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PAIRS OF FINITE-TYPE POWER SERIES SPACES

P.A. CHALOV, M.M. DRAGILEV, V.P. ZAHARIUTA

Abstract. Let a = (a;), aj — oo, A = (A;) be sequences of positive nuimbers. We study the
problem on isomorphic classification of pairs
1 o L
F = (K(exp(——a;)), K{exp(——a;+ 1))}
P I

For this purpose we introduce the sequence of so-called m-rectangle characteristios i 11 is
shown that the system of all these characteristics is a complete guasidiagonal invariant on the
class of pairs of finite-type power series spaces. Using some new linear topaolacical invariails
(compound invariants) we prove that m-rectangle charactevistics are invariant on the class
of such pairs. Some applications to pairs of spaces of analvtic functions are considered.

I Introduction

Pairs of spaces of analytic functions (A(Dg),A(D1)) (Dy € Dy are open seis i (), hav-
Ing a common basis, were a subject of studying by many authors (sce, c.o., |29, 42, 27,
28, 19,44, 37, 43, 51, 40, 39, 45, 48, 1, 2, 52, 3]). Thesc mvestigations are connected 1n
a natural way with the question about 1somorphism of such pairs and, more gencrally, with
the 1somorphic classification problem for pairs of imbedded Kéthe spaces with the common
canonical basis. The case of coherently regular Kothe spaces was completely studied by
Dragilev (120, 21, 22]) with the use of so-called simultaneous diametral dimension (1ntro-
duced 1n [44]), which 1s a modification of the classical diametral dimenston (for more details
see below, item 2.4, where these results are discussed 1n some modified but equivalent form).
The isomorphism problem for pairs of Kothe spaces without the assumption about the coher-
ent regularity proved to be quite complicated: pairs (A(Dg).A{2;)). having a common basis
and satisfying the condition 0Dy N dD; # 0, represent non-trivial examples of such kind.

We consider here the 1somorphic classification on the special class of pairs of Kothe
spaces with some new invariants, which allowed to reveal very delicate distinctions in the
topological structure of pairs without coherent regularity (including the above-mentioned
intricated pairs of spaces of analytic functions).

The main tool 1n our study of this problem are so-called m-rectangle characteristics of
pairs, constructed by analogy with other m-rectangle characteristics, which were considered
first for studying of families of Banach spaces ([5, 6, 7, 8, 12, 13, 4, 15]). Characteristics
of such type proved also to be a good instrument for isomorphic classification of many non-
trivial classes of locally convex spaces ([16, 10, 11,9, 18, 17, 31, 3]).

The proot, that m-rectangle characteristics are linear topological invariants on the class of
constdered pairs, 1s based on so-called compound invariants, which were introduced by Za-
hariuta [46, 47] and find their development in nuimerous studies ol isomorphic classification




|22 PA Chalov, MM. Dracilev, V.P Zahariute

ol localty convex spaces and families of Banach spaces (see the above-mentioned citations).
The mnformation about connections withi the preceding investigations of linear topological in-
variants (Kolmogorov, Pelczynski, Bessaga, Rolevicz, Tikhomirov, Mityagin, Dragilev, Za-
hariuta. Kondakov, Dubinsky, Vogt, Djakov, Terzioglu et al) can be found, for example, in
(48, 10, 3]

2 Preliminaries

2.1  Spaces

Let X be a lecally convex space with an absolute basis ¢ = {¢;},.,. where [ is a countable set,

Any sequence of positive numbers a4 = («; )., generates the weighted ¢ -ball in X . associated

el o
with the basis ¢ as follows:

B (a) = B ((a;)) = {x - ZE:’; € X ) | la; <1} (1)

|'. I |l'{-_'-‘|r
By K{a; ) we denote Kothe space, defined by Kothe matrix (a;p ), pens € = LCi iens IS 118
canonical basis. In particular, spaces Eqla) = K{exp(A,yai)). A, ,.-7‘ 0. a = (a;). a; > 0.

O < oo, are called finite-tvpe power series spaces.

A(D) s the Tocally convex space of all analytic functions in the domain 2 C " with the
topology of amform convergence on compact subsets of D.

Denote by O the set ol all non-decreasing natural numbers sequences with infinite sets of
values. It i< well Known that for arbitrary Kothe space the following fact is true.

Proposition 1 Let M be a set in X = K(ay,). Then M is bounded if and only if there exists
== {q;) & Q and a positive constant C such theat

C OB ((uiy)).

S35 T P
J;lﬂ-i;'ﬂ i- f!llh

We consider pairs (XL 1 ) ot focaily convex spaces A and ¥ with a linear continuous Iﬂ}LLlI(JI]
Yoo X Two patrs (X} and | N ¥ are called isomaorphic (we write (X.Y) >~ (X. V) if there

cxists an isomorphism 77 : X - X such that its restriction on Y is also an 1:‘-;{}11'“‘-1";‘1-11“-..111 from
Yoonto ).
Asystem (g o O Y s said to be absodite Gases tor a pair (XY 1t this system constitutes

an absolute basis for .*:ulh of the spaces X and 1.
Suppose (X }"}- and (XY} are two pairs with absolute bases {x;} and {&}. respectively.
An asomorphism 7 (XLY) — (XY ) 1s said to be guasidiagonal 1 there exists a bijection

. F

G N uml a sequence {7} such that T, = 1,55, @ € N, In this case the pairs (X.Y)

and (X 1) are called guasidiagonaliy isomorphic (with respect to those fixed bases) and we

o
LI

r

) * ! % £y, T . P o
write shortly (X V) ~ (X Vi in the particular case 1; = | for all 7 € I, the eperator 7 15 said

to be permutational, the pairs (X.Y 5 and (XY are called permutationally isomorphic and

we write (XY o (X.Y ). And when (7, 15 an arbitrary sequence but ¢(7) =7 for all 1 € ¥ the
operator £ os sard to be dragonal.
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We use the following notation

I I
Fih,al = (K(exp(—!—}n;)). K(exp(—;r:u +Ai))), (2)

where a = (a;), a; — o=, A = (A;) are sequences of positive numbers.

2.3 Pairs invariants

Let ‘£ be a class of pairs of locally convex spaces and I' a set with an equivalence re-
lation ~ . We say that y: £ — T is a linear topological invariant if (X.V) ~ (X.,Y) ==
YX,Y) ~y(X.Y), (X,)Y), (X.Y) e E

The nvariants to be studied here are based on the following well-known characteristic
of a couple of absolutely convex sets. Let (X,Y) be a pair of linear spaces, U,V absolutely
convex subsets in Y. Consider

B(V.U) :=sup{dimL:UNLCV}. (3)

where L runs through the set of all finite-dimensional subspaces of ¥y, = SpanV. This charac-
teristic relates with Bernstein diameters b, (V,U) [41] in the following way: B(V.U) = [{n:
b,(V,U) > 1}|. The following properties follow immediately from the definition (3):

ViV, U CU, ilT’]pHE‘H El('ﬂ.U]) < B(VU}

4
BaV.U) = B(V, LU), &> 0. )

For weighted balls (1) the characteristic (3) admits a simple computation.

Proposition 2 (see, e.g., [34]). For a couple of weights a. b we have

B(B(h),B (a)) = |{i:b; <a;}l.

e

2.4 Classical invariants analogue

Suppose (X.Y) is a pair of F-spaces with Y <« X; U,, p € N is a sequence of absolutely
convex neighborhoods of O 1n X, which defines the topology in X | i.e. the system {1U, :1 >
0. p € N} forms a base of neighborhoods of 0 in X; and V),. p € N, is a similar sequence for
Y. As a natural analogue of the classical diametral dimension on the class F of all pairs of
I -spaces, we can take the following family of functions (1 > 0):

Bovyy = BV, Up)), e (5)

PyE]

-

Let (X,Y) be another pair from  and Qﬁ, Voo p € N, a corresponding systems of
neighborhoods, defining the topologies in X, Y respectively. Then define the equivalence
Bix.y) ~ Bix y) by the following relation

VpIp' Vg Fg3c: BV, U,) <BlctV,. Uy). BV, U,) < Blct V. Uy). (6)

This mvariant 1s introduced by analogy with the corresponding single space invuriunt B}{
which can be considered as a particular case of (5) By := By.x) with V, =U,. V, =U,,
p € N in the above definitions.
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Proposition 3 (cf. [44, 21, 22]) Let (X,Y) =~ (X,Y). Then Bix y) ~ Bix y)-

We say that a pair (X,Y) of Kothe spaces X = K(a; ). Y = K(b; ) is coherently regular
(shortly, (X,Y) € CRYifa;p/aiqy 10, b;p/biy L0, p<q.

With the use of the invariant 3y yy, (together with the invarint By for single spaces), the
complete isomorphic classification on the class CR can be established ([23, 24, 26]).

Theorem 4 Let (X,Y),(X.,Y) € CR. Then the following statements are equivalent:
(i) (X,Y)~(X,Y);

agd - -
(i) (X,¥) =~ (X,7);

(iii) By ~Bg, Buy) ~ By

The tollowing particular case 1s important because of applications to pairs of spaces of
analytic functions (see section 3).

_—

Coroliary 5 Let all the sequences a = (a;), A= (A;), d = (@;), A = (A;) be positive and tend
monotonically to oo. Then the following statements are equivalent:

~—

(i) F|h,al ~ FlA,al;

—

(i) Flh.a) = F[L a):

1 Ai — A
(iii) 3c: —a; < d; < caj and ——— — 0.
C F

Corollary 6 If in the previous corollary A; ~ G a; then the condition (iii) can be changed by
the following

| -
de:—a; < a; <ca;and A; ~ Ga;.
-

2.5 Some geometrical facts

In the construction of compound invariants we shall use the following geometrical facts.
For a couple A, = B"(a{”})? v = 0, I, we consider the following one-parameter family of
weighted balls (Ag)' "*(A;)* := B*(a'%), where

d = (@) (@) ier, @€ R
The following elementary fact is well-known (see, for example, [4, 32, 38]).

Proposition 7 Let e and f be absolute bases of a locally convex space X and Ay = B*(a'™)),
Ay =B/ (aY)),v=0,1. Then A, C Ay, v=0,1 implies

(Ag)' " *(A))™ C (Ao)' " *(A))*, a e (0,1).
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Proposition 8 Let e be an absolute basis of a locally convex space X, aV) = (HE'” ), J =
1,2,...,r, sequences of positive numbers and ¢ = (¢;), d = (d;) sequences, defined by the
following formulae: ¢; = max{u;” j=1,2,...,r}, d;i = mm{ug cj=1,2,....r},i € N,
Then the following relations hold.:
r _
) C m B(a") C rB(c), B‘(d) = .:*mw(U B¢(a\))),

j=!

where conv(M) means the convex hull of a set M.
For p € Nand (p;) € Q we set the notation [p, p;] ;= max {p,p;}, i € N.

Lemma9 Let X = K(a; ,), X = K(da; ), and e. & be canonical bases in X, X, respectively.
If T : X — X is an isomorphism then¥(q;) € Q 3(r;)) € QVre NIge N, C:

T(B (@ 15.41))) € CB((a; 1)) (7)

Proof.[Proof] Since {¢ T(B((@i))), p € N, € > 0} is a base of neighborhoods of the origin
in X, and the image of any bounded set is bounded, we get, taking into account Proposition
[,thatV(gq;) € Q 3(r;) € Qand Vr € N dg € N, M > 0 such that

T(B((dig))) C MB((ai,)), T(B((dig))) C MB((ai,)).

Therefore T (B*((d;4,) )N\ B*((di4))) C MB*((a;,.)) N B*((a;,)). Then, using
Proposttion &, we get (7) with C = 2M.

3 Pairs of spaces of analytic functions

3.1 One variable case

Consider some results about the isomorphism of pairs of spaces of analytic functions of one
variable.

First define Green capacity C(Dgy,Dy) for an arbitrary pair of domains Dy C Dy C C in
the following way. Consider two sequences of bounded domains with smooth boundaries
(Dy)o i, such that Dy s C Dy g1, Dy = Ui Dy, v = 0,1, and set

C(Dp,Dy) := lim lim C(Dy 4, D ), (8)

§—rca f—}o0

where C(K, D) is the Green capacity of a compact set K with respect to a domain D ([33]).

The following statement shows that this characteristic 1s an invariant on the class of pairs
(A(Dy),A(Dy)) (the particular case, when the both domains are one-connected and Dy is
relatively compact in Dy, was considered in [44]).

Theorem 10 Let D;, D;. i =0, 1, be domains in C such that Do C D,. Then

(A(Dg),A(Dy)) = (A(Dy).A(D)) = C(Dy,D;) = C(Dy,D). (9)
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This theorem can be obtained from Proposition 3 by calculating of the invariant By y)
through the capacity. In a calculation of this invariant, it 1s useful the following statement,
which is a very particular case of the well-known fact (see, e.g., [44, 37, 51]).

Lemma 11 Let Dy. D be bounded domains in C with smooth boundaries, Dy C Dy Hy, H|
any Hilbert spaces, complied with the following linear continuous embeddings:

A(Dy) — Hi < A(Dy) < A(Dy) < Hy < A(Dy):

e = {ey } the common orthogonal basis for the spaces Hy, Hy such that |jexf,; = 1. el 5 =
g T oo. Then

Prnuf [Proof of Theorem 10] Let Hilbert spaces H,, Ls) . the basis ¢"/ = {e_ﬂ }. and the numbers

”L " be as in Lemma 11 with respect to the pair of domains Dy, D, considered in the
definition (8), s € N. Then the unit balls U 1= HH.-_\,,* Vs i= BHH} define the topologies in the

(] I

spaces X = A(Dg) and Y = A(D)). respectively. Therefore. by Proposition 2 and Lemma 11,

BlexptV,.U,) = |{k: lnﬂiﬂ <1}~ C(m;Dli},)r.
Hence, due to Proposition 3 and (8), the conclusion (9) 1s proved. L]

Remark 12 /) Suppose additionally that D, is a regular domain and the boundary d Dy
consists of a finite set of closed analvtic curves. Then,due Corollary 6, the opposite inclusion
< in Theorem (10) holds, too.

2) On the subclass of pairs (A(Dgy).A(Dy)), such that

dDy oDy # 0. (10)
the invariant (8) brings no information, since C(Dq,Dy ) = co. The problem on the isomorphic

classification within this class remains open.

3.2 Several variables case

Suppose D is a bounded complete n-circular domain (Reinhardt domain) in € and consider
1ts characteristic function

hp(0) := sup{O;In|z; |+ 0, 2= () € Dy,

defined on the simplex £ ={0=(0;) € R". : 0, +...4+6, = 1}.
Let Dy and D, be a pair of Reinhardt domains such that Dy C Dy. The number M(Dy, D)),
defined by the following relation

.0, In|z

nall

dG ()
f?\f (hp,(8) = hp, (0))"

where do(0) 1s the Lebesgue measure on 2, may be considered as a natural capacity-like
characteristic of the pair (Dg. D) ).

The following theorem shows that this characteristic 1s invariant under 1somorphisms of
pairs.

M(Dgy,Dy)
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Theorem 13 Let D;, D;, i = 0,1, be Reinhardt domains such that D (Dy) is relatively com-
pact in Dy (in Dy respectively). Then

(A(Dg),A(Dy)) ~ (A(Dy),A(Dy)) (11)

if and only if
M(Dg.D) :Jw(fj{},fj]), (12)
Proof. The system ¢ = {¢; } of all monomials ¢;(z) = ¥ = "I]" k= (ky,... k,) € Np" is

an absolute basis for the pair (A(Dg),A(Dy)). We use the usual notation: |k| :=k; + ...+ k.

k
0(k) := m For the pair
(X,Y) = (A(Dy),A(Dy))

consider the systems of neighborhoods, defining their topologies, like in item 2.5: U, =
B(a))).V, = B¢(al))), with

’ . a k
a}; — [Efff{), u?}i == eXp ((—~ + hp, (E‘)) |A|) ke Ny, v=0,1.
| ’ p k

It 15 quite easy to check that
B((expr) Vy,Up) = [k € Ny« [k <19,4(8(k))} =" (Vol(W (p,q) +o(1))).

as t — oo, where
-1

—p
(D;;,.:,;(B) — (E{Fj + :'I’IDI (8) — hg”(ﬁ)) . 0c Z,
and

W(p,g) = {x=(x) € R p(x) < ¢,.,(6(x))}

X
with p(x) =x; +...+x,. 08(x) = —.
p(x)

Therefore after some computations we get

lim lim lim ™" B(expt V,,U,) = M(Dy, D).

(J—>00 p—roo f—poo

Since the 1somorphism (11) implies the relationship (6), after the analogous computations for
the second pair, we get the equality (12). L]

Remark 14 /) Let ‘E be the class of all pairs (A(Dgy),A(D)) such that Dy C D, are Rein-
hardt domains, satisfying the condition (10). Since M(Dgy,D}) = o< in this case, the invariant
(12) gives no answer to the following question: are there non-isomorphic pairs in the class
E?

With the use of invariants, much stronger than that considered above (so-called, com-
pound tnvariants), it will be shown below (section 7) that, in fact, there exists a continuim
non-isomorphic pairs in this class.
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4 m-rectangle characteristics

We restrict ourselves by considering the class of pairs (2). Without loss of generality it can
be assumed that
a;>1, M >1,ie N (13)

This class includes the pairs from section 3 (if they have a basis). Obviously, X = Ey(a) and
Y = T(Ey(a)) is an image of X under the diagonal map T : Te; = exp(A;)e¢;, i € N. Here {¢;}
is the canonical basis for the spaces X and Y, i.e. for the pair F = F[A,a].

Given a = (a;), A = (A;), and m € N, introduce m-rectangle characteristic of (A,a) ( or
of F = F[A,al), as follows:

n

un @) =@ et = Uit & <hi<a, u<a<n)l  (14)
k=1
defined tor
0= (), e= (&), T=(T), 1 = (t) € R’” 1 <71 <tk €N,,. (15)

The name “m-rectangle” is natural because the function (14) calculates how many points
(Aj,a;) are contained in the union of m rectangles P, = (Ox, €| X (Tr i ], k € Ny,

Let A = (A;), a = (a;), A = (i) and a@ = (ff;) m € N. We say that the functions yﬁ“‘ﬂj
and ;.ffi‘”” are equivalent and write .U{Mj ~ ,UEL 9 if there exists a constant A > [, a strictly

decreasing function ¢ : Ry — R, ¢(t) = QO ast — oo (in general A and ¢ depend on m) such
that the following inequalities

p,” (5 €.7,1) <ym 6 O(T)t, e+ @(T)t; —,Ar), (16)

,um V(8,e:1,1) < (6 o(t)r, e+ (1)1, —,Ar), (17)

: T Th
with ©(1) = (@(0)), (1)1 = (@(t)te), + = (¢
of parameters 0,€,T,.

If, moreover, the function ¢ and the constant A can be chosen so that the inequalities (16),

(17) hold for all m € N (i.e. ¢ and A are independent of m), then we say that the systems of

A, A (X,
characteristics (ym ),,,Em and (,1:‘” '“j)me N Are ff'qmuafenf dﬂd write (ju;(n {)) (ﬁhl”n “})*

), At = (Af;) € R, hold for all collections

The tollowing statement shows that the system (y,,, ) 1s a complete quasidiagonal in-
variant on the class of pairs F = F[A,a].

Theorem 15 For pairs F and F the following statements are equivalent:
(a) F ~ R
(b) F ﬁ
(c) (ty,) =

Proof. Evidently (¢) = (b). Consider (b) = (c¢). Suppose that (b) holds, i.e. there exists
an isomorphism T : F — F such that Te; = ties(i), | €N, where 6 : N — N is a bijection

()
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and (1;) is a scalar sequence. Then, using continuity of operators 7 and T, after some
elementary calculations we show that the sequences a,a. A, A satisfy the following relations:

: l ﬂﬁ{!] .
dJA>0: = < <A, ieN (18)
& H,‘
and )
i) — N
hm o) L = 0.
a;

The latter means that there exists a decreasing function @ : Ry — Ry, @(1) > 0 ast — o
such that

=

Aoy = Mi
o) — < @la;), i€N. (19)

h

Now take any m € N and an arbitrary collection of parameters 9, €, T, ¢ of the kind (15).
From (18) and (19) 1t follows that

Ui <A<, u<a <} C

foreach k € NN,,.

This inclusion implies the estimate (16) and, for reasons of symmetry, the relation (17)
1s also true. Since the function @ and the constant A do not depend on m, we get (¢). Hence
(b) = (c¢) is proved.

Now consider (¢) = (a). Suppose the statement (c¢) holds. This means that there exists
a function @ and a constant A, both independent of m, such that the estimates (16) and (17)
hold for any collection of parameters 9, €, T, r of the kind (15).

Define the multiple-valued function § : N — N by the rule

R

S(i) = {j: hi—ola)a;: < hj < A+ o(ai)a;, % <

Due to (16) one can check that the map § satisfies the conditions of Hall-Konig theorem (| 30],
Ch. 3). By this theorem there exists an injection s : N — N such that s(i) € S(i), i € N.

Similarly, from the inequality (17) we deduce that there exists an injection r : N — N such
that

o

a
A
Following Mityagin ([35, 36]), from Cantor-Bernstein set-theory construction we get that
there exists a bijection ¢ : N — N such that

E

r(i) € {j ; 1; —@(a;)a; < }t.j < A+ o(a;)d;, <daj < /ﬁiﬂ;}, i € N.

a; x a; d; _
?L,‘ “ﬁ([) (ﬁ) eh i J'LG“} <_i ?L;“Fﬁ(i) (Ef) i, E’ ‘i_': ﬂ,ﬁ[;} i Aa;, 1 € IN.
It 1s easy to show now that the formula De; = é5(;), ¢ € N defines the isomorphism

)2
D : F — F. That completes the proot.
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5 Invariance of m-rectangle characteristics and compound invariants

[n this section using appropriate compound invariants we prove that each function y, is a
linear topological invariant on the considered class of pairs.

2
.

Theorem 16 If F ~ ', then !, ~ i for each m.

. .. l ] |
Proof. For simplicity we put ¢; , = exp(—~—aq;), b;p = exp(—=—a; + A;), a;, = exp(——a;),
P P &
- i

bi p = exp(——d; +X;), i,p € N. Take an arbitrary m € N. Suppose T : F — F is an isomor-
p

phism. Consider the following two absolute bases for F : the canonical basis ¢ = {¢;},.,, and
T-image ¢ = {é;},.,, of the canonical basis for F. Then each element x € F has two basis
expansions:

[ ] [
x= ) ey =) nié,

= 1=

and the system of norms ||x||, = X |n;|d; , is equivalent to the original system of norms in
=1

X:lxl,= Y |C&ilai,, x € X, p €N, and the system of norms ||x|

=1

p= X [I],—|5;_H 1S equivalent
=
to the original system of norms in Y : |x|, = X [&i|bip, x €Y, p € N.
=

Therefore, using also Proposition 1, we can choose numbers r, p, s € N and increasing

k (k) k : . . .
sequences of natural numbers (sE })? (g, ). (rf }). k € N, such that the following inclusions

C "!‘5’#((5; ) C  Baig)) C CB'{?((EE:'J)L
C IB'TJ((EE. _;m)} C B{'(_(-f*' ;”"])) C CBF{‘:EE- ,{k.l)}:
_ b . 2
CB (b)) C B((biy) C CB((Bi). =
- Bf((b; W) C Bf((bi N )) C CBF(U{. &) ),

are valid with some constant C for k € IN,,. Therewith, taking into account Lemma 9 and
a; — oo, we may assume that i € NNk e N,,, [ e N,,,_1)

) k k
2r<gq, 2qg <s. 2s < rﬁm’. 2+ < qE )

) {
Vst 2t < 0 a0,

!

21)
24, (

To prove u! =~ u! we compare the value of the function B for two pairs compound ab-
solutely convex sets U, V and U, V, with the balls from (20) as a row material for their
construction.

Take an arbitrary collection of parameters 0, €, T, t of the kind (15). Without loss of
generality we assume that the sequence {1, kK € N, } is non-decreasing.

Now introduce some new weight-sequences by combining (including an interpolation) of
the weights from (20), which are immediately connected with the original topologies in F
and F. The first set of such weights, related with the basis e,
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k )y (k Ky .
Vﬁ- ) — (15; ),u.{; ) — (HE_.;), j€ Ny: ke N,,. (22)
we define as follows :
Ky &3 kK _ 3 .3
Vig =a i b; ye Uiy =a q“"-‘bg S
W _ Ty bbb
V5 = exp(%) af_qbw: U, = EKP(E)HWbm: (23)
(k) _ Ok (k) _ O B
Vig = E}{p(—z-)ﬂuﬂk] , U,y = E}(p(— E)bi.f_fm 3
() & ( €k
Vig = EKP(—E)EPE.IFJ “.:41 = f‘«XP(E)ﬂwm
The second set of weights
~(k k) Sk ~(k :
v_[f = ("”EJ )*“} = (”E._j))rj € Ng; ke Ny, (24)
1s produced in a very similar way from the weights, related with the second basis é
SONESE IS MRS S
Vit — ¢ INGRRT ;| = f;.h_{:#:} GE
(k) ST bEb U
Vio = EK[}(E)H” fr Uir = ﬂ?"{p( g )HLSE}?_% (25)
(k) Ok . . (k) O , - ‘
Viz — ﬂxp(?)ﬂ”_m , ii;y = exp(— —Z_)bfﬁ"“
(k) €kt (k) €\ .
Vo= exp(—f)b”m i;, = exp(j) (k-

Y:

m 4 m 4
V = conv ( m B‘}(vﬁk])) LU = m conv (U B"(ufk})) ; (26)
k=1 j=
m 4 ) m 4 )
V = conv (U B"(ﬁﬁm)) LU = ﬂ conv ( Bf(ﬂj{k})) . (27)
v 4 Ij;

B(V,U) < B(C*V,0). (28)

Since the sets (26), (27) are not £;-balls, we cannot immediately apply Proposition 2 for
calculation of the function 3 in (28). Therefore we consider first some auxiliary £;-balls,
inscribed 1nto and circumscribed about these sets. Namely, by Proposition 8, we get the
following inclusions

_— i —

B¢(¢) CV, UCmB(d), VC4B°(¢), B°(d) c U, (29)
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where
¢=(¢;), ¢;=min {{ }._ {.‘EH = max {v } (30)
Jé‘ i E:'“\J;l
- - -~ a.{_k] ~( k]
= (), = min . = max {v 31
c=(c¢)), ¢ FI{{ {c } ¢, max V. ;} (31)
I =(d)), di=max{d®;}, d®; = min {u"}: 32
d=(d;), ¢ :CQJ}:{{ b dY, :cT}\L;{“ } (32)
-5 - (k)
d=(dj). di= M {f! s d:"" = .;2]'14”4 {a; 7 }. (33)

Using (28), (29), and the properties (4) of the characteristic B(V,U), we get the inequality

B(B(c),B(d)) < B(M B(¢),B(d)), (34)

where M = 4mC~. First we estimate the left side of this inequality from below. From Propo-
sitton 2 and definitions of the weights (30), (32) we obtain

Lr N n

B(B(c), B (d)) = | | J | J{i: el <y > {i el <a™y). (35)
k=1

k=11=1

Fix any kK € N,,,. Taking into account the definitions of the sequences ¢'*/, d'*) and the equal-

1ty pg‘ﬂ = H{]H__ we get

{i: {*Em < dm} = ﬂ {i: L“}k-} < .-:fgdkl}g 1.-‘::-‘;{1} <u) b, (36)

One can check that the construction of the weights (22), (23), (30), (32) have been chosen
just for the following relations to be true:

. k) k) : k

{iovy) <ul}o{ira<wd, {invy <u}o{ira<ul,

{f:vfﬂjg NS i <&y, {iov 3: sy o {ih < 8, (37)
. k) {ﬂ] . {ﬁl (k) :

{1:1-'34' <wuip ok <eey, v <ug O {in N <

We display only the proof of the first conclusion in (37), since the rest of them can be

L . . . k (k) . .
proved quite similarly. It 1s easy to see that the mequality 1-‘::-_3} < u; |} 1s equivalent to the

following inequality

I I Ty
(—*’ﬁ,—})ﬂfz N (38)
4 q. 24
| I l l . . .
Due to the assumptions (21), — — —= > —, therefore the inequality (38) is weaker than the

g qﬁﬁf — 2g
{
inequality a; > T;. This implies the desired inclusion.
From (37) 1t follows that
(k) (k) .
{iic;”" <d7}D{iop <A <gep T <ap <} (39)

P — M — — - — —
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Combining (35) and (39) we obtain finally
1, (8,€:7,1) < B(B(c),B(d)). (40)

Now we proceed with the estimation of the right-hand side of the inequality (34) from
above. Using Proposition 2 and (31), (33), we obtain

B(MB(2),B(d)) =] | Skl (41)

where Sy := {i: E{-H < Md:-{” }.

{

By the definition of the sequences ¢%) and d'¥) we conclude that

Seoc i <mal), oY <malyN{i ) <mal)y. (42)

First we consider the inequality 7\ < Mii\|. Taking into account the definitions of the se-

i1
quences ﬁ{lﬁ” and dﬁ” we see that this inequality 1s equivalent to the inequality

Jai < L, (43)

where L := InM.
Begin with the case [ > k. Then, recalling the suppositions (21), we conciude that the
inequality (43) 1s not weaker than the inequality

g < 2Lst". (44)

Due to the assumptions (13), (15), (21), the relation (44) implies

!

1

{i:v)) <Ma')} c {i:a <A}, (45)

where A := max{a; : a@; < ZLS(”}.

— ]

On the other hand, it is obvious that in the case [ < k the following relation holds:

{i:v) <mil)y =N (46)
Further, 1t 1s easy to check that
{i: o) <My c{i Y%y < 151}
Le — . 2q ~F

Theretore, recalling (13), (15), we get

{1299 <Ma )} C {i: — <a) (47)
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Arguing in a similar way, we obtain the relation

(i:3) <mal)}y c {i-a <4rLy}. (48)
Consider the set
~(k) ~(1) k) ~(1) (k) ~(/)
Skf ={i:V Vig SMi;, vy SMigp, Vi) < M“ﬂzz}

and define a constant A := max {A, 4¢gL}.
Then, combining (45), (46), (47), (48), and taking into account (21) and non-decreasing
of 1;, we obtain

(49)

Taking into account the definitions of the sequences )

J
(ai p) and (b; ), we see that

(1)

and i i s JE N4, and the matrices

5 <maynisl {:mf*’}c{: 8 — Téi; < Mi < &+ Ta},
{ r{ iMﬁr{g}n{ﬁf[ iMH!'j:,;}C{f-af“Tﬂf£%f£81+Tﬂf},

_ L 1
where T =T (i) :=2 (E; + (m)) .

Fi

Now it is easy to see how to choose an appropriate function ¢. Taking any non-decreasing

function ¥y : Ry — R such that r}”!} > Y(a;), we can use any decreasing function ¢ : R, —

R, @(t) — 0 as t — oo, satisfying the estimate:

(50)

AL l

(1) > 2A(— + —=).
T y(T)
Since (42) and (50), the inclusion holds:
Skt C Siy( i : max{8, &} —Ta; < A; < min{ex, &} +Ta}. (51)

Taking into account (49), (51) and the definition of the function @, we get

_ x L7
Sk}.’ C {! . Ok *(p(T;()f,{; < Ai < & +(P(Tk)fk=- E <a; < .{EIL} U

. z T _ . (52)
i —o(t)y <k <g+o(T)1 ~ Sa < At}
for any k,l € N,,.
Finally, from (41),(52),(42), we get
B(MB°(2),B°(d)) < k(8- 9(0)1, e+0(0)r5 +, ). (53)

Combining (40) and (53), we get the inequality (16). )
Similarly, we obtain the mequality (17). Thus, yf;; ~ Jui. This concludes the proof of
Theorem 16.
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6 Comparison of m-rectangular invariants

Here we compare the strength of the invariants u, for different m € N, and show also that the
equivalence of all individual invariants u;, does not imply the equivalence of the systems of
invariants (¢ ). Thus, there is a gap between the results about isomorphic and qusidiagonally
isomorphic classification of pairs.

Theorem 17 For each m there exist pairs F and F satisfying the following conditions:
(@) ~pl, 1=1,2,...,m;

(b) J“;T:H 5’9“:;1'

Theorem 18 There exist pairs F and F such that
(a) b ~ub . foreachm € N;

(b) (uh) 3 (ub,).

Since the analogy with the case of so-called first type power spaces, considered thor-
oughly in [16], we describe only how to construct the corresponding pairs F, F', avoiding the
proofs.

In each example the required pairs F[A,a] and F[\,a)] will be collected from special finite-
dimensional blocks, as follows.

We begin with the notion of o-dense set. Suppose o > 1; we say that the set A C R 1s

. . * : : X -
o-dense in B C R if for each point x € B there exists a point X € A such that — < x < /OL.X.

/o

Further, we consider m € N, independent of j, for the first theorem and m = j, j € N for
the second one.
Let us take an arbitrary number o > 1, a sequence (3;) T oo, B; > «, and a sequence (1)
- 3 .
defined as follows 1y > 1, M4 > B;‘Hnﬁ j€eN.
For each j € N we choose 2m natural numbers & 1,k;2,...,k; 2, so that

f{_fgl = 1, kj'ig > kj'j_| +B§Tl_ﬁ [=12,3,....2m.

On the Figure 1 it 1s drawn the set §;, consisting of horizontal and vertical segments (two

“combs” with m ’cogs” on each of them), in which all the points (A;,a;), (A, d;), correspond-
ing to the j-th block will be located.
On the segment [nJ.-,,B?nj] we select a finite o-dense point set M, including the points

- Rm: Rin.
n;, By, By
Consider the set L; of all the points (/,y; ) € Sjsuchthat 1 <I<kjop,l €N, y;s € M.
After enumeration we get

Lj — {(*’rj*r'a}'rj.f): [ = 1325 ceey il — 1}

with some number ;.
Define the vectors A = (lm)’-*"" a/) = (a';"r}){” AU) = (i(ﬂ){f;‘ cal) = (&{J])f-” by
the following tormulae
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e e S T T S . R

ot e e b S s S . E—

kj 2m

kv kj2 ki3 kja

Figure 1: The set S ;.
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}“\'{__H — JL'J,.'_;‘ if 7= IEHI — 17

kKin ti=ny:

() _ =) _ { 1,, ii=12,...n;—1.
; e

T
.H.

Now we construct the auquuncea A = (?&,) a=(a;), A
(A;) we define by the rule A; = kf_ oy e 1)
. fa.j a are defined 1n the same manner.

One can show, using the considerations of [ 16] as a hint, that for the constructed pairs the
statements (a) and (b) in the theorems are valid.

A:), d=(a;). The sequence A =

forn; | <ui g 1; (19 := 0). The sequences

7 Applications

We apply here the simplest of the compound invariants, studied in sections 4,5, namely the
one-rectangle invariant, to the class of pairs of spaces of analytic tunctions in Reinhardt do-
mains (item 3.2); this gives some 1somorphic classification on this class, essentially stronger
than that considered in 3.2.

Define a characteristic of a pair of Reinhardt domains Dy C Dy, as follows:

Y(o) = mes {E" €. !"I;)] (6) —f?,';;“{e} < CL}. (54)
where mes means the Lebesgue measure on X.

Theorem 19 Let D;. D;. i = 0.1, be Reinhardt domains such that Dy C Dy. Dy C Dy, and
w(o), W), be the characteristics (54) for the pairs (Do, Dy) and (Do, Dy ), respectively. If
(11} is true then therve exists a constant ¢ such that

1 /ewy(e/c) <\(e) < wlce), € > 0. (55)
Proof. Let h(@) - }'i'ni (B) - h;_;”(ﬂ)._ E-'(H) o hf‘}l (G) — f'i'ﬂ”l(\{f}) and
F = (A(Dy),A(Dy)), F:=(A(Dy),A(Dy)).

Then, puttingm = 1,0, =0,€&, =¢€1, 1} =1,7) =1/2, we get
Ni=p,Brer ) = |{ke ”-im‘ (k) <er, t/2< |kl <1}
> [{k:h(B(K) <e. 1/2< Ik <1}

Using some elementary estimates for the number of integer points 1n a given domain of R”,

we get )

N> o

dny/n’

By Theorem 16, there exists a constant A > 1. and a sequence ¢ : Ry — K., tending to 0 as
t — 0, such that

(14+o0(1)), - eco. (56)

-

N w, (81 —o(t) e+t T /A AN)

<
< Hk:h(Bk)) <A(e+0(r/2))1/2A < k] < At}
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After some elementary estimations we get from here the following asymptotical inequality

N < A'YR2A(E+@(t/2))) " (1 +0(1)), t— oo, (57)

l
n/n
Combining (56), (57), we get

Y(e) <2A"W(2A(e+o(1/2))) (1 +o(1)), - e

Thus, after turning t — oo, we obtain (55) with ¢ = 2A". Because of the symmetry with respect
to I and F, the proof is completed. (]

Example Consider the one-parameter family of pairs of Reinhardt domains in C?, defined as

follows:
Dy = {(zi,22):]ul <1, ]l <1}
DE”] = {(z1.22) : |z[M 2] H < expAt, A €]0,1]}, 1 < u < co.

Then hﬂm; (A, 1—A) =0, hﬂ.;i,;. (A, 1—=A) =A" 0 <A< 1,and the corresponding characteristic

¥ [
(54)is " (o) = o!/*. Therefore, by Theorem 19, the pairs F*) := (A(DE;*})TA(DE"})), | <
1 < oo, are mutually non-1somorphic.
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