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WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS AND SEQUENCE SPACES'
JOSE BONET, DIETMAR VOGT

Abstract. Qur aim in this note is twofold. Firstly we show that, given any Kdothe echelon
space of order one, a weighted inductive limit of Banach spaces of holomorphic functions on
the disc can be constructed such that the strong dual of the sequence space is isomorphic to
a complemented subspace of the projective hull associated with the weighted inductive limit.
It is also proved that, under some mild assumptions, a weighted inductive limit of spaces of
holomorphic functions is a (DFS)-space (and hence the projective description holds) if and
only if the associated weights satisfy the condition (S) of Bierstedt, Meise and Summers.

1 Introduction.

Let G be an open domain in C and let V = (v, ), be a decreasing sequence of strictly positive,
continuous weights on G. Let A = (a,), be a Kéthe matrix on N, i.e. an increasing sequence
of strictly positive weights on N. As in [2] we consider the following sets of weights as-
sociated respectively with V and A. V is the set of all the upper semicontinuous functions
v: G — 0,00 such that v/v, is bounded on G for all n € N. Analogously, A is the set of all

e

the strictly positive sequences A = (A(j)); such that a,A is bounded on N for all n € N.

The spaces
HV(G) :={f € H(G) | vf is bounded in G V7 € V}
and

K.. = K.(A) := {x=(x;); | (M(j)x,); is bounded VA € A}

are endowed with the locally convex topologies defined by the family of seminorms

[

po(f) = sup.cV(2)|f(2)] , pr(x) = sup;A(j)|x;

respectively. The space K. is in fact isomorphic to the strong dual of the Kothe echelon
space of order one A (A) associated with the matrix A [3, 10]. The space HV(G) is the
projective hull associated with the weighted inductive limit VH(G) := ind,Hv,(G), defined
as the countable inductive limit of the sequence of Banach spaces of holomorphic functions

Hv,(G) :={f € H(G) | sup,c;va(2)|f(2)

< oo},

n € N. These inductive limits appear often in applications to complex analysis or linear par-
tial differential equations. We refer to [I, 2] for further details. The problem of projective
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description of weighted inductive limits of spaces of holomorphic functions [2] asks whether
VH(G) and HV(G) coincide topologically. It is known [2] that these two spaces coincide
algebraically and they even have the same bounded sets. They also coincide topologically it
the sequence of weights V satisfies the following condition (§): for every n there is m > n
such that the function v, /v, vanishes at infinity on G. See [2]. The problem of projective
description was answered recently in the negative in [7]. A more natural example for spaces
of entire functions was later given in [6].

The main part of this article has two sections. In section 2 we assume that G 1s bounded
and we show that, under some mild restrictions on the boundary of G, given any Kothe ech-
elon space of order one A (A), there 1s a decreasing sequence of strictly positive continuous
weights V = (v, ), on G such that the strong dual of A;(A) is isomorphic to a complemented
subspace of the projective hull HV(G) of the weighted inductive limit VH(G). Selecting
appropriate Kothe matrices A for which the echelon space 1s not distinguished (ct. [9, 31.7],
or [5, 13] for a general characterization), we obtain examples of weighted inductive limits
VH(G) such that its topology cannot be described by the weighted sup-seminorms defined
by the associated system of weights V. This extends the first counterexamples of [7], and
permits to obtain examples in which the set G is the unit open disc D and the weights can
be selected with some additional properties. Another approach to get counterexamples was
taken by the authors in [8]. In that articie a necessary condition is given for the projective
description to hold for VH(G).

In section 3 we prove that, under some natural assumptions on the sequence of weights
V = (Vu)n, the weighted inductive limit VH(G) satisfies that the linking maps are compact
(which is sufficient for the projective description to hold) if and only if the sequence of asso-
ciated weights V = (¥,), satisfies the condition (S) defined above. Given a strictly positive,
continuous weight v on G, the associated weight is defined by ¥(z):= 1/sup{|f(z)| ; f €
H(G),|f]| < 1/von G}. Clearly 1/%(z) coincides with the norm of the evaluation on z as
an element of the dual Hv(G)" of Hv(G). Associated weights and its relation to weighted
inductive limits have been extensively studied in [1]. The main result of section 3 improves
and clarifies certain results 1n sections 2 and 3 of [1].

Our notation for functional analysis and locally convex spaces 1s standard. We refer the
reader to [10]. Unexplained notation for weighted inductive limits can be seen in [2].

2 Complemented subspaces isomorphic to sequence spaces.

For a compact subset K of C which is the closure of its interior, we denote by A(K) the
Banach algebra of all holomorphic functions on the interior of K which have a continuous
cxtension to the whole set K.

In this section we make the following assumptions:

(1) G is a bounded open domain in C with closure K and boundary 0G.
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(2) There is a discrete sequence (z;); in dG of different peak points of A(K) (cf [12])
converging to an element z., of dG.

(3) V = (vy), 1s a decreasing sequence of strictly positive continuous weights on G which
are bounded by 1 on G, and such that each v,, has a strictly positive continuous extension wy,
to GU{z; | j € N}.

(4) The Kéthe matrix A = (a, ), is defined by a,(j) = 1;-1--'”(;;,-)_1 for every n, j € N,

We prove the following main result.

Theorem 1 The space K.. is isomorphic to a complemented subspace of HV (G).

Proof. By continuity we select, for each j. a closed neighbourhood U; of z; in K such that
UNU;=01if j# i, lim; diamU; = 0 and

1 'l
= < b”(({’))c_iQ Vi<n<j VzeU;NG. (1)
Fa H’rﬂ a-?l; |

There is A9 € A such that 0 < Ay(j) < a (/)" forall j (cf. [3]). We select a sequence (€/);
such that -
0<e;<h(j)27/7' VjeN and Y e=re<eo (2)

JEN

Since z; 1s a peak point n A(K), there1s g; € A(K) such that g;(z;) = I‘und gi(z)] <1 forall
z € K, z# z;. If we denote by C, the closure of K'\ U;, then g; is a continuous function on the
compact set Cj, and the sequence of powers (|g J,-lk) 1 18 a decreasing sequence of continuous
functions on C;, such that lim;(g*r}(z) = 0 for all z € C;. By the theorem of Dini, for each j

there is k(j) such that ‘gﬁ{"”(z)
cvery J, |

< ¢g; forall z € C;. We put, foreach j, e; := gj;[‘”* Then, for

e; € A(K), ej(z;) =1 and

ej(z)] <€;Vz e K\U;. (3)

Now, since Eim:_}rh.ej(z) = ej{z;) = 1, for each j, we find an open subset V; of U; N G such
that

o [ edua) -1 <e; (@4

iu(vf) Vi

Here u denotes the Lebesgue measure. After this preparation we establish some preliminary
facts about the weights which will be needed in the proof below.

(HVAeAdue A : A<p and £, <277 a(j) vj.
A(j)-

(i) VA e AFv eV Vj : A(j) < infrey, 7(2).

()VweVINeEAY] : sup:_E“jm;F(z)

| /A
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Proof of (i): Given \ € A, take = max(?_u: E)

Proof of (ii). Given Vv € V. for each n the_r;e 1s o, > 0 such that v < o, v,,. We define. for
each j, A(j) 1= sup.¢;ngV(2). To show A € A, we fix n, and, for j > n we apply (1) to get

Consequently
sup A Nan(J) < TI']EIK(Z(Im?_L(l)H”{I)}..,,X(H —Da,(n—1)).

Proof of (iii): Given A € A, for each n, there is B, > 0 such that Aa, < B.. We define
v(z) := A(j) if z€ U;NG for some j, and ¥(z) := 0 otherwise for z € G. Clearly Vv is upper
semicontinuous and non-negative. To check v € V, we fix n. If z € U,NG for some j > n, we
apply (1) to get

El — ?L(f) < B Wr.-{ )

Vi (:) Vi (:) Vi (*)

Therefore, if we set y; := inf(v,(z) : 2 € U; N G), we have, for all z € G,

{: 26?1‘

"D < max(ap,, M) Mn=D),
1:3( } Y Yn—1
Once this 1s proved, we define the maps
v: K. — HV(G 2!, e,
and
®: HV(G) — K., ®(f /j V(2

Both are well-defined, continuous and linear maps. We first prove it for y: We fix x € K...
There is C > 0 such that |x;| < Cho( )" for all j (with &g as in (2)). For every zg € K,
20 # I, there are jy and a neighbourhood W of zy which does not intersect {J; jfor j > jo. It
z belongs to this neighbourhood W, we have

Y e <Y k() e < ¥ 27

i2Jo 7200 /= Jo

and the series defining y(x) converges (absolutely and) uniformly on W. This implies y(x) €
H(G) and it is continuous on K\ {7 for all x € K... In order to check y(x) € HV(G) and
the continuity of w, gwen vEV, weselect A € A as in (ii) and then we take 7 > A as in (i). Let
x € Ko satisty sup ;u1(j)|x;| < 1. There is C > 0 such that v(z) < C for all z € G. For z € G,
there are two possible cases.

Case I: z does not belong to any Uj, then, by (3).

:) ]l ZI}(’_J‘;(E)I _“; F(:’.) z |A’j£’j‘(3)

J

< (.

——p—
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Case 2: z € Uj, for some jy, then

Z*‘fﬁ?' )P‘Jn Ju( )H_P( ) Z [Xjej(f-)‘ <

J7# Jo
{ C+ |rm|5up EU,“'"I[’; ( )Le‘m( ‘ < C+ |'}‘m‘?L j{) < C+ 1.

From where the conclusion follows.

We prove now that @ is also well defined and continuous. Given f € HV(G), we show
®( f) € K.. (and the estimates yield also the continuity). For A € A, we select v € V as in (ii1).
For each j we have

3, POt

J

< sup.eV(2)]f ()]

from where the conclusion follows.

It is now easy to see that, if x = (x;); € K., then, by the estimates already shown for the
continuity of y, (Py —id)(x) =: (y;); satisfies
T ), e@du)

Vi = (L(T;) /v i(2)du(z)

/ L#J IVEAS

We can now apply (3) and (4) to conclude

L/ Xk |
Wil < Lo | ej(2)d@) = i1 + [ ex2)du)] <
: M (Vi ) Vi ! ! ,;; H (Vf ) Vi
<ejbul+ Y badsup.cy, (@) < Fenful
k# § k

And the latter series converges. Indeed, since x € K., given ?_q; as 1n (2), we have
. — l
k1 , .
;Ek‘«ﬂ‘] < ;2 i Ao (k) < 5 px, (%).

We consider now the following subset of A.
—{LeA|A <A<1onN}.

For every A € A, we define .= nﬂjin(»:sf1 . max(i?%)), with ?—q;. as in (2). Hence, since u]"'] <1
we have i € T" and there is C > 1 such that A < Cfi. Accordingly the set of multiples of the
elements of I permit to define a fundamental system of seminorms on K...
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In order to apply the von Neumann series (cf. [7, Lemma 2]), to conclude that K., 1s
isomorphic to a complemented subspace of HV(G), we only have to show that, forall A € T,

1
prl(@Y—id)(x) < 5 py(x)  Vx€Ke.

To see this we fix A € . If we write, as above (vj); = (Py —id)(x). and use the estimates
already established, we have for x € K.

1 ]
S 575, (x) < 5 pyl).

p;i(y) < suply;
J

This result permits to get easily examples of weighted inductive limits VH (D) of holo-
morphic functions defined on the unit disc D such that the projective hull HV (D) of VH(D)
contains the strong dual of a non-distinguished Kothe echelon space, and hence it is not
bornological. Accordingly, in this case, these two spaces do not coincide topologically.

Betore we construct the example we first observe that every point in the boundary 7 of D
is a peak point of the disc algebra A := A(K) for K = D. We put z; := ¢ 1/ and we take any
non-distinguished Kothe echelon space A (A) of order 1 {9, 10], such that the Ko6the matrix
satisfies 1 < a; (which is not a restriction). Clearly in defining VH(G) we may assume the
weights of the form

UH(Z) — E_{p”l::j

where @, (z) is continuous and subharmonic. Otherwise we might replace v, (z) by ¢~ ()
with @,(z) = sup{log|f(z)| : sup.cpva(2)|f(2)| < 1}. See also section 3. Here those ¢,(z)
which are harmonic are of particular interest. If y,,(z) is the harmonic conjugate, then

H”(E) —f [:{PH [E]‘I‘fq.l” (z})

1s holomorphic, |u,(z)| = v,(z) and we have the case of weights which are the modulus of a
holomorphic function. We define, for each »n, a function o, on T in the following way: o,
takes the value log(a,(/)) in a small arc 7, ; around z; for each j and it is 0 otherwise. The
length of the arcs 1, ; 1s selected so that the function o, belongs to L' for all n. We define
¢, as the function on D given by the Poisson integral P[o,] [11], hence it is a harmonic
function. We set v, := ¢~ for each n. The sequence of positive weights V = (v,,) satisfies
all our general assumptions and by our theorem the strong dual of A;(A) is isomorphic to a
complemented subspace of HV (D).
With the same argument given above we obtain the following consequence.

Corollary 2 Given a Kithe matrix A = (ay,), with ay > 1, there is a decreasing sequence
V = (v,)n of strictly positive continuous weights on the unit disc D C C such that the strong
dual of the Kothe echelon space Ahi(A) is isomorphic to a complemented subspace of the
projective hull HV (D) of the weighted inductive limit VH (D). Moreover the weights v, can
be selected such that v, coincides with the modulus of a holomorphic function on D.
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3 Characterization of a property of weighted inductive limits.

In this section we assume G is an arbitrary connected open subset of C and V = (v,), is a
decreasing sequence of strictly positive, continuous weights v,, on G such that ¥,(z) 1s finite
for every n € N and z € C, hence v, 1s a weight on G for each n € N. At several points we
consider the following condition which should be compared with [1, 1.13].

(A) Foreverv n € Nand z € G, 1/¥,(z) coincides with

sup{lg(z)| ; g € H(G),|g| < 1/von G and vg vanishes at infinity on G}.

A function g 1s said to vanish at infinity on G if for every ¢ > 0 there is a compact subset
K of G such that [g(z)| < a for every z € G\ K. Condition (A) means exactly that, for each
n € Nandeach z € G, 1/V,(z) coincides with the norm of the evaluation 9, at the point z in the
dual of the Banach space H(v, )o(G) of all those holomorphic functions f € H(G) such that
v,| f1 vanishes at infinity on G endowed with the norm induced by Hv,(G). The condition
(A) 1s satisfied if (& 1s a balanced open subset of C and each v,, is a decreasing, radial weight
on G such that H(vy)g(G) contains the polynomials. In this case the polynomials are dense
in each H(v,)o(G) and we have H(v, )o(G) = H(V,)o(G) algebraically for each n. We refer
to [4] for more details.

An inductive hmit £ = ind,, E,, of Banach spaces 1s a (DFS)-space if for every n there is
m > n such that the linking map E,, — E,, is compact. By a result of Baernstein, if VH(G) is a
(DFS)-space, then the projective description holds and VH(G) = HV (G) holds topologically,
[2]. Moreover if a sequence V = (v,), of weights satisfies condition (§), it is easy to see that
for each n there is m > n such that Hv,(G) is continuously included in H(v,,)o(G) with
compact inclusion. In particular, VH(G) coincides with VoH(G) := ind,,H (v, )o(G) and both
spaces are (DEFS)-spaces.

Our main result 1n this section improves |1, 2.1.(a) and 3.5].

Theorem 3 Let V = (v, ), be a decreasing sequence of strictly positive continuous weights
on a connected open subset G of C such that v,, is a weight on G for eachn € N. LetV = (¥,),
be the sequence of associated weights. Assume that VoH(G) = VoH(G) holds algebraically.

(a) If H(v))o(G) separates points of G, then the following conditions are equivalent:

(1) VH(G) is a (DFS)-space,

(2) the sequence V = (V,), satisfies condition (S), ie. for each n there is
m > n such that v,, /v, vanishes at infinity on G.

(b) If moreover the condition (A) is satisfied, then (1) and (2) in part (a) are also equivalent
[o

(3) VoH(G) is a (DFS)-space.
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Proof. (a) We assume first that (2) is satisfied. Since VH(G) = VH(G) holds algebraically,
hence topologically, (1) follows from our remarks above.

We prove now that (1) implies (2). We fix n € N and assume there 1s £ > n such that
the inclusion j : Hv,(G) — Hv(G) is compact. Since VoH(G) = VyH(G), we can apply
Baire category theorem to get m > k with H(v;)o(G) C H(¥,,)o(G). This implies that the
o(H(vi)o(G) ,H(vi)o(G)) limit of v,,(z)0. as z approaches the boundary of GG is 0. Since
H(vi)o(G) separates points of G, we can apply the compactness of the transpose of j to
conclude the Hv,(G) -limit of 7,,(z)0. as z approaches the boundary is also 0. This means
V. /V,; vanishes at infinity on G, as desired.

(b) The proot that (2) implies (3) tollows also from our remarks betfore the proof since
VoH(G) = VHy(G) by assumption. The converse can be shown by an adaptation of the
argument given above since the norm of 0. in H(v,,)o(G)" coincides with 1/7,,(z) for all
z € G by condition (A). []

Lemma 4 Let G be a connected open subset of C and let v be a strictly positive continuous
weight on G. Let 7 # 23 be two points in G. Then either the space Hvy(G) has dimension less
or equal I or there is f € Hvo(G) such that f(zy) # f(z2). In particular, if dim(Hvy(G)) > 2
the space Hvy(G) separates points of G.

Proof. The kernel of &,, € Hvy(G)' is either 0 (and the whole space must have dimension
less or equal 1) or there is f € Hvy(G) such that f # 0 but f(z;) = 0. If f(z2) # 0, the proof
is complete. Assume f(z2) = 0. This implies both ..h| and 7o mc 1solated zeros of f. Let &
be the order of the zero z; for f. The function g(z) = z1) 7% f(z) belongs to Hvy(G) and
satisfies g(z;) # O but g(z) = 0. ]

[f G is a bounded open subset of € such that Hvg(G) # 0, then ¢©f € Hvy(G) for all
¢ € H” and f E Hvy(G). By Lemma 4, in this case, Hvy(G) separates points of G. In case
G = C and v(z) = |z|, Hvo(G) contains only the constants, has dimension | and does not
separate points ut G =C.

Corollary 5 Let V = (v,,), be a decreasing sequence of strictly positive continuous weights
on a bounded connected open subset G of C such that v, = v, for each n. If H(v|)o(G) # 0
and VoH{G) = VoH(G), then the following conditions are equivalent:

(1) VH(G) is a (DFS)-space,
(2) the sequence V satisfies condition (S).

Corollary 6 Let V = (v,), be a decreasing sequence of radial, strictly positive, continuous
weights on a balanced open subset G of C such that H(v) )o(G) contains the polynomials. Let
V = (v,,)n be the sequence of associated weights. The following conditions are equivalent:

(1) VH(G) is a (DFS)-space,
(2) VoH(G) is a (DFS)-space,

=t

(3) the sequence V satisfies condition (S).
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To close this section we give an example, different from the ones in [1], to show that in
general the conditions (1) and (2) in theorem 3 are not equivalent. Let Gy be the disc in C
of center 0 and radius 2. For each » let «, be the radial weight on (G| which 1s identically
| on the disc of radius 1 and coincides with (2 — r)" for r € [1,2|. Clearly U = (u,), satis-
fies condition (§) on Gy, hence UH(G) 1s a (DES)-space, and u,, = i, for each n. We set
G = G \ {0} and, for each n, we denote by v, the restriction of u, to G. By the theorem
of removable singularities, Hu,(G;) can be canonically identified, using restrictions, with
Hv,(G). Accordingly VH(G) is isomorphic to UH (G ), hence it is a (DES)-space. Clearly
V = (v,). does not satisfy condition (§) at the point O of the boundary of G. Observe that
in this example, if f € H(G)) belongs to H(v,)o(G) for some n and v,|f] <1 on G, then
f(0) = 0 and, by Schwarz lemma, |f(z)| < |z] for each |z| < 1. Accordingly if |z] < 1, we
have v,(z) = 1 but 1/sup{|f(2)| : f € HWwy)o(G),valfl <1 on G} = 1/|z|. This implies
g(z) =z€ H(v1)o(G)\ H(V,)o(G) for all n € N. Moreover condition (A) is not satisfied.

-
&

S

7
.




96 José Bonet, Dietmar Vogt

References

[1] K. D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic
functions, Studia Math. 127 (1998), 137-168.

[2] K. D. Bierstedt, R. Meise, W. H. Summers, A projective description of weighted induc-
tive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.

[3] K. D. Bierstedt, R. Meise, W. H. Summers, Kithe sets and Kothe sequence spaces,
Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math.

Studies, vol. 71, North-Holland, Amsterdam, 1982, pp. 27-91.

[4] K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic func-
tions, J. Austral. Math. Soc. 54 (1993), 70-79.

[S] K. D. Bierstedt, J. Bonet, Stefan Heinrich’s density condition for Fréchet spaces and the
characterization of the distinguished Kiothe echelon spaces, Math. Nachr. 135 (1988),

149-180.

[6] J. Bonet, S. N. Melikhov, Interpolation of entire functions and projective descriptions,
J. Math. Anal. Appl. 205 (1997), 454-460.

[7] J. Bonet, J. Taskinen, The subspace problem for weighted inductive limits of spaces of
holomorphic functions, Michigan Math. J. 42 (1995), 259-268.

[8] J. Bonet, D. Vogt, On the topological description of weighted spaces of holomorphic or
harmonic functions, Archiv. Math. 72 (1999) 360-366.

191 G. Kothe, Topological Vector Spaces I and II, Springer-Verlag, Berlin, 1933.

[10] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.

[11] W. Rudin, Real and Complex Analysis, Mc Graw-Hill, 1974.
[12] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, 1971.

[13] D. Vogt, Distinguished Kothe spaces, Math. Z. 202 (1989), 143-146.



Weighted spaces of holomorphic functions and sequence spaces

J. Bonet

Departmento de Matematica Aplicada
E.T.S. Arquitectura

Universidad Politécnica de Valencia
E-46071 Valencia

SPAIN
E-mail address: jbonet@pleiades.upv.es

D. Dietmar Vogt

FB. Mathematik
Bergische Universitat
Gaussstrasse 20
D-42097 Wuppertal

GERMANY
E-mail address: dvogt@uni-wuppertal.de

97



