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THE QUASI-EQUIVALENCE PROBLEM FOR A CLASS OF KOTHE SPACES

BORA ARSLAN, MEFHARET KOCATEPE

Abstract. We consider a subclass of the class of stable nuclear Fréchet-Kothe spaces, and
show that quasi-equivalence property holds in this subclass.

1 Introduction

Let E be a nuclear Fréchet space with basis; two bases (x,) and (y,) of £ are said to be quasi-
equivalent if there exists a permutation © of N and a sequence (7, ) of positive scalars such that
there is an isomorphism T : E — E with T'(x,,) = Y, V() A nuclear Fréchet space £ with basis
is said to have the quasi-equivalence property if every two bases of E are quasi-equivalent.
Quasi-equivalence was first studied by Dragilev [6]-[8] and also Mitiagin [13],[14]; Crone
and Robinson [5] proved that any nuclear Fréchet space with a regular basis has the quasi-
equivalence property. Further progress on this topic is due to many mathematicians, e.g. see
12]-14L171L,1101-[12],1 18]-[22]. However the general problem whether every Fréchet nuclear
space with basis has the quast-equivalence property (the so called quasi-equivalence problem)
remains open. In this note we prove that the quasi-equivalence property holds for a certain
subclass of the class of stable nuclear Kothe spaces.

Let A = (a;p)ipen, N = {1,2,---} be a matrix of non-negative real numbers such that
ai p < a;j p+1, then the Kothe space K(A) is the Fréchet space of all sequences x = (1;) of
scalars such that |{x||, := Y,;cn [Nilai p < oo for all p € N, with the topology generated by the
system of seminorms {||-||, : p € N}. The sequence {e; };cy where ¢; = (0; ;) 1s an absolute
basis (and it is called the canonical basis) of K(A).

Let K(A), K(B) be two Koéthe spaces with canonical bases {¢;) and ( f;) respectively. A
linear operator T : K{A) — K(B) is said to be quasi-diagonal (qd) if there exists a function

¢ : N — N and a sequence of scalars (y;) such that T'(e;) = i fs(;). We write X Ei Y if there
1s a quasi-diagonal embedding 7 : X — Y1t T 1s an 1somorphism we say that X and Y are
quasi-diagonally 1somorphic. With this terminology, the quasi-equivalence problem can be
stated as follows: Are 1isomorphic nuclear Kothe spaces quasi-diagonally isomorphic?

The following known result 1s very useful in this context, see |4, Proposition 3] or [ 17,
Lemma 1.1].

i 1
Lemmal Let X and Y be Kothe spaces. If X EYandy S X , then X and Y are quasi-
diagonally isomorphic.

Recall that the Kéthe space K(A) is nuclear if and only if the so-called Grothendieck-

L] L3 ¥ ™ « - » a:
Pietsch criterion holds, 1.e. for each p € N there 1s ¢ € N such that E L
- iy

f :

< oo, In this case
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the topology of K(A) can also be defined by the equivalent system of seminorms ||x|| , =
sup Milaip.
{

2 Linear Topological Invariants (LTI)

Linear topological mvariants (such as approximative and diametral dimensions) have been
used for 1somorphic classification of non-normed linear topological spaces by Pelczynski
[ 15], Kolmogorov [10], Bessaga, Petczynski and Rolewicz [1], Mitiagin [13] et al. In this
work we consider linear topological invariants introduced by Zahariuta [20],[16]. See also
| 17] for an extensive consideration of these invariants.

Let X be a linear space and let U,V be absolutely convex sets in X. Then

B(V.U) =sup{dimL:LNU C V}
L

where the supremum 1s taken over all finite dimensional subspaces L of X.

[t is clear trom this definition that if V; C V5 and U} D Us then B(V,,U,) < B(V»,U»), and
if 7 1s an isomorphism then B(7T(V),T(U)) = B(V,U).

Let X be a sequence space of sequences x = (x;), x; € C with the following property:
x=(x;) € X, Vilyil <|xi|l = y=(y;) € X. Let A be the set of all sequences such that for all
a=(a;) €A, 0<a <o, We define

Prp—

20

B(H) == B(H_;) = {X o (-1}‘) cX: Z |-t_fi£ﬁ' E ]},
=3

B(a) = B(a;) = {x = (x;) € X :sup|xi]a; < 1}.

As a convention we assume (Joo = () and xoo = o0 1f 0 < x < oo. According to this convention,
if a; = oo for some i and x € B(a) or B(a), then x; = 0.
We have a suitable characterization of the function B(B(b),B(a)).

Lemma 2 Let X be a sequence space with some locally convex topology for which the se-
quence of unit vectors (e;) is an unconditional basis. Let b = (b;), a = (a;) be such that
0< b <eoand( <a; <eoforeachi € N, Then

—.

{i:bi <ai}| <B(B(b),B(a))
and if B(a) is absorbent in X, then
B(B(b),B(a)) < |{i:b; <2(n(i)) ai}|.
for any permutation ©: N — N,
Proof. Let ] = {i: b; < oo}, J={i: 0 <a}.

Let Ny = {i: b; <a;}. Then Ny C INJ, and hence Ny C Ny (INJ). Let L) = span{e;
i € N\ } where (e;);en 1s the canonical basis of X. We want to show that L; N B(a) C B(b) from
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which it follows that [N;| =dimL; < B(B(b).B(a)). Now letx = {x;} € L NB{a). Then x; =0
if i € Ny and 2 xila; < 1. So, aup|1;\hf = -.L1pr Xi|bi < sup lxila; < Z xila; < lie. x€ B(b)
€N (€N (€N, 1EN 1 1']

To prove the second claim given any © define Ny = {i: &; < (m(i) nf} L> == spanje;: i€
N>}. Let L be any finite dimensional subspace of X such that LN B(a} C B(b} We will show
that dimL < dim /L, = |N>|. For this purpose it is enough to show thut the restriciion to L ol
the natural projection P: X — Ly, Px = X oy, Xi¢; 1S an injection.

Assume not. Then there is v = (y;) € L, y # 0 such that Pv = 0. Thus we obtain v; = 0
forall i € M.

Since B(a) is absorbent, for some C # 0, Cy € B(a) thus Cy € LN B(a) C B(b). So for all
Cyilb; < if (i.e.hj=oc0)theny;, =0.S0y; 0= 1€ (NobU/") =
Ny (1" denotes the complement of the set /) and

| ' hl'.
M = 2 bila < X Whﬁﬁﬁ
Ny €Ny T H
- l . N
< Csup lyilbi) 2, 5emsy < 5 Wlaey < Vaw)
iENYNI ieN! N 2(m(i)) 2

But LN B(a) C B(b) is equivalent to Vi) < Vg torany vy € L which is a contiadiction.
=

L.

Lemma 3 Let X be a sequence space with some locally convex topology. LetV =0 _B(b"),U =
conv(U,—B(d")) where O < D! < oo and O < a?! < oo for all n. Let by = supb}, a; = il’:f::.'f,

I
Then

V =B(b), Bla)C2U.
and if for some m, B(a™) is a zero neighbourhood, then U C 2B(a).
(It could happen that b; = o or a; = O for some index i.)

Proof. The prm}f of the equality V = B(b) is trivial. For the second claim. let / = {i: 0 <
ait, J=Ai: a; =0}.
|
We show that B(a) C 2U. Fixi. We have —¢; € B(a") C U forall n. Thus, it i €/, ”'{'*'

If{

U and it i € J then owe; € U forall oo € C. Now given x == (v;) € B(a) we bave

X = ZA a; ue, + Z Dlxie;.

i€ ied =
. | . , . o .
Since —e¢; € U forall i € [ and Z x;la; < 1, we have that E.x',-m —e¢; & U, Stmlarly since
(i : - (;
e i /

. l .
2'xie; € U forall i € J and Z,: 5 < I, we have Z} ;;}72’.1',1’; clU.Soxe2U.
icJ = ied =
Finally we assume B( ") 1s a zero neighbourhood. Clearly we have B(«") C Bla) for
all n and hence conv(U,_B(a")) C B(a). Then U =conv(U_ B(a,)) C conv(U,_B(d")) +
B(a") C 2B(a). ]
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3 Class f.ﬁ]

Lu[ (1 be the class of all nuclear Kothe spaces K(d; ,) with either I or IT where
1 di ), <diyptoralli.pe NandVpdg. P d::f p < Pd;g,
Il dipy ), <d;,foralli,pe NandVp :'q P:d,< Pda, ;-
Ohhenu that If X € (7 then X ~ X2,

Theorem 4 /f X = K(a; ,), Y = K(b; ,) are isomorphic spaces from the class C; of the same
type, then X is quasi- ::hu;,mn:sﬁ_\ isomorphic to'Y .

To prove this, we are going to use linear topological invariants and the following Hall-Koenig
Theorem:

Hall-Koenig Theorem. (see [9], Ch. 5) Let M, N be two sets and let S - M — 2N be a map
which assigns a finite set S(m) C N to each m € M. There exists an injection © : M — N
such that ©(m) € S(m) for all m € M if and only if for all finite subsets A C M we have
|Al E | Jaea S(“)!*
Proof. [Proot of Theorem 4] We will give the proof when both spaces are of type I since
the other case can be proved analogously. Let T be the isomorphism from X to Y. Let
{B(ai }f?&“ {B(a; p)}pen be the families of weighted [.. and /| balls in X respectively and
let {B(b; ) tpen.AB(bip) }pen be similarly defined in Y.

It necessary, by passing to a subsequence of balls and multiplying the balls by scalars,
without loss of generality we assume that

vp T '(B(bips1)) C Blaip) (1)
Vg T(Blai,+1)) C B(biy) (2)
Vp T '(B(bip+1)) C Blaip) (3)
Vg T(B(aiy+1)) C B(big) (4)
VpaieN a;, < dair, (5)
Vg,ie N bi, < biyiy (6)
Vp.i €N ax, < dipt (7)
Vg,ie N by, < Dbjgy (8)
Also, by nuclearity (see [2]) there exists a permutation 7 of N such that
Vp,i 8.52!;-?1{,;}”” < Dr(i) p+1- (9)

We will apply the Hall-Koenig theorem to the multivalued map S : N — 2" defined by

_{B _ﬂ{i hf Y4 8 A2 _n-{-l }
no— 3 ~ -
Py )) b;, g+2 UA2n g

We also define
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For any nondecreasing sequence of scalars (t,), by (4), we have

ﬂf;JT(E’(ﬂL;J)) ('_-—- ﬂfp-irlr(g(“f‘p-l—l )) {_: ﬂfp_qg(b;‘}r;)
P

17 P

and so

T(ﬂé(%"—”)) c (B h"_"" ). (10)

p P p

Let n € N be fixed, and define 1, = ay, p.

di p bf. )
p Ulp p Ulp+l

Then by Lemma 3 we obtain

ai p ~ ~ i.p
P I’ p [Lins
and hence (10) yields
T(B(a;..)) C B(bi). (11)

On the other hand, by (3) and (7), for any sequence (T,) of scalars we have

| !
U _ I ](B(hhﬁ*‘ri)) C U T B(HE:',;J)
p p+2 " p+2
= T_I (UB(T;HEEJE,;J—I—E)) C UB(T;J-‘rEa’ELp)- (12)
P P

Define now
hf‘{) L= i?}f{Tp-FZbL;J-I—E} , dj () .= igf{rf?—k?ﬁrzﬂ.-’?}

]
Aan.p

by Lemma 3 we obtain

where T2 = and n is the same fixed number used 1n the definition of 7, above. Then

]
conv(| ) B(tpe2a2i)) C 2B(aip), 5B(bio) C conv(|_JB(tp2bipi2))
p %

and hence (12) gives that

l
EB(bH}) - ZT(B(HL[})). ( ]%)

Thus (11) and (13) allow us to write

I

—B(bio)) = B(B(b;..),B(4b;))

B(B(a;w),B(aio)) < B(B(biw), 2
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and therefore by Lemma 2 and the definitions of «; o, a; «, b; 0, b .. We obtain

"qﬂtillﬂ”l‘ (14)

Ce + ai (. +
If i is integer such that n < i < 2n, then for any p and ¢, we have — < | < —= which

U2n.p - Qg
means, that the integers n,n+1,---,2n are in 4,,.

Let K C N be an arbitrary finite set. Choose n = max{k : k € K}. Observe that n > |K]|.
So,

lKI <n< I-ﬂu‘ < ‘i n‘ < |U£'EK I‘Bfil
Thus by the Hall-Koenig Theorem, there is an injection ¢ : N — N such that ¢(n) € B,.

b‘P(”}*F < 8 A2n,p+1
(T[-‘ | ({P(H) ))Eb{p{fz).iﬁ--ﬂ - g

which implies

bom).p _ Do) g+3

n,p+2 N g

for all p,q. Then choosing A,, such that

b b * 3
Hup{ (\D(”J'fﬂ} E kﬂ E ln_[_‘{ (p{f!,l"':f_l_‘ }
P an,p+2 4

Ay g

gives a quasi-diagonal embedding of X into Y.

A symmetrical argument gives a quasi-diagonal embedding of ¥ into X. Now the result
follows from Lemma 1. [
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