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HANKEL OPERATORS ON GENERALIZED BERGMAN-HARDY SPACES'
WOLFGANG LUSKY, BETTINA REHBERG

Abstract. We study Hankel operators Hy : Hy — Hy on a class of spaces Hy of analytic
functions which includes, among many other examples, the Hardy space and the Bergman
spaces on the unit disk as well as the Fock space on C. We derive compactness conditions
for Hy and describe the essential spectrum of H}‘H r. Moreover we investigate Schatten class
Hankel operators. The main objects of study are those Hankel operators Hy which admit a
sequence of vector-valued trigonometric polynomials f; with lim; ||Hg — Hp || = 0.

1 Introduction

We study Hankel operators on various spaces of holomorphic functions defined as tollows:

et T={z€C : |zl =1 } and consider the normalized Haar measure d¢ on T (i.e.
Jrgdo = (2n)~ ! [T g(¢)d0). Moreover, let u be a bounded positive Borel measure on R,
with supp u # {0} and consider the scalar product

(F.8)= [ [ SCre® gTre® Vdodu(r)

Denote the space of all (classes) of measurable functions f: C — C with || f|]2 =/ ([, f) < e
by Ly = Ly (do & du). We only study measures g which are such that all polynomials on C are
elements of Ly (d¢ & du). (This is always satisfied, for example, if ¢ has compact support.)
Then put

H,(u) = closure of {p:C — C : papolynomial } C L,.

These notions include the following classical examples.

Examples 1.1.: PutD={z€C : |z <1}
(1) If i = 0y is the Dirac measure at 1 then

Hy(u) ~{ h:D — C : hholomorphic, sup [ |h(re?)|?dp < oo}
O<r<t /T
1s the classical Hardy space.
(2) If du(r) = rljg 1(r)dr and A is the two-dimensional Lebesgue measure then H (1) ~ { h:
D — C : hholomorph, [, |h|*dA < =} is the classical Bergman space on D.
(3) If du(r) = rexp(—r*/2)dr then H,(u) is a space of entire functions usually called Fock
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space (13, 11, 14]).

Of course, there are plenty of possibilities to construct further examples, e.g. the preceding
measures with special densities (“weighted Bergman spaces”) or purely atomic measures. We
feel that these various spaces of holomorphic functions and their operators should be given
a common unifying approach. The goal of this paper is to contribute to such a program by
laying the emphasis on compactness conditions for Hankel operators.

Let Lo, = Lo.(d@ ® du) be the space of all (classes of) measurable functions f(re'®) on
€ which are essentially bounded with respect to d@ @ du. Finally, consider the orthogonal
projection P : Ly (do & du) — Ha(u).

Definition 1.2. For f € L.., g € Ly and h € H,>(u) put

Mg = f-g (multiplication operator)
Trh = P(f-h)  (Toeplitz operator)
Heh = f-h—P(f-h) (Hankel operator)

Clearly, Ms: Ly — Lo, Ty : H2(u) — Ha(u) and Hy : Hy(u) — Lo are bounded operators.

2 Mairix representations of H;

For k € Z let & : C — C be the function with

|—'=

Ei(2) = ()", if 2 #0, and §(0)

£

It m e Z, put
N Mm@

\/-ﬁ“h T‘mdy

Then, clearly, { e,, : m € Z } is an orthonormal basis of Ha(u).
The main technique 1n the following proofs 1s based on a formal Fourier series expansion
of a given f € L,. Here put

€m (re

Fio(r) = / fre®e "do if ke Z.

[Iu

- (L>)
'hen we have j ZA Fi.&; where =’ indicates convergence with respect to || - ||>. Note, F;
only depends on r. Such functions will be called radial tunctions.

5 ,
Proposition 2.1. Let f € L., be such that f L) > FiCk. Then, forany h =73 .7 Pre; € Ha(u)
(finite sum), we have

(Hrh)(re'?) =



Hankel operators on generalized Bergman-Hardy spaces 73

Joo, Fon1($)s ”hfﬂ(ﬁ( s) .

/ .
z z M- J' j - P ) B - "};m(”;rm}

me i fr:: 7 J*-’,_ 1 _‘{-—-”’{!.‘u(j) \/j.” . :!'Ef Ift'i‘f.f( ,'{)
A E); NLOA
+ z z F;H-—J"(")f R “'E_;m(” IE
me i, 'n !r'[: Vi s v/fq -. .f‘lh_jn‘.ri’u

Proof. We have

(fh UE(P Z Z Fm f . B--; ‘gm m
meiley . \/f}c ‘5’12!‘:!.-”(' j]

and, using the orthogonality of the &;,

(fh)(ﬂ? )_' Z (J{h fm} meJ P)

HeEF o

l[

z z [ Fm—f_( )8 f“rﬂu( B

e L
. N 1 — - / =it (‘F ¢ )
mer 167, J:"5~+ 5 J”d"u('i) \/LQ -Yl!dﬁ"(}“)

which proves the claim. []

Definition 2.2. et f € L» and k € Z.
For m € Z., with m > k put

o f'{.\'v:ﬂ‘-wj.\'zf“ ’{'{f,u{:;}

o d @Y =k TR anijl )
.f(“? )"t f‘t; I.,-EHJJIH{I.;:] / ! {'fff'f(‘f.u'

.-l ; !{P L
P b ¢ — -
Pm .k [fJ[\ ) ‘L:: ) I’EF”_E'&{L{J(!*J
Jo L fre )2 rm =X du(r) | fo, flre®)rs" R du(r)|?
o J:{ ) rjm—-l"{dﬁ(r) B ]; . Ffuid‘u(r) j“ﬁl rjm.-- Eﬁ:a:u( F)

and
Pm [ﬂ — Pm.0 [f]
It me Z\7Z, and m > k then put

[ () 2R du(r)
!.ﬂ ) r.-_m—._ﬂdﬁ(r] '

pm.k[ﬂ( rtp)

We obtain that, for all cases, p,,x[f] > 0. Moreover,

I

[£](e"®) f f(re'®)[7r*" dpu(r) B Jr. f(re'®)r"du(r)
Pm ‘{}I{* F‘E’”dy(f’) J:;-E;,_ I-E.'udﬂ(.,.)
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Corollary 2.3. Let h =Y.y Pre; € Ha(u) and F € L., be radial. Then

JRJr Eﬁrrd'u( )

1 'q} . m '(p
(HP h)(FEE )_ Z; (F(F) J-:n: ﬂ-’”dy hmd ém(-“'f; )
me L4 2y Jk A} p‘
and, for any k € 7.,
(Hpe h)(re'?) =
F 2m-— Aﬂr
z (F(r)rui—k IRJF | ( ) - P'( ) m m k E;;z(f'f’ﬂp)
el j:% sduts) \/ Ju, $2M 2R du(s)
. z F(r r”’ P4 &,”(rfhp).
’ 2m—2k
r.‘r;ll;_jj;;_i_ \/J:Rq 5= Qﬁ.d‘u

In particular,

pm|F] and ||Hgg, || = sup \/pm,g

meZ m=>k

3 The spaceY

Here we study Hankel operators with symbols taken from a special subspace ¥ of L...
Forany f€lr,and A€ T put filz) = f(hz), z € C. Let

{ ) Z‘;’u-ij ' | etV “f = Z;‘ FL&;‘,{)Ut

il

Fi&k = / ferwYi(—W)d .

Finally, let
L={T :Hy(u) — Lr : T linear and bounded },

K={Te€L :Tcompact }
and let g : L — L/ XK be the quotient map.
Lemma 3.1. Forany f € L., and j € Z. we have
||Ho |l < [|Hpll and ||qgHs,f|| < [lqH ]

Proof. Forany T € Land A € Tput T)h = (Thy ), if h € Ha(u). Using 2.1. and T = Hy we
obtain H s,y = (Hy),. Put

(O T)h= [ (The)ovt(~W)dw.
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Then we have 6;Hy = Hs . r. Moreover we easily derive

|(o;T)h||> < ?UPHT;?}JIE
el

and hence {|o;T|| < ||T||. In particular, ||Hs || < [[H/||. If K € K then also 6;K € K and

|Hy +K|| > ||Hs,r +0,K|| > |lgHs, 1l].

This implies ||gHy|| > [lqHo, /||

A function of the form ¥ ; F;C; for some radial Fy € L., and j € Z, will be called
Lo.{du)—valued trigonometric polynomial.

Definition 3.2. We put

V¥ ={f€Le : lim||Hf—Hgs|| =0 }.
Jroe '

Proposition 3.3. Let

Yi = { f€Lu : thereisasequence (f;) of Lo — valued
trigonometric polynomials with lim |\gH; —qHy,|| = 0 }
jree | B
= {f €L limlgHy —gHo,l| =0 )

s
H

{ f € Lo : thereis a sequence (f;) of Lo — valued

trigonometric polynomials with lim ||H r—H ,f‘j-H =0}
v "}m - =,

ThenY =Y, =Y, =Y.

Proof. We have Y C Y. Itremains toshow Y, CY», C Y3 CY.

a) Let f € Y. Take € > 0. Find an L..—valued trigonometric polynomial f with ||gH —
qH7|| < ¢€/3. Moreover, find jo € Z with ||f —6;f||. <€/3if j > jo. The we obtain, with
Lemma 3.1.,

lqHy —qHoipll < llgHp = qHR|| +lqH; —qHg 7l + |lgH 7 — qHo ]
E ra -
< 5 +llf—oiflle+llgH7 — qH]]
< &
Thus f €T>.

b) Let f € ¥>. Find K; € K such that lim;_,.. ||H; — Hg, s + K;|| = 0. Since lim; ;|| f -
h—(0;f)hll2 =0 we conclude lim;,. ||K;h||> = O for every h € Hy(u). For any K € K
the operator KP : L, — Ly 1s compact. Hence X can be isometrically embedded into the
space K (L) of all compact linear operators on L. It is well-known that the dual space of
K (L,) as a Banach space can be identified with the trace class operators on L, ([10]). This
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implies that K;P — 0 with respect to the weak topology 6( X (L2), K(L2)"). So, by Mazur’s
theorem, the weak and the norm closure of the convex hull of { K; : j=nn+1,... }
coincide and these sets contain 0. We obtain convex combinations K; = Zj;,,ik A ;K with
' o~ . . i . s

lnﬁ‘n;H.m K] = 0 and limy_yoomy = 0. Put f, = Ej;‘:m;‘- M j0;(f). Then f; is an L.,—valued
trigonometric polynomial and we obtain

|Hy — Hy + Ki]| + 1K}
max ||Hy; —Hg, 7+ K;|| + || Kxk

my < j<nj

<
<

which implies limy ;.. |[Hy — Hy, || = 0. Hence f € 13.
c) If f € Y3 then using an argument analoguous to a) we see that f € Y. L]

Corollary 3.4. Let f € L...
() Iflim; || f =0 f|le=0then f €Y.
(11) If Hy is compact then f €Y.

Proof. (i) follows from |[Hy — Hs ¢|| < {|f — 0[]l while, under the assumption of (ii), we
have gHy = 0. In the latter case lim ;.. ||gH s — qHy || = 0if f; = 0.

Let L(H2(u)) and K (H>(u)) be the spaces of all linear, bounded and linear, compact oper-
ators H(u) — H(u), resp. For f € L., we obtain that HrHy € L(Hy(u)). Let Q: L(Hy (1)) —
L(H>(u))/ K(H>(u)) be the quotient map and Cess(HyHy) the essential spectrum of H Hy,
L.e. the spectrum of QH Hy in L(Hy(u))/ K(Ha(u)). O

Definition 3.5. We say that u satisfies condition (I) if

Y §M- k M
1m : : —
B, ‘JJ; F‘F”""‘{‘dp .[IZ%':J, F’”{!‘u

m—roo

du(s) =0 forall k € Z.

u satisfies condition (II) if

| .];1?51 rm—kdy ]H rm—fd‘u
lim — e
1H—s oo .][;;;+ rdu ’rJ: Fm—ﬁ.—fdy

= | forall k,1 € Z.

[t 1s easily seen that all examples in section 1 satisfy (I) and (II).

Recall that, for f € L., the functions p,,|f] are uniformly bounded in L..(d®) (see Def-
inition 2.2.) We regard L..(d@) as dual space of L;(d®) in the usual way and consider the
w*-topology 6(L.(d®),L;(d®)). For any free ultrafilter U on Z, the w*—limit along U will
be denoted by lim,, ¢;. We put pq| f] = lim,, ¢ pml f1, 1.€.

'/ﬂ;Pff[f](ﬁ”ﬂg(e“ﬂd(p = ]im /T;p,,,[f](e"‘*”)g(e“ﬂ)d(p

m, U ST

forany g € L|(d@). Let
S, F(re®)r"dp

]‘_{ . rzmai"u

D, [f](e"?) =
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Then @,,[f] € Loo(d@) if f € L. Furthermore let ®¢|f] be the w*—limit of the ®,,[f] along
U. Then

Pm[f] — {I}m“f‘?] - |(Dm[f”2 and p'ﬂ[f] — {D‘U[‘flz] - ‘{D‘“U]lz

Theorem 3.6. Let u satisfy (I) and (II). If f € Y then the uniform limit 1im e pei|C f] exists
on T. We have

Oess(H Hy) = { }_i_l;ilﬂpfu[ﬁjf]{l) A€ T, Ua free ultrafilter on 7. }

Moreover;

lgH || = }T; sup{ \/HPTJ{G_;]"}HW U a free ultrafilter on 7. }

Proof. At first assume that f is an L..(du)—valued trigonometric polynomial. Then | f]* is
an L..(du)--valued trigonometric polynomial, too. We obtain

feX:={geLe : lim||T,~Tsyll =0}

It

and also |f]* € X. (Recall, T, is the Toeplitz operator with symbol g.) It was shown in [9]
that, under conditions (I) and (II), the C* —subalgebra A4 of L{H>(u))/ K(H>(u)) generated
by {QT, : ¢ € X} is commutative. If Spec 4 is the set of all multiplicative linear non-zero
functionals on A4 then, for any g € X,

L ®(QT,) : ®€ Spec 4} ={ DPylgl(A) : Uafree ultrafilteron Z , A€ T }.

Finally, for any g € X, ®¢{g| 1s continuous on T.
A straightforward computation yields, for arbitrary f € L.,

HiHy = T2 — Ty

So, if f is an Le(du)—valued trigonometric polynomial then Q(HHy) € A. 1If f €Y is
arbitrary then lim ;.. ||H{Hy — H Hs || = 0. Hence again Q(H}Hy) € A. Furthermore, if

c;f

® € Spec A4 such that ®(QT,) = Dyg](A) for all g € X, then

O(QH} Hy) = lim (Darfjo f17](%) — [@ar[o; £ (M) =: Y.

Jjmreo
v 18 the uniform limit of the trigonometric polynomials
g flo;fI°] - |@ulo,f1I* = pulo;f]
on T, hence v is continuous. We conclude

Gess(HHyp) =4 ;],i_}ﬁ;mr{ﬁjf](k) : A € T, U a free ultrafilter on Z . }.

Finally, since \/HQH}"HI)” = ||gH ||, we obtain the last part of the theorem. [



78 Wolfeang Lusky, Bettina Rehberg

Corollary 3.7. Let f € Lo, be such that 1im . || f — 6 f||e = O. If u satisfies (I) and (II)
then
Cess(HyHy) = { pulf](A) : Ua free ultrafilteron Zi, A€ T }

and

lgH || = limsup /|| pm[f1]]-

m—roe

Proof. We have ||gHy — qHg ¢|| < ||f —0;f|l~. and hence, by assumption, f € Y. Moreover
1o f1? = 1/l < 2[|fllell0;f = e which implies

[P f] = Pm[Gjif]lleo < HIflleo]Lf — O f]]es

and
pulf] = puloifllle <&|fllellf —0;flle.
We obtain py[f] = lim . pg[0;f] and, in view of the theorem,

G,;;,,,-j-(H‘;f-HL;-) ={ pulfl(A) : U afree ultrafilteronZ,, A€ T }.

G, f is an L..(du)—valued trigonometric polynomial and {p,,|0;f] : m € Z } 1s equicontinu-
ous on T since it consists of trigonometric polynomials with a uniformly bounded number of
summands. Theorem 3.6. yields

lgHyll = lim {|gHs,; ]|
J—roo

1

lim sup{ \/||pu[6;f]lle : U afree ultrafilter on Z . }

Jree

— !im lim sup \/“Prrr[{jjf]“m

7% 3o

= limsup \/||;‘?'m[f]|]m-

Hl-—y0o

[t seems likely that Corollary 3.7. remains true for arbitrary f €Y. L

4 Compactness conditions

We study compactness conditions for Hy which are ultimately consequences of Theorem
3.6. However, here we want to derive our results under assumptions which are weaker than
conditions (1) and (II).

Definition 4.1. We say that u satisfies condition (11I) if

' Uﬁi‘ rim——kd“)i .
;nl—rpnm j‘g‘. rﬂmdﬂ j:;i rEnz—Ede o

forall k € Z.

Condition (III) is a special case of condition (II) (see Definition 3.5).
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Lemma 4.2. Let k € ZZ. Then Hg, is compact if and only if

. S PR 3
. (L{ X pam ‘{‘d,u)“

: = ].
11—y 00 ’ Zﬂ:dﬂf,h{_‘ rlm-—lkdy

Proof. Corollary 2.3. yields, for h = 3. Bie; € Ha(u),

HH"gih“% - z p”i’fi[l]]ﬁm—k‘z + Z F:H.ﬁ:[l]‘ﬂm—ﬁ:'z-

mez . .m=>k meZ\L m=>k

There are at most finitely many m € 7Z \ Z; with m > k. Hence Hg, is compact if and only if

lim [1] = lim (1 — e, ™ "du)
k1] = 1i _
f}:%mf mk H1—¥00 IPC_L f"'}”dﬂ -ﬁ:—i:_._ r2m—2idju

) = 0.

L

Theorem 4.3. Ler u satisfy (111). Then, for any f € Lo with f ) > FiC, the following
are equivalent:
a. Hy 1s compact
b. f € Y and one of the following (equivalent) conditions is satisfied.

(i) Hpg, is compact for all k € Z

(ii) HE, is compact for all k € Z

(iii) im,,_yeo p|[Fx] = 0 forall k € Z

(iv) My seo [ P[0 f](€®?)g(e"®)d@ = 0 for all g € Li(d@) and all j € 7.,

(v) limMyy—eo J= pm[C i f1Pd@ = 0 for all p €|0,00| and all j € Z.,

(vi) limy,yee [ pmlOj f1Pde =0 for all j € 7 and some p €0, 0|

Proof. a. = b.(i): Assume that Hy is compact. Then Proposition 2.1. yields
Hpe h = / (Hrh, o). i0e~ ™ 0do, h € Ha(n).

So, if hy — 0 weakly then limg, ||Hg ¢ he|[2 = O which implies that Hf ¢, is compact. More-
over, f € Y, =Y by Proposition 3.3.

From now on assume that f € Y. Then we show
(i) < (ii): By Definition 1.2., for h € H>(u),

(Hrg —HrTg)h = (Mpg, — PMpg, — (Mp, — PME )PMg )h
(Mg, — PMFg, )He, h.
(We used Mg, =My My ). By Lemma 4.2, in view of (I1I), H:, 1s compact. Hence Hp ¢ —
Hp, Tz, is compact. This implies g(Hpe, ) = q(Hg )q(T, ). By (1lI) and Lemma 4.2, 0 =
qHg, = gMz, — qTz,. Hence gq1: = gMg, 1s mvertible and (qTﬁk)_' = qTz ,. We obtain

gHp, = 01f and only if gHp :, = U
(if) < (iii): By Corollary 2.3, for h = ¥ Bier € Ha(u),

<Hhh Hhh z Pm FA |Bm| .

mer
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This implies that Hg, is compact if and only if lim,,—ye. pp[Fi] = 0.
(iii) = (iv): By definition, \/p,[-](€/®) is subadditive, i.e.

— |k
\/ﬁm GJI( )”Lp < Z i'__|_] \/F‘m Fﬁ. TGF dany J-

k| < j

(We use py|Fiéi] = pulFi].) This implies

P [Ujf](e“*’) < 2 ¢ Pm|F]
k<

where ¢ > 0 is a suitable constant depending on j but not on m. Using (iii) and the fact that
pm|[0;f] > 0 we obtain (iv).
(iv) = (v): We have, using Holder inequality, since p,,|[f] > 0,

| (Jr [ f1d)? if 0<p<]I
{ < M Fd < : ,— ) 1 o
< [rairPaos{ o iEn ) e it 1< p<e

Hence (iv) with g = 1 implies (v).
(v) = (vi) is clear.
(vi) = a.: We claim lim,, .. pp[Fi] = O for all k. Indeed, fix k € Z and let

i lf re*ﬁr”j —IJI:H/;
=1/

Then
lim G (r) = [ F(re®)e *0do = Fi(r).

j—ree

The dominated convergence theorem implies

lim ||Fx — Gj||l4 = lim ([H G (r) — Fx(r)|*du) 4 = .
=t

Joree j—reo

Moreover

(.J]'l{+ rﬁlmdp) 1 /4
(jIR+ erd‘u)l/E

VPnlF] = \/ 2l Gl < \/pulFi = Gj) < V2|1 = Gl

Hence

\/pm[ﬁ:]

||
“I::
[

g =
- =
1___"'--1
Ic--.._
l—l

A

— s

3
e, |
NG

—~

Lomoi—

—

m"'---

t

g

<

R

1

/ \/P [f1(e"®)do

{ (fmm fPde)'/ ) if
QU2 [rpulf]Pde  if O

=

<= A

/N ==
A\
1) | e
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We conclude lim,; e pin[F] = 0. By what we have proved already we obtain that Hge, is
compact for all k. Therefore Hg, ¢ 1s compact for all j. Since f € ¥, Hy is compact. L]

Corollary 4.4. Let f € L., such that lim; ., ||f — 06 f||c = 0. Then the following are
equivalent
(a) Hy 1s compact
(b) limy, 00 pm|f] = O uniformly on T
() liMyy oo [+ Pl f1(€®)g(e®)d@ = 0 for all g € Ly(d@)
(d) iMoo [r pmf17de = 0 for all p €]0, 0]
(e) imyy oo J-- P f1Pd @ = O for some p €]0, <]

Proof. Everything follows from Theorem 4.3. and the fact that here

Pl 1= POl S fllellf =0 fl]  Hee

im [ pmlf] = pmlCifllle =0 uniformly in m.
Joreo “

L]
Examples 4.5. (1) We start with the Hardy space H>» = H>(u) where u = §;. Here, for any

f € L., and all m, we have p,,|f]| =0. Hence Y ={ f € L., : Hy is compact }.
Let Ly = L (d®®du) and put

Ho = w'—closureof { p:C— C : papolynomial } in L. =L],
C = closureof { p:C— C : papolynomial } in L.
Hence
C = {f€le: im||f-0;flle=0}
jreo |

= {f:T—C : fcontinuous }.

Clearly, CC Y and H. C Y since H, =01if h € H...
Moreover, put

Hy = closureof { p:C— C : papolynomial } inL; and
H) = {heH : (he) =0}

[t is easy to see that (H})* = L../H.. It is well-known that, for each h € H), there are
hy,hy € Hy with h = hy - hy and ||h |2 = |||l = +/]A]];. If in addition {(h,ep) = O then we
can assume (h7,ep) = 0 (see [7]). Finally, here we have

(id—P)Ly ={h : h€ Hy, {(h,ep) =0}.

Hence, for f € L., we derive the Nehari theorem,

1l = supf| [ [ fhihodedu < hi,ho € o,
R,

[ fl2, 2]l < 1, (hase0) =0 ]
= ||f + Hxl|w (norm in L../H..).
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Thus, {H;: f € Y} is isometric to a subspace of the closure of {g+ He : g € C} C (Heo +
C)/H... We conclude

Y =H.+C={f€Ls : Hf compact }.

The second equality constitutes the well-known compactness characterization of Hankel op-
erators on the Hardy space (see [6]).

(2) Consider the Bergman space where du = lyg ;jrdr. There 1s a known characterization of
compact Hankel operators, due to Stroethoft and Zheng (see [ 12]):

Let, for some A € D, @3 (z) = (A—2)/(1 = Az), 2 € D. Then, for f € L.., Hy is compact if
and only 1f

1im [[(id = P)(f o@)]]2 = 0.
A1
(Recall, f € Ly, hence (id — P) f makes sense.) There are other, more complicated compact-
ness characterizations involving the bounded mean oscillation with respect to the Bergman
metric (see [4], [2] and [14], Chap. 7).
Our condition here reads, for f € L.., Hy is compact if and only if f € Y and

fi—yoo

v |
lim ((2m+2)/ \Fk(r)\lrz”fﬂdr—(2m+2)2|[ F(r)r*™ ar?y =0
J () J O

for all Fourier coefficients F; of f. This condition is quite convenient if one wants to check
explicitly the compactness of Hy for those f which are known to be the elements of Y, for
example where lim e || f — 0 f||- = 0. This includes many discontinuous f.

We demonstrate this at the following example of a radial function F' (which 1s automati-
cally in Y) with F(r) € {1,—1} for all r. Use induction to find integers 0 < m; < my ... such
that, with a,, = 1 — 1/n,

Uy i

Dy, [F - Lo,q,1}] = (2mn +2))] F(ryr™*dr| < n'
“ ‘ 0

Indeed, if we have Fl | already, we use | @y, [F 1o, ]| < D[ 110,4,] and

limm_}mfbm[l[ﬂﬂ”]] = 0 to find m,4 > m, with |®,,  [FI [U:f_,”m < (n+1)"!. Then we define
F(r) € {1,—1} for r €]a,,ay41] such that |®,,  [F1, . 1]l =0. This implies |[F| =1 and
lim,, - @y, [F] = 0. Hence lim,, o0 p, [F] = 1. Thus F € ¥ but Hr is not compact. On the
other hand, H|r| = H; = 0 is compact. (Such an exampie was mentioned without proof in [ 1]
where 1t was attributed to Sarason.)

(3) Let u be such that, for some ¢ > 0, a € supp g4 C [0,a]. It was shown in [9] that u
satisfies conditions (I) and (II). Let F € L.. be radial such that lim,_,, F(r) = F(a). Then an

elementary computation shows that lim,, ;.. ®,,[F| = F(a). This implies lim,;, ;.. pu|F] = 0.
Ly)

If

Hence Hp 1s compact. Let f € ¥V be such that lim,_, f(re'?) = f(ae'®) for all @. If f |
>« Fi&y then lim,,, Fi(r) = Fi(a) for all k. Hence Hy is compact (cf. [13]).

(4) Now we turn to the Fock space where du = re="2dr. In [11] it was shown that, for
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f € L, Hy 1s compact if and only if

lim ||(id = P)(foty)|l2=0

|A|—roo

where Ty (z) = z+ A
The tollowing compactness characterization 1s due to Berger and Coburn ([3]). If f €
then Hy 1s compact if and only if f = f| + f> where f}, f7 € L.,

oo p2T , : "
| lim / / | f1(re'®) |2 exp(—|re® —w|? /2)rdodr = 0
wi—=e2 J()  J(

and
Ilm sup |f2(2) = falw)]| =

—w =1
PH

Our condition reads, Hy 1s compact if and only if f € Y and

];’ ‘F;_(F) '?.r?.fn-+=]E---f‘zfldr | ]{‘;‘{’ Fgﬁ-(?') rEm—i— | E—rzfzdr‘l
In—yo0 m!om (H’i’ 1)2 22m

) =0

for all Fourier coefficients Fj, of f which 1s particularly handy in special situations. (We used
[y rAmtle=r 2dr = m!2™) For example, similarly as in (1), we find aradial F € Y where Hg
is non-compact. Moreover, if f(z) = ¢¥/I¥l for z # 0, then we check easily that H y 1s compact
since here lim;_, ||/ — 0 fl]. = 0 and the Fourier coefficients of f are Fi(r) = 1y 11/ (k!),
k=0,1,2,....

5 Schatten class Hankel operators

Let f € L. If HyHy is compact then there are numbers Ay > 0 and an orthonormal system
() in Ha(u) HULh that

HiHh= Y M(h h)he forall h € Hy(u).
keZ

Fix p €]0,0[. Following [14] we say that Hy € S, if Ypez . [Ai]?/? < oo,

Hu

Theorem 5.1. Let f € L., f
operator) if and only if

ZR Filk. Then Hy € S (i.e. Hy is a Hilbert-Schmidt

z 2 Fi:-:.ﬁ:[ﬂ:] <

Ke i, me &
mz=Kk

Proof. We have Hy € S, if and only if

Z <H}Hj'€;,€;> — z (H{E;,H_;'E;} < ©0

S [ed .
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(see e.g. [14], Theorems [.4.3, 1.4.7.). Using Proposition 2.1. we see that the latter condition

1S equivalent to
Z Z F#H.H:--:’[‘F;H----f] < oo,

le? . med

Applying Proposition 2.1. once more we also obtain

. (L) . .
Cprnllary S5.2. Let f€ L, | = 2k FiCpe If Hy € S2 then Hy = Y ycy Hr g, (convergence
with respect to the operator norm).

Proposition 5.3. (a) Let F € L., be radial and let k € Z. Then, for any p €0, |,

Hpg, € S) if and only if 2 pm.;\.[F}pﬁ < oo,

me
=k

(b) Let f ‘2 S, F& € Leo. If p> 2 and Hy € S, then Hyz € S, for all k

Proof. (a): Using Proposition 2.1. we obtain, for any h € H>(u).

H;ﬁ;;HFékh = Z (H‘pékthFhE;)é’;

[€7. ¢+

— z f}m.ﬁ:[‘p] (h,é‘,n_,{;>€nz—k

me &,
m=k

Hence Hpg, € S5, if and only if
Z Pn:.k{F]ﬂ/E < oo,

IME
Mok

(b): Here, in view of Proposition 2.1., we have

2 (HFH}'E&EI}’IJE — z ( z pm.m—f[ﬁn—!])ﬂﬁ < 0

€4y [€F .. mEZ

by [14], Theorem 1.4.7. With k =m — [, (b) follows from (a).
Since S, 18 a vector space we obtain ]

Corollary 5.4. Let f = Yy . ; Fi&i be an L..(du)—valued trigonometric polynomial and let
p > 2. Then
Hy€ S, ifandonlyif 2 2 D k [F,{;]‘”/z < oo,

\k|<jm=k

6 Hankel operators with unbounded symbols

Let supp 4 C K. be bounded. Then any polynomial on C is essentially bounded with respect
to d@ & du. In this case we can extend Definition 1.2. to the case of f € L. Then My,
H and Ty are densely defined. Proposition 2.1. remains true for f € Ly (where h € Ha(u)
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1s a polynomial). Definition 2.2. can be extended literally to f € L>. As a consequence of
Proposition 2.1. we obtain

Proposition 6.1. Let supp u be bounded. Moreover let F € Ly be radial and k € 7.. Then
(a) Hrg, is bounded if and only if Sup,, i pmi[F| < .
(b) Hpg, is compact if and only if limy—ye P F]=0.
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