bore1  trunsform  B = 0’ factors

B : P”(E)  J;, (&;E’)  = CF$(E’)  Jo,  (@$;E’)’  1  !Pn(E’)

and Ji is a metric surjection and J,$  injective. In other words: imB = !E$,(E’) (an observation
from [CZ]). Note that J,$  and J{ are both norm-norm and weak*-weakk*  continuous. For
cp  E !P(E)  the integra1 polynomial B(cp)  E P”(E’)  can be calculated as follows:

B(q)@) = (J; oJ;(q+@O”x’)  = ((P,@x’)

(see  1.13. for the notation  @x’).

3.7. The statements of 2.8. and 2.10. hold also for the injective norms: @zE  is isomorphic to a
complemented subspace  of &;“E”  und these  two spaces  are topologically isomorphic if E g
E2 (see  [AnF]).  It was observed in [AnF]  that a careful check of Blasco’s construction [B2]
gives also that  @E;“E  is  topological ly  isomorphic to  a complemented subspace  o f  c?$T”~E;  in
particular: E is isomorphic to a complemented subspace  of &fE  for al1  n E N.

4 Duality and the approximation property

4.1. If E is a normed space, the definition of E,~  (and 3.2.(6))  give that the natura1 mappings
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are metric injections. The polynomials in &i,iSE’  C T”(E) are usually called upproximable.
How is  the dual  s i tuat ion? When are the mappings

J; : @;;E + (@fE’)  = !F$(E’)  c !P”(E’)

Jp  : .;fE’ + (&;“E)  = 9$(E)  c !Pn(E)

injective or even metric injections, when are they surjective?

4.2. The injectivity and surjectivity can easily be deduced from the analogous properties of
the full tensor product. Here the result is as follows:

Theorem. Let El,. . , E,-l  be Banach spaces #  (0).

(1)  E I , . . . , E,- 1 have  the approximation property if and only if for al1  Banach spaces E,
(or only separable reflexive  E,,)  the canonica1 map

is injective.

(2) E;,...,E;-, have  the Radon-Nikodým  property (=: RNP) if and only iffor  al1  Banach
spnces E, the canonica1 map

~~,,=lE~  +  (G&=lEj)’

is  surject ive.  In this  case i t  is  even a metric  surject ion.

Proof. These  results are known. Proofs for n = 2 can be found e.g.  in [DF, 5.6., 21.9., 16.5.1
- and the general case can be deduced from this: For (1) use [DF, 4.3.(2)]  and

E,&(E&&  . . .)  ---+  E,&(E&.  . .) --+  El  &(E&E&.  . .))  +

+ E,&.&E,

and, for the other direction, that the condition implies that %E,l,  Ej has a.p..  For (2) look at

&(E;,... ,E;>  -3,  &(E;,...,E:-2,(En-,  @&)‘)
1

+ .‘. A  (@E,j=IEj)‘. (*)

For the converse note that  the condit ion implies that

n 1 /- I n
(B.&lEj)  @ITE,  + (@E,j=lEj)

I
(**)

is always onto, hence  (@g,L,Ej)’  has RNP and SO do al1 Ej (for j = 1,. . , n - 1) since  they

are complemented in ( CO$  t Ej)‘. 0

In particular: &$E  has the approximation property if E has it and (6zE)’  has the RNP if
E’ has RNP (use (**)  of the foregoing proof for this). Complementation of the symmetric in
the full projective tensor product and Blasco’s results cited  in 2.10. and 3.7. give the
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Corollary. The Banach space E has the approximation property (resp. Er has RNP) ifand
only if &ifE  has the approximationproperty (resp. p;,(E)  = (&$iSE)’  has RNP).

The result about the a.p. is from [Mu~].  Since (C~$[Z)’  does not have  the a.p.  (for n = 2
this is the famous result of Szankowski, the case n > 2 easily follows from this) 2.8. implies
that also (&fl!2)’ = p’(ez)  does not have  the approximation property. Note that &E,fE  also
has the a.p. if E has it since  this result is true for 6iE  (see  e.g.  [Ko, $44.5.(7)]).

4.3. The natura1 maps &irE  + S?“(E’)  and %z(E’ + 5?“(E)  have  ranges in 6i,rE  n
(&!E’)’  and ~$$z,rE’  n (@$rE)’  respectively, hence the injectivity of Jg  and JET  (from 4.1.) is
equivalent to the injectivity of 6::. + ~~~~“. respectively. Since certainly the diagram

(natura1 mappings)  is  commutative,  4.2.( 1)  gives the

Proposition.  If E is  a  Banach space with the approximation property ,  then,  for  al1  n  E  N, the
natura1 map

s;;E +  6;,rE

is injective.

Note that &!fE  4 CP”(E’)  and &z,FE’  4 !.?“(E).  For the nuclear polynomials (see  2.6.)

it follows that 6$rE’  L In,,(E)  holds if E’ has the approximation property; in particular:

S&(E)’  1 5!“(E’)  in this case-a result which is due to Gupta [Gu] in 1968 (see  0.1.).
IS  the condition of E having a.p. in the proposition necessary?

Example. Let P be a Banach space without a.p.  such that PB,  P = P&  P holds topologically
(Pisier [Pi] has constructed such spaces).  Itfollows that 6$P  --+  &!~‘P  is injective, hence
the converse of the proposition is false for n = 2. However;  un  example like Pisier’s spaces
P does not existfor n >  3: John [J]  has shown that a Banach space E with @E g  @$E  for
some n > 3 isjìnite dimensional.

Example. Let El,.  . . , E,,  be Banach spaces  .such  that ~~,j=, Ej -+ &e,,=l  Ej is not injective
and take F,  :=  fl;=,  Ej. Itfollowsfrom the construction in l.lO.,  the metric  mappingproperty
of Cs  and 7c,  and the continuity  of OF,,  that
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is not injective. Take now (El,.  . . , E,,) = (IM,. . . , K, E, E’) with un  E without a.p.  such that
E S  E x K (far  example E = G@BCz  and G without a.p.)  one  obtains that F,,  Z P-*  x E x
E’  Z E x E’  hence G :=  E x E’  has  the property that

is  not injective for al1 12 > 2.
It is not known whether the injectivity  for som.e  n  2  3 (or al1  n)  implies the a.p..

4.4. If (F, G) is a separating dual system of normed spaces  and the natura1 map

%;‘rSF  ---+  P”(G)  = (&‘rsG)

is injective, then (using 1.13.) (6$‘F,  @l’G)  is a separating dual system. In particular

Corollary. Let E be a Banach space. If E (resp. E’) has the approximation property, then
@irE,  @‘JE’) ( resp . (%irE’,  @“JE))  is  a  separat ing dual  system.

Jus t  one  appl icat ion of  this  resul t :

Proposition. [Ryan [RI]. Let E be LI  Bunach  space with the upproximution property such
that !P”(E)  is reflexive.  Then every  q E  CP(E)  is o(E,E’)- c o nt inuous on bounded subsets  o f
E .

Proof. The fact  that (D := cP~E’,G~:‘E  =: G) is a separating dual system implies that
o(G,D)  is a Hausdorff topology on G which (by the reflexity of G) coincides  with o(G,  G’)
on bounded = o(G,  G’)-relatively compact sets.

Now take a bounded net (x,) in E with o(E,E’)-limit  x. Then (@‘xa,z’) + (@“x,z’)
for every Z’  = Eh,, @‘&  E D = @V’E  C !P(E)  = G’; hence (by what was just Said)  @xa
@G,  G’)-converges  to Wx,  i.e. for al1 q E G’ = P’*(E)

q(xa)  = (qL,cYxa)  ---+  (sl;,c&K)  = q(x).

0
The space P”(E) .1s  reflexive for example in the following cases:  E = P,  (if n < p < 00;

see  [AlFl]  and [GoJ]) or E = T, the origina1 Tsirelson space (see  [AAD]).  Note that the claim
of the proposition holds also for the non-reflexive space cg  since  al1 q E T’(ce)  are weakly
sequentially continuous (due to Bogdanowicz [Bo] and Peiczynski [Pel, see  also [AlFl])  and
the bounded sets in cg  are weakly metrizable.

4.5. The diagram of natura1 maps
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is commutative (see  1.14.). Clearly, if J is surjective, Js  is as well. Therefore, if E’ has RNP
4.2.(b) implies that J”  is  onto and hence open, in particular (use 2.6.) T;,,(E)  = q”,(E)  (with
equivalent norms);  this result  is  due to Alencar [Al] who even treated the vector-valued case.

TO see  the norm equality, Boyd and Ryan [BR] first used the metric surjection Z’  : C(BE,)’  b

(c?J:,;~‘E)’  A !P$(E)  (-see  the proof of 3.4.) to show that the extreme points of the unit ball of
qn,(E)  (where E is an arbitrary normed space) are of the form +@Jc’  with x’ E Bp  hence

extBynt(q C BPQE)  C Bqp)  . (*)

If E’ has RNP, then (as shown above)  %$,(E)  = q”,(E)  and the norms are equivalent. Since
T,$(E)  has also RNP (see  Corollary 4.2.) a result of Lindenstrauss’ (see  [DU, p. 1901)  implies
that the unit ball of T$(E)  is the noum-closed  convex hull of its extreme points, hence (*)
and 2.6. give the

Proposition. iiN, WRI,  TCDII. If E’  has  the  RN8 then the  natura/  map
P : &“n;E’  ---+  qit(E)  .1s  a metric surjection, in particular: T:,,(E)  =!=  !$‘At(E).

As a conscquence one  obtains that

(GX~E’)&F -i  (&!:“Ej’i$,F  1,54f(i$$:S~;~j  L TI(@‘E;F)

(JT for the nuclear  and TI for the Pietsch-integra1 linear operators; see  [DF, D8.1  for the last
isometry and note that (c$~E)  has RNP) is a metric surjection:

Corollary. [[Al], [CD]]. IfE’ has the RNE  then the natura1 map

(&jnrE’)&F -+  TI@;E;F)

is a metric surjection for al1  Banach spaces  F.

It  follows (see  Carando-Dimant [CD] for details) that - in this case - the latter space is
the space of  integra1 n-homogeneous polynomials  E ---+ F in the sense of Alencar [Al].

Note that  the mappings in the proposi t ion (use 4.3.)  and in the corollary (use the proposi-
tion,  4.2. and [DF, 5.7.1)  are injective (hence isometric) if E’ has the approximation property.

4.6. Concerning the isometric embeddings one  has the

Duality theorem. Let  E be a normed space.

(1) Ij’E has the metric  approximation property ,  then

&>E  - (@E’)

is  a  metr ic  in ject ion.

(2) If E’  has the metric  approximation property ,  then

@irE  + (@‘E)’

is  a  metr ic  in ject ion.
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The natura1 setting for the duality theorem and its proof is the theory of s-tensor norms
which will be presented in [F2]. Therefore only the proof of (2) will be given; (1) can be
shown along  the same  lines.

Proof.[Proof of (2)] Note first that for finite-dimensiona] G one  has &iSG  L (@$fG’)’ hence

&)G’ c, (@;,fG)‘. N o w define  for dm1 Banach spaces  F’ the norm y(.;CPF’)  on WJF’
(notation: @‘“F’)  by

@;>“F’  & ($fF)’ .

The following properties of y are easily checked:

(a) y 5 x, on al1  IPF’.

(b) y = z, on @“JF’  if dim F < 00.

(c) If T E L(Fl;Fz),  then 1)  IVJ  T’ : @“Fé +  @“F{II  5  lIT’Il” = /ITII”.

Statement (2) says that 7rY  = y on @JE’  if E’ has the m.a.p.. Now suppose - a bit more
general - that E’ has the h-approximation property and take z’  E Bnls  E’. Then there  is a finite
dimensiona1 subspace  F C E’  with z’  E @‘JF. The  quotient map Q : E + EjFo  (the dual of
which is the embedding Z : F CJ E’) has finite rank, hence (see  e.g.  [DF, 16.9. Cor. (2)]) the
h-a.p.  of E’ implies the existence of a finite rank operator  S E L(E;  E) with ](SI]  5 h( 1 + E)
and Q = Q o S; it follows that S’ o I = 1 and therefore

z’  = (@n.SS’)(z’)  E  cP’S’(E’)  .

The properties (b), (c) and the metric  mapping property for x, imply

n,(z’; @PE’) = ~c,((~~,~S’)(Z’);~~,‘E’)  <  n,((~n,sS’)(~‘);~n,SS’(E’))  =

= y((@‘*~‘S’)(z’);cVJS’(E’))  5  IISllny(z’;@“~SE’)  5

5 h”(  1 +&)“y(z’;@“JE’)  .

It follows that y 5 X, 5 h”y  on CPE’. 0

4.7. In particular: P&,(E) 4 qnt(E) ifE’  hm the ma+.  The proof even showed  that, if E’
has the Lapproximation property, then

ll9llint  5 IlCIllnuc i ~“llqllint
for al1 q E  !P&,(E).

5 Some consequences for the polarization constants

5.1. From 92 it is known that

+,E) = sup{  IISIIL~E,  1 llqll~qq  I  ‘> = lk$ : @;E  ---+  &:Ell
for every normed space E. Since  (WT)zq  = [WT(z)]q  the diagram
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commutes and simple diagram chasing (or manipulation with polynomials) give the

Proposition.

(1) IfG c E is  a closed  subspace,  then c(n,E/G)  5 c(n,  E).

(2) If F C E is  complemented subspace  with projection P, then

ctn,F)  I IIPll”c(n,E).

(3) fl M is a jìltruting subset  in FIN(E) ( . . fi e or each  M,N  E  !Xi exists an L E  M with
M UN C L) such that U!%f is dense in E, then

c(n,E)  5 sup{c(n,M) 1 M E 94).

(4) c(n, e,)  = supk  c(n,  li).

(5)  If E is an Li;h-space,  then c(n,  E) < hnc(n,ep).

Reca11 from [DF, 5231 that  E is an .Lj h -space if for al1 M E FIN(E) and E > 0 there  is

factorization Zi = S o R with [IR  : M +  liI/  [(S  : $ +  ElI  <  h+&.

Proof.[Proof of (5):] Take z E @‘E  and M E FIN(E) with z E WM. For a factorization
I$ = S o  R through $, one  obtains

x,(o;(z);@~~~E) = K,([@P~~S]  oqk  o [cYR](z);cWE)  5

5  IlSII”  IIRIlnc(n,Pp)K(z;~nM)

and the fact  that n:  is finitely generated (i.e. 7c(.,  @E) = inf{n(.;mnM)  1 M E FIN(E)}) easily
gives  the resul t . cl

Since  E, is 1-complemented in L,,(p), properties (5) and (2) imply

Corollary. [[SI]. IfLp(p) is  in f in i te-dimensiona4 then c(n,  Lp(p))  =  c(n,tp).

Sarantopoulos [S] gives est imates and some precise values for  c(n,  C,)).

5.2. However, in general there  is no equality in (3) (take, in the complex case E = &.,  and
M = f!‘/  and note that c(n,P,)  < 5; see  e.g.  [D2, 1.3.1).  Therefore the polarization constant
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is not locally determined, but it is somehow “co-1ocal” - at least under the presente  of the
m.a.p.:

Proposition. Let  E be a normed space with  the metric approximation property. rf i; is  a
cojìnal subset  ofCOFIN(E)  (Le.  far  each  F E COFIN(E)  exists  G E  G with G c F), then

c(n:E) = sup{c(n,E/G)  1 G E  G}

Proof. Since  G is cofinal in COFIN(E)  2.5. and the metric mapping property of rr,  give

TC,(~;@>~E)  = s~P{~~,((~“~‘Q~)(~);~~~~E/G)  1 GE G}.

The same  statement holds also  for the “full” projective norm x on @E  (see  e.&.  [DF, 16.2.1
for n = 2 or use the same  type of arguments as in 2.5.). For z E @*E  and G E G one  has
[cFQ~] o 0;  = oEIG o [@QE]  hence

II\(  [~“,“Q~]~‘É(z);~~,~E/G)  5  llo~,~ll~(cò”~~(z);oc”~/~).

Taking sup’s  gives c(n,  E) 5  sup.. . . The other inequali ty was already stated in 5.1.( 1). C l

5.3.  The duali ty results  in §4 have  also interest ing consequences for the polarization constants.
The upper arrows of the commutative diagrams (see  1.14.)

are isometries if E or E’ has the m.a.p. respectively; the lower are also isometries in these
cases  (for a proof generalize the approximation lemma [DF], 13.1. and the duality theorem
[DF], 15.5. from 2 to n) hence (with an obvious notation)

c(n, E) = llG,A  5 ll$+ll
4@‘)  = Ilo~t:,ll  5 IlG,Jl

From 3.1.( 1) one  obtains the

if E has m.a.p.

if E’has m.a.p.

Proposition.

( 1) lf E has the m.a.p.,  then

/IL;, : .;,;E’ ---+  @E’lI = c(n,  E)
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(2) IfE’ has the m.a.p..  then

The continuous polynomials  of  f ini te  type are

hence  one  obtains from c$E’ 4 L(“E)  that

C(%E)  = ~UPML<fE>  14 E qYEL  llhP~~  5 11

if E has m.a.p. - but this can also be shown directly.

5.4. Another immediate consequence of this proposition (look at IltE,,,II>  is the following
result from [LR]:

Corollary. If E”  has m.a.p.,  then

c(n,E)  = c(n,  E”).

6 Extensions to the bidual and ultraproducts

6.1. Let El,. . . , E, be normed spaces and cp  E .L(El  , . . . , E,) with associated  L,  E  L(EI , . . . ,E,-i  ; En);
the n-linear map cp”(“)  E L(Ek  , . . . , E,-l , Ei)  is defined by

(pACn)  (x1  ) . . . ,X,-l  ,x;>  := (L&,  , . . . ,xPl-&x;)E;,E;!  =

= ~~~:~~p~~l,...,~~-l,~r~j+l,...r~~-l~I’~)~,,~~  =
= lim, cp(xr  , . . . ,x,-r, y*)

if (y”) in E @Ei,  E,!J-converges  to x:. It is obvious that Il@(n)I/  = I]qII  and that (P”(~)  is the
unique separately o(Ei ,Ei)-...- o(E,-t  ,EA-t)-cr(Ei,EA)-continuous  w E L(El,.  . . ,E,-1  ,Ei)
which extends cp. For other j E { 1,. . . , n - 1 } the extension (p”(i)  is defined in the analogous
way. If h E S, one  defines

cp “‘@) := (... (((pA(h(‘)))A@@))  . ..)‘+) E L(Ei’,...>  En’).

Clearly, ]I~A(h)II  = ]l~l/.  It  follows that

(*)
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if the net (.xY)~~~~,~ in E,j  o(E,y,Ei)-converges  to xy.  These  extensions were first studied  by
Arens [Ar] for y1  = 2. The special extension

<p  :=  (. . . (((#(“)p))  . . .p

is called the Arens-extension of cp. Tt  is the unique extension w E L(Ey, . . . i Ei)  of cp  E
L(Et  , . . . , E,?)  such that far ah  j = 1,. . ,n, al1 xk E Ek and .x: E Ei

is o(Ey, E;)-continuous. Clearly, an analogous charaterization holds  for @(*).
Just one  simple example: if Tj E L(Ej;Fi)  and <p  E L(Ft  , . . . ,F,), then it is easy to check

(e.g. with (w))  that [cp o (Tl,.  . . , T,,)]- = <p  o (T,“,  , Ti).

6.2. The characterizations (*)  and (**)  easily imply the

Proposition. Le? cp  E  L(El  , . , E,). Then the Arens-extension <p  is separately weak-*-
continuous (f and only if<p  = (p”@)  ,for  al1  h E  S,.

Now reca11  (e.g. from [DF, 1.6.1)  that for <p  E L(E,F)  the extension <p  is separately
weak-*-continuous if and only  if L cp : E + F’  is weakly compact. Since  every permutation
h E S, is a product  of transpositions one  obtains (b) n  (a) of the well-known  (see  e.g.  [ACG,
sect.  81)

Corollary. Let  E be a normed  space and n 2 3 .  Then the  fo l lowing are  equivalent:

(a) For every cp  E  L(‘*E)  the Arens-extension (p  is separately weak-*-continuous.

(b) The same  as (a) with n  = 2

(c) Every T E  L(E;  E’) is weakly compact.

Proof. For the remaining implication (a) n  (b) take cp  E L(2E) and consider  w(xt  , ,x,) :=
cp(xl ,x2) (x/,x3)  . (x/,x,)  for x’ #  0. 0

6.3. Unfortunately, it is not true that Tp  is symmetric if cp  E L(“E)  is. This follows easily from
the following

Observation. Let E be norrned and cp  E  L,(nE).  Then <p  is symmetric if and only if<p is
separately  weak-*-continuous.

(This is an immediate consequence of (*)  in 6.1. and proposition 6.2..) Therefore it is
enough to find a symmetric cp  E L.(2E)  such that L,  E L(E;E’)  is not weakly compact. The
typical  non-weakly compact operator  is the summing operator  VI + !?t  = e, (see  [LP, 8.1.1).
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Arem [Ar] considered cp  E &(2ei) h aving the representing matrix

1 1 1 1 1 . .0  0 0 1  . 0 1  1 1 0 0 1  1 . . . . . .. . . t . . . . .

Its 2m-th row <P(Q,, .) = &(e2,,!) =: s,  cr@!,,  tt)-converges  for m + 00 to (1 ,O,  1,  O? 1 i 0:.  . .)
=: x”; if h  E CL is a Banach-limit on the odd components,  then (b,~~) = 0, but (h;x”) = 1.
It follows that &,(Ba,)  is not o(!,,  !L)-compact  and the Arens-extension <p  is not symmetric.
Another but related example was given in [ACG].

6.4. Using the same  ideas as in 6.2. it is straightforward to verify that the following hold\
true:

Proposition. [[ACG]]. For every normed space E the following statements are equivalent:

(a) For every n  >  2 and every cp  E  L,,(‘E)  the Arens-extension  (p  is  symmetric (equivalently:
separately weak-*-continuous).

(b) The same  as (a) for IZ = 2 only.

(c) Every symmetric T E  L(E;E’)  (i.e.  (Tx,y)  = (Ty,x)) is  weakly compact.

Normed spaces  E satisfying one  of these  equivalent conditions are called Arens-regular
or symmetrically regular; E is called regular if al1 T E L(E;  E’) are weakly compact. Pisier’s
factorization theorem [Pi, 4.1.1  implies that E is regular if E’ has cotype 2 and E has.the
approximation property,  since  in this  case al1 operators E + E’ even factor  through a Hilbert
space. The Haagerup-Pisier-Grothendieck inequality (see  [Hl) implies in the same  way that
every C*-algebra is regular.

If E Z E2,  then regular = Arens-regular, but Leung [L]  showed  that the dual of the James
space is Arens-regular but not regular; Harmand gave an example of an Arens-regular space,
the bidual of which is not (see  [AGGM] for these  and other results on Arens-regularity).

6.5. If q E !P(E),  then 4 defined by 9(x”) := q(x”,... ,x”) extends q to a continuous 17-

homogeneous polynomial on E”. Since  Aron and Berner [AB] used this extension for ex-
tending holomorphic functions E ---+ c  to E”  (via their Taylor-expansion) q is called nowa-
days the Aron-Berner extension  of q. Though 4 is not symmetric, it is immediate from 6.1.(*)
that q(x”) = (s)“‘@)  (x”, . . . ,x”) for al1 h E S,,  - in other words: the Aron-Bemer extension is
independent from the order of extending 9 E L(E,  . . . , E) to the bidual.

Example. For q E  P’*(E)  and T E  L(E;  F) one  has (q o T)-  = ?j o T”. This,follows~from  the
example at the end of 6.1. .
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Example. Let p be a jinite signed measure and qn(f)  := Jf”dp  the n-th integrating poly-
nomial  on L, (see  3.5.). Then q,,  = q,, o K’,‘,,  where KL,  : LI (IpI)  q  Ll(lp1)”  = L,(  /pi)’  is the
canonica1 embedding.

Proof. It is enough to show that the extension w of &,  defined by

satisfies the continuity-condition (**)  at the end of 6.1.. For this take 71,. . . ,fJ-i E L, and

x’j:l ,...>  .$E  L:. F~rg:=fl...f;l.~~~(~~+, )...~~,(~)EL,cLrand~“~L~onehas

WG,...  f -,  J d’,~~+,,4$  =  bd&‘))~,.~co  =  (K&)>x”)~o,,~”

which proves the desired continuity. 0

An obvious modif icat ion of  this  proof  shows that  $ is even separately weak-*-continuous.

6.6. If P(E) := $~+P”(E)  (with P’(E) := IK)  is the space of al1 polynomials, then for
q = c+2+Cf=2qn  E  !P(E)

q:=c+x’+  -gqn
IC=2

defines a linear extension map P(E)  + !P(E”) which, by 6.1.(*), is multiplicative.

6.7. While it is obvious from the definition that I/cp/I  = /lipII  ‘t  ’1  IS not at al1 trivial that IlqllPo”(E)  =
l]g(l,,(,~).  This was proved by Davie  and Gamelin; the key for the proof is the following
approximation result (see  [DG] for a proof):

Theorem. Let E be normed, S C E bounded and .x0’  E  ??(E”‘E’). Then there  is a  net (xc()  in
conv  (S)  such that

sba)  +  %4

for al1  polynomials q E  P(E).

Applying this to S = BE  gives the

Corollary. For every q E  P(E)  one  has j1q11P!2(E)  = IIsII~,~<~u,.

?orollary.  The natura1 embedding @n)SK~  : &;‘E  + &;‘E”  is un  isometty

A?-oof. Cleary II  Bnls  KE(I  5 1 and (9,~)  = (9,  @VK~(Z)) g ives  the remaining inequal i ty . 0

There  is a natura1 duality bracket  between !P(E) and @P<E”:

(q,Z”)  := (~,Z”)~~(E”),~>I,,E”
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the restriction of which to @PE  gives the duality P”(E)  = (&fE)‘;  hence the bipolar theo-
rem implies the

Corollary. The unit ball Bo3;:E  IS  CS(@PE”,  P(E))-dense in BASI,,.

6.8. It is well-known (see  e.g.  [DF, 6.7.1  for n  = 2, the extension to n > 2 is easy) that
ip E [@(EIl,.  ,E,!/)]  if cp  E [@(EI,.  . . ,En)]’ and the “integral” norm is the same.  This and
the fact  that E, respect subspaces (3.2.(4))  implies that q E P(E)  is integra1 if and only if q
is.

Actually also the norm remains unchanged:

Proposition. [Carando-Zalduendo [CZ]]. Let q E  P(E). Then q is integrd  ifand  only  ifij
is. Moreover;  /lql\,nt  = l/qllInt  holds  in this  case.

Proof. TO see  the norm equality, factor  q = qn o T according  to Corollary 3.5. with ]lqllinr  =
llqnll [ITII”. The Examples 1 and 2 in 6.5. give q = qn  OK”,  o T” hence, again  by 3.5.

IISIImt  5 IIqnII II<, IIn IIT”IIn = IIqIlint.
The other inequality is obvious from 3.2.(4). ?

6.9.  The Arens- and Aron-Bemer extensions can also be obtained using ultrapowers.  For this ,
take for a normed space E the index set Z := FIN(E”)  x FIN(E’)  x10, l] and choose  (with the
strong principle of loca1 reflexivity) for every t = (M,N,&) an operator  K E L(M;E)  with
T,x  = x for al1 x E Mn  E, having ]17;1/  5 1 + E and satisfying (Tx”,x’)  = (x”,x’)  for al1
(x”,x’)  E M  x N;  for x” E E” define  fi(x”)  := T,x”  if x” E M  and := 0 otherwise. Take an
ultrafilter U on Z which is finer than the order filter; U is usually called a loca1  ultrafilter  of E.

For the ultrapower (E)u  define  the following two natura1 mappings:

J : E” - (Eh a n d Q: (E)U  --+  E ”

.w” + (A(x))u (&l  u-) liqu  xt

(o(E”,E’)-1imit).  It is easy to see  that the (linear) isometry J extends the embedding E 3 x +

kk  ,‘(J’
u and QJ = id,,,; since  I]Qll < 1 it follows that JQ is a norm-1-projection of (E)u

If Uj is a loca1 ultrafilter of EJ  and <p  E L(El  , . . . , En),  then

is in L((El)u,  ,...,  (E,)u,,)  with norm l]q~ll.  The special continuity  of the Arens-extension
(6.1.(*))  gives that

‘P(u~) =<Po(QI,...,Q~> and <p=qujy(J1,...,Jnl,) (*)

in particular
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Proposition. [[LR]]. rfq  E  T”(E) and U a loca1  ultrqjìlter  ofE,  then

If q E !P’(E)  and if yu  := (S)fi E !P( (E)u)  is the polynomial associated  to (G)u,  then the
proposition, (*)  and Corollary 1 in 6.7. imply  that l/qu/l = 11qll.

6.10. For ultrapowers, however, it seems  more natura1 not to use an iterated limit (see  [DT],
[LR]): for a loca1  ultrafilter U of E and cp  E L(%)  define

;Pu((~)u,...,(~%I)  :=lim1cp(x~,...73

~u((GI)  := lim.uq(xd

Obviousb,  IIGuII  = lldl  and IIFuII  = MI.

Observation. [[LR]]. qu # 4~  on (E)u  in general

Proof. Take Arens’ example from 6.3. and U, E U with U, > Un+1 and M,,  = 0. Fory, := 0
if t # U, and := ezn  - ezn+r  if r E lJn\lJn+t  one  gets

It is likely that also q” := &J OJ #  4 E !P”(E”) in general. In any case it is clear that
this  “uniterated Aron-Berne?  extension $((x”) =  lim,,u  q(fi(x”)) is  also a natura1 and useful
extension of q E !P”(E). Note that ~~~“~~  = Ilqll is obvious (but jlq// = Ilqll was rather involved).

Using the ultrastability of maximal  operator  ideals (due to Ktirsten,  see  [Ku] and [He])
one  can show that <p  is integra1 if and only if <PU is - with the same  norm; it follows that q is
integra1 if and only if 4~  (and hence  also $-() is integral. In [FH] it will be shown in the more
general context of s-tensor norms that even 119”  II  int  = IlqlI  inr holds.

6.11. If one  has fixed an extension procedure Ln(E)  3 cp  -t&  L(“E”) (either the Arens-
extension or the “uniterated” ultrapower extension from 6.10.), then every cp  E L(%;G)

(where G is normed as well) has an extension <PE  L(Y?‘;  G”) defined as follows

(G (x”] )...,  X;),y’)(yQ  := [y’dp]‘(x]  )...,  x;>

which, clearly, has a characterization as in 6.1.(*) - but with the @G”, G’)-topology on G”.

It follows that there  is also an extension P(E;G)  3 q +-+GE  !P(E”;G”).  Reca11 that Arens
used his  extension to extend the mult ipl icat ion on a  Banach algebra to the bidual .
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