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COEFFICIENT MULTIPLIERS WITH CLOSED RANGE

LEONHARD FRERICK

Abstract. For two power series f(z) = >v_oJvZ' and g(z) = Y08z With positive radii
of convergence, the Hadamard product or convolution is defined by f g (z) 1= Yoo fv&vZ .
We consider the problem of characterizing those convolution operators Ty acting on spaces
of holomorphic functions which have closed range. In particular, we show that every Euler
differential operator Y. _,0y (z;%)” is a convolution operator Ty and we characterize the
Fuler differential operators, which are surjective on the space of holomorphic functions on

every domain which contains the origin.

1 Introduction and general results

For a subset M of the Riemannian sphere $° let H(M) be the space of all germs of holomor-
phic functions on M vanishing at oo, equipped with the usual topology. (If M 1is open, then
H(M) is a Fréchet space, if M is closed, then H(M) is a (DF)-space.) For f,g € H({0}),
f(2) =30 o v2¥, g(2) = Yo g gvz’ we define the Hadamard product fx g € H({0}) by

fxg ()= fugv?'
v={)

[t is easy to see, that for fixed f, the linear mapping 7y : H({0}) — H({0}), g = f*xgis
continuous.

We consider in this paper the operators 77 acting on spaces of holomorphic functions. Af-
ter introducing these operators, and stating some general facts, we give 1n the second chapter
surjectivity results. The proofs of the results are contained in the third chapter.

Definition 1 Ler G,G> be regions in S, both containing the origin and with « € G if
o € Gy and let f € H({0}). If fxg € H(G,) (i.e. f*g admits an analytic continuation
to Gy) for every g € H(Gy) we call the linear mapping Ty : H(Gy) = H(G2), g f*g a
(coefficient) multiplier from H(G) to H(G3).

According to the closed graph theorem, a multiplier 1s always continuous. It 7¢ is a
multiplier, then for every £ € §%\ G, the map f(E) = fx é 1s contained in H(G7) and this

means f € H(E1G,) for all £ € $*\ G|. A result of J. Miiller [9] shows that this condition
is also sufficient for 7r to be a multiplier. We will give here an easy proof for this theorem,
which shows that it is a part of a more general concept, namely of Kothe’s description of
linear operators between spaces of holomorphic functions.

In a second part, we include the characterization of coefficient multiphers defining a compact
operator:
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Theorem 2 Let Gi.G> C S* be regions with 0 € Gy NG and with o € G if oo € (7, and let
f e H({0}).

i) Ty is a continuous operator from H(Gy) to H(G2) if and only if f € H(E'G,) for all
& G & SE \ Gy.

u) Tr is a compact operator from H(Gy) to H(G,) if and only if f € H(E ' G,) for all & in
some open neighbourhood of S*\ G.

Remark 3 i) The first part of the previous theorem, due to Miiller [9], can be viewed as a
strong version of the Hadamard multiplication theorem. In [9] there are examples showing
that it is a proper generalization.

ii)If Gy,G> C C are domains both containing the origin, then part ii ) implies that every entire
function defines a compact operator from H(G1) to H(G»).

iii) Multipliers are surjective if and only if they are (fopological) isomorphisms, so one can
use Theorem 2 (applied to the "inverse multiplier” ) to get characterizations of surjectivity.
10 obtain examples of surjective multipliers or multipliers with closed range one can use the
following proposition, which can be derived from a classical theorem guaranteeing that the
sum of an isomorphism and a compact operaior has closed range.

Proposition 4 Let f,h € H({0}) define multipliers from H(G\) to H(G>) with f(2) = Y0
fv 2t and h(z) =25 _ohve'. Assume that Ty has closed range and that Ty, is compact. If fy # 0

whenever hy # 0 for all but finitely many v € Ny, then Ty, has closed range.

A combination of Theorem 2 and Proposition 4 yields
Example. Let 0 € G C C be a simply connected domain and f a power series with radius of
)z € G,w€ §*\ G}, then - + f defines a multiplier from
H(G) into itself having closed range. If every Taylor coefficient of f is different from —1,
then this multiplier is even an 1somorphism.

In what follows we restrict ourselves to multipliers acting on every domain G C C, pre-
cisely:

Definition 5 Ler f € H({0}). We call Ty a common multiplier if it is a multiplier from H(G)
to H(G) for all domains 0 € G C C.

According to Theorem 2, f € H({0}) defines a common multiplier if and only if f &€
H(C\ {1}). If we decompose f into the sum of a function in H(5*\ {1}) and an entire
function we obtain

Proposition 6 Ler [ € H({0}) define a common multiplier. Then there exist unique g €
H(S*\{1}) and h € H(C) such that f = g+ h and therefore Ty = T, + T},

Common multipliers are strongly connected with Euler differential operators: Let ¢ be an
entire function of exponential type zero with 0(z) = >5_Ovz". For a polynomial pand z € C
we define

(0(z=- E}' 2 3* (p))(z).

Using Cauchy’s inequalities, we see that this definition extends to a linear and continuous

map 0(z2) : H({0}) — H({0}).
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Definition 7 The (linear and continuous) map ¢(;§) : H({0}) — H({0}) is called Euler
differential operator (of infinite order).

Ifd(z) = Zi’;"_:{} dyz¥ 1s a polynomial then (I)(z(;l) is the Euler differential operator ::*;_U by

(z%)"’ (of finite order), which is clearly a continuous linear map from H(G) to itself for every
domain 0 € G C C. In fact, the same is true for all Euler differential operators. To prove
this, we use the Mellin transform %/, which is an isomorphism from the space H(S*\ {1})
onto the space of all entire functions ¢ of exponential type zero and which can be defined by
(M1(0))(2) = S 0(v)2", where [2] < 1

Proposition 8 (cf. [6, Theorem 11.2.3.]) Let ¢ be an entire function of exponential type zero.
Then (1)(2:%) = Tar-1(y) and, in particular, (1)(;57;?—,-) is a common multiplier.

If f € H({0}) defines a common multiplier, then, according to Propositions 6 and 8, there
exist an Euler differential operator q>(~§) and an entire function g such that 7, = q:(z:g‘:) + 7.
This decomposition is unique. In particular, 7 is a differential operator with a compact per-
turbation.

2  Surjectivity results

We characterize those common multipliers, which are surjective on H(G) for every simply
connected domain G C C. It is clear, that surjectivity implies that every Taylor coefficient
of the function f, which defines the multiplier, has to be different from zero, 1.e surjectivity
implies mnjectivity. It turns out that this condition is not sufficient for surjectivity. We have
to require, in addition, that the function M (g), (where f = g+ h, g € H(5*\ {1})), satisfies
some growth condition on a certain domain. We have to introduce some notations:

Definition 9 Ler Q C C be an open set. An open set Q C Q is called asymptotic (see [2])
to S if for all € > 0 there exists p > 1 such that dist(z.C\ Q) < €lz| for all z € Q\ Q with
1zl > p.

Let O # L C C be open. Then we call a function f € H(L) of exponential type zero on €, if
for all € > 0 there exists C > 1 such that | f(z)| < Ce®F for all z € Q.

Theorem 10 Let f € H({0}) define a common multiplier, let [ = g+ h be the decomposition
obtained in Proposition 6 and ¢ := M (g). Then Ty is a surjective map from H(G) to itself
for all simply connected domains O € G C C if and only if

i) no Tavlor coefficient of f vanishes and

ii) there exist an open set  asymptotic to C\ (—o0,0], such that ¢ # 0 on Q and ¢~ is of
exponential type zero on £2.

Here condition i) can be replaced by

i) § is a polynomial or lim__,.. ;)0 |—E~ = — 1.

[f we consider only starlike domains, we obtain the following result:
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Theorem 11 Let f € H({0}) define a common multiplier, let f = g + h be the decomposition
obtained in Proposition 6 and ¢ := M(g). Then Ty is a surjective map from H(G) to itself
for all domains 0 € G C C, which are starlike with respect to 0, if and only if

i) no laylor coefficient of f vanishes and

ii) there exist an open set Q asymptotic to the right half plane, such that & # 0 on & and ¢!
is of exponential type zero on L.

Here condition ii) can be replaced by

i)' ¢ is a polynomial or limsup. Am*{p[;];[}hﬂ(ﬁ) < 0.

Conditions 1) 11) are very similar to those used in [5], where a characterization of invertible
elements 1n a Hadamard algebra i1s given. Moreover, our proof of the previous result will use
the 1deas presented in [5]. The above theorems can be applied to Euler differential operators.
Using Proposition 6 and the definition of the Mellin transform, we obtain from Theorem 10
the following

Cﬂrﬂllary 12 Ler 0 be an entire function of exponential type zero.

/) (1)(7—) is a surjective map from H(G) to itself for every simply connected domain0 € G C C
if and fmh if &(n) # 0 for all n € Ny and ¢ mm}‘ze& the condition ii) (or ii)") of Theorem 10.
i) Let, in addition, O be a polynomial. Then ¢O{z —H) is a surjective map from H(G) to itself
for every simply connected domain 0 € G C C .!ffma’ only if ¢(n) # 0 for all n € Ny.

We recall that an Euler differential operator 1s surjective, if and only 1f it is a topological
isomorphism. Let us compute this inverse in an easy situation:
Example. Let 0(z) = 1 +z and G be a simply connected domain containing 0. Then q)(z%)

| 4 Haj = Ty, where f(z) = (1 —2z) %, has to possess a linear and continuous inverse ¢(z%)

H(G) — H(G), according to the Corollary. If g(z) = —z 7 'log(1 —z), we obtain (d)(::ai))_l =
TfT' = T,. It 1s clear that one can obtain this inverse also by integration.

[n the next result we examine the surjectivity of the Euler differential operators on spaces
of holomorphic function on starlike domains.

1

Corollary 13 Ler & be an entire function of exponential type zero.
O(z j} ) is a surjective map from H(G) to itself for every domain 0 € G C C, which is starlike
with respect to O, if and only if &(n) # O for all n € Ny and & satisfies the condition ii) (or ii) )

of Theorem I1.

For oo € IR 1t 1s also possible to characterize the Euler differential operators, which are
surjective maps from H(G) to itself for every domain 0 € G C C, which is a-starlike. Here a
domain G C C is called o-starlike, if G- {re''°¢’ : 0 <t < 1} C G, see e.g. [2]. O-starlike is
just starlike with respect to 0. The characteristic condition is that ' is of exponential type
zero in some open set asymptotic to {z € C: y— 7 <arg(z) < v}, where y € (0, ) is the root
of coty = a. Moreover, one can proof a result analogously to Theorem 11 replacing starlike
by o-starlike.

We want to give two examples showing that there exist Euler differential operators (in view of
Corollary 12, 1) they are necessarily of infinite order) separating the conditions in Corollaries
2 and 13:
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Example. a) Let ¢(z) := cosh/z. Then ¢ is not a polynomial but nevertheless ¢(z }l)
according to Corollary 12, a qurjectwe Operator from H(G) to itself.

b) Leto(z) =TI (1—¢'d Ii,-) where 1 < ?'“” — oo, Then ¢ is an entire function of expo-

nential type zero, but ¢ does not satisfy mndrtmn 11) of Theorem 11. Hence, there exists a
starlike domain 0 € D C C, such that ¢(z ) 1$ not a surjective operator fmm H(D) to itself.

One can show that D can be chosen as (C\ [l oo|. On the other hand, ¢(z3 ) maps H (D) onto
itself.

¢) If we define 0(z) :=[1_, (1 + 13) where | < ?“” — oo, then again ¢ is of exponential type

n=1
zero and it now satisfies the conditions of (,{::mllary 13 but not condition 11) of Theorem 10
(see [3]). Hence, (b(ru—) 1$ a surjective operator on H(G) for every domain 0 € G C C, which
is starlike with respect to 0, but there exists a simply connected domain 0 € D C C such that
0(z aE) IS not surjective as a map from H (D) to itself. One can show that D can be chosen as

C\ {te/®™°e": | <t < oo}, where 0 # o € R is arbitrary.

3 Auxilliary results and proofs

We recall Kothe’s description of linear and continuous operators between spaces of holomor-
phic functions, see [7].

Let therefore G|,Gy C 52 be domains with oo € G 1f o € Gy, Fori = 1,2 choose exhaustions
(Gin)nen of G; by open and relatively compact domains G;,, C G; (with oo € G; |, if o0 € G))
in such a way, that G;,, C G;,-, and the boundary of every G;, consists of finitely many,
pairwise disjoint and rectifiable Jordan curves, which we assume to be oriented with respect
to G;,. Moreover, let every component of S? \ G, contain a point of 52 \ Gi.

For M|, M, C §* we denote by H (M, x M) the space of all germs of holomorphic functions F
on M| x M, which vanish at the infinite points. Then we get H (S? \G) = UmenH (S? \Gi.m)
and H((S*\ G) X G2) = Muen Umex H((S? \ G1.m) X G2,,). Now the space H(G;)' of all
continuous linear forms on H(G,) is isomorphic to H(S? \ G;) where the duality is given by

<og>=— [ g®oE)dE

2?—” aGI.mw!
where g € H(Gy) and ¢ € H(S*\ G1.»).
Moreover, the space L(H(G,),H(G3)) of continuous linear operators from H(G;) to

H(G>) is algebraically isomorphic to H((5%\ G;) x G») where the identification of an oper-
ator 7" with a germ 1s given by

T()@) =5 [ s@F&dE =< F(,2).>

2T

for g€ H(Gy),Fr € H((S*\ G ») X G2,) and 7 € G,

Remark 14 Standard arguments shows that an operator T : H(G) — H(G>y) is compact if
and only if Fy € H(U x G») for some open subset U of S*\ G;.
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Proof. [Proof of Theorem 2] i) Clearly, the condition is necessary. To prove sufficiency, we
show that there exist /7 € H((S*\ Gy) x G3) such that F(§,z) = f(z& ')€" for small |zE7!.
Cauchy’s integral formula then implies fx g (z) =< F(-,z),g > for z in some neighbourhood
of 0, and so Ty is the operator associated to F'. This yields that 7y is a multiplier from H(G)
to H(Gg)‘

We first choose exhaustions (G, )nen and (G2, )nen of Gy and Gz, respectively, according
to the remarks at the beginning of this chapter. Without loss of generality we may assume
that 0 € Gy 1 NGr .

Forn € N fix m = m(n) > m(n— 1) such that for all £ € .52\(}' . there exists (&) € $? \Gl
with E1G>,, € (&) 'Ga. Then choose for all £ € $?\ Gy, an g€z > 0 such that 0~ "G,

C(E)1G, forall p with In —E&| < €.

Let now &, € S?\ Gy, be arbitrary. Isn € $?\ G,,, with [n=§&;| < €, i = 1,2, then
we have N G2, C L&) ' G ﬂg(én) ~1G,. Denoting by f the continuation of f to (71 Go,
we obtain frz ) = fre,)onn. 'G> . This means fre(z _l)n = f;@:}{zn_})n_] for all
2 € G

Defining £, (&,2) := fre) (2§ 1)E " forz € Goy,& € S\ Gy, we obtain F,(1,2) = fre)(en™")
n~! forallz€ Gy, and &€ $?\ Gy, withn—-E&| < €z. This implies F, € H((S*\ G} ) X
G».,)- Clearly, for small zE™!, we have F,(E.2) = f(zE~")E~!. The sequence (F,),ecn defines
now F € H((5*\ G)) x G) with the required property.

i) If 77 is a compact operator, then, according to Remark 14, F' = Fr, € H(U x G,) for
some open neiﬂhbuurhmd of $2\ G,. This implies that f € H(£7'G,) for all g € U, because
EF(E,z) = f(§'z) for small |E 2|

Asﬁummg the condition, then, according to part 1), Ty is continuous as an operator from
H(G) ») to H(G2) for some n € N. This implies that 77 is a compact operator from H(G) to
H(G>), because H(Gy) 1s a Fréchet-Schwartz space.

Proposition 4 follows directly by the next lemma which is derived from a result due to L.
Schwartz.

Lemma 15 Let T.K : E — F be continuous linear maps between Fréchet spaces. Assume
that T has closed range and that K is compact and satisfies L+ kerK D kerT for some finite
dimensional L C E. Then T + K has a closed range.

Proof. We may assume that L is a finite dimensional subspace of E contained in ker(7")
and LN ker(K) = {0}. This subspace has a topological complement X D ker(K) in E. Then
ker(7'|x) C ker(K|y) and the range of T'[y is T(L) Consider now the canonical factorisa-
tions Ty, Klx : X /ker(T|y) — T(E). Then T\X is a (topological) isomorphism and K’X IS
compact. We may apply a classical result, due to Schwartz, and obtain that T| x +K \ x has a
closedrange Y. From (7'|x +K|x}(X) =Y we conclude that (T 4+ K)(E) = (T+K}{(X +L) =
(T +K)(X)+K(L) =Y+ K(L) is closed as the sum of a closed subspace and a finite dimen-
sional one.
Proof. [Proof of Proposition 8] Let ¢(z) = X,_,0vz". The polynomials are dense in H({0})

and the mdpa O(z E?) Tar-116) - H({0}) — H({0}) are linear and continuous, so it is enough

A

to show ¢(z5 9 (p) = M~ (¢) * p for every monomial p. If py(z) = Z* then by definition
(0(2 a)us»k))( ) = Soo0v((@2)Y (P) (@) = Eio vk = oK) = M1 (9) % pu(2).
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Now, Theorem 2 implies (because of M ~!(¢) € H(S*\ {1})) that ¢(z%) is a common mul-
tiplier.
Before proving Theorems 10 and 11 let us give some lemmata which will be used:

Lemma 16 Let Q; CC, i=1,...,4, be open.

i) If Q; is asymptotic to Q;r1, i = 1,2, then Q) is asymptotic to £23.

ii) If Q; is asymptotic to Qi1n, 1 = 1,2, then Q) N2 is asymptotic to L23 N L24. [n particular,
if Qy and £y are asymptotic to 23, then L1 N LY is also asymptotic to L23.

We omit the elementary proof.

Lemma 17 Let ¢ # 0 be an entire function of exponential type zero. Then there exists an
open set Q@ C C\ {z € C: ¢(z) =0}, asymptotic to C\ {z € C: 0(z) = 0}, such that 6~ is of
exponential type zero on L.

Proof. Since ¢ is of exponential type zero, we may apply [4], p. 51, Theorem 3.7.1., and
obtain the existence of an increasing sequence (R, ),en of positive numbers, such that the
following holds:

R ‘ »
For every n € N and all R > R, we have |[¢(z)'| < e” on |z] < R except on finitely many
circles, whose sum of radi1 does not exceed i—];;R. From the proof of this result it follows, that
the centers of this circles can be chosen as zeros of ¢.

Forn € N deﬁne Q, :={z:|z] > Ry, dist(z,{w : ¢(w) = 0}) > +|z|}. Then on Q, we have
0(z)~ 1 < en for 1z| = R. Let Q := U,en€,. Then Q is asymptotic to C\ {z € C: ¢(z) = U}
To prove that ¢~ is of exponential type zero on Q let n € N be arbitrary. Then |¢(z) '] < en

on & for all k > n. But Q\ Ug>,£ is bounded, so there exist C > 1 such that |¢(z)~ —l < Ce 7
on £2. U

Proposition 18 Let & be an entire function of exponential type zero and let G be an un-
bounded domain. Then there exist an open set Q asymptotic to G such that ¢~ is of expo-
nential type zero on Q if and only if for all € > 0 there is p > | such that for all z with |z| > p
and O(z) = 0 we have dist(z,C\ G) < €|z|.

Proof. We may assume that ¢ has infinitely many zeros. Let €2 be asymptotic to G such that
o~ is of exponential type zero on Q. In particular, € {:ﬂn[ains no zeros of ¢ and therefore

lim,_,co ¢(2)=0 |'1 dist(z,C\ G) <lim, e -c\Q ﬁ dist(z, C\ G) =

To prove the mnvarse we apply first Lemma 1'7 to get the existence of an open set Q asymp-
totic to C\ {z: 0(z) = 0} such that ¢~! is of exponential type zero on Q. Lemma 16, ii)
implies that Q := GHQ is asymptotic to G\ {z: ¢(z) =0} = GN(C\ {z: ¢(z) =0}). On the
other hand, lim,_,., 4(:)=0 |—1~|~ dist(z, C\ G) = O implies that G\ {z: §(z) = 0} is asymptotic to
G. Using Lemma 16, 1), we obtain that € is asymptotic to G, and £2 C Q ensures that ¢! is
of exponential type zero on Q. | [

Proof. [Proof of Theorem 10] Let f € H({0}) define a common multiplier, such that condi-
tions 1) and ii) are satisfied. We decompose f = h+ g, where h € H(S*\ {1}) and g is entire.
Then Yo _ohvz¥ = Yo o ®(v)z', where & = M (h). Condition ii) implies now the existence of
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n € Ny such that y := ¢(- +n) =" is holomorphic in the domain H := {z € C: Re(z) > — 1}
and satisfies the following condition:
For every 0 < o < 7 there exist p > 0 such that y is of exponential type zero on {z € C : |
(z) < a,lz| > p}. Now a result of E. Lindelof [8]) ensures that the power series p(z) =
oo W(v)z¥ has an analytic continuation to any domain contained in the Riemann surface
of log(l — z) covering the origin only once. For arbitrary simply connected subdomains
0 € G C C this implies that p has an analytic continuation to £~ ' G for all € € §*\ G.
Let now 0 € G C C be a simply connected domain. With p also Zq} )20 O(V )l =Y, 20 hy |
z¥ =: h_1(z) has an analytic continuation to £~'G for all & € §*\ G. Applying Theorem 2
this shows that 75, , is a multiplier from H(G) to itself, which inverts 7; on {q € H(G) :
q(2) = 2n,£09v32 } Hence, this (closed) subspace is the range of 7j,. Now Condition ii)

implies limy e | Ay | v v = limy_e [018% )|~E = 1, so there exist only finitely many v with A, = 0
and gy # 0. Applying Proposition 4 we get that Ty = T}, has also a closed range. From
Condition 1) 1t follows that the polynomials are contained in the range of 7y, and Runge’s
theorem now shows that the range of 7 is also dense in H(G). Hence Ty maps H(G) onto
itself.

Condition 1) is clearly necessary. To prove that Condition 11) 1s also neceamry, we decmmpnse
again f = h+g, where h € H(S*\ {1}) and g is entire. Write 2(z) = Ye_,9(v)z". Propo-
sition 4 implies that 7, : H(G) — H(G) has a closed range for all domains 0 € G C C. 1t
is easy to see thdt d(v) = 0 for only finitely many v. These two facts imply that i_;(z) :=
Zm U}?g(}q)(\") 2V defines a common multiplier. For o € R let G 1= C\ {te’®1°8" : ] <t < oo},
Then Theorem 2 shows that 1 € H(G,). Let now o be fixed.

) Let[[y:=4{z€ C:y—n<arg(z) <y}, where y€ (0,m) is the root of coty= .. Theorem
1.2 a) in [2] guarantees the existence of y € H([],,) satisfying y(v) = hy! for large v and v
is of exponential type zero on every set [Joe :={z€ C:y—n+¢€ < arg(z) <y—¢} forevery
0 <e < 5. Defining F € H([]) by F(z) = 0(z)w(z) — 1, then F is also of exponential type
zero on all domains [, . for € > 0 and F(v) = O for large v. Following exactly the proof of
Theorem ”a in [5], we obtain the existence of a domain {2 C [],, asymptotic to [],, such that

F(z)] < A 5 on L. This implies that ¢(z) # 0 on €2 and o~ ! is of exponential type zero on
Q.

2) For o € R choose pg > 1 such that ¢(z) ! < eﬁh for z € Qo p, :=QaN{z€C:lz] > pa}-
We may assume that py is increasing in |ot|. Then Q := Ugep€q, p,, 1S @ domain asymptotic
to C\ (—=,0] and ¢~ is of exponential type zero on Q.

The equivalence of the conditions ii) and ii)’ follows immediately from Proposition 18. [J

Proof. [Proof of Theorem 11] Let f € H({0}) define a common multiplier, such that con-
ditions i) and ii) are satisfied. We decompose f = h+ g, where h € H(S*\ {1}) and g is
entire. Then Y _hvz’ = Do g (1)(\!){ , where ¢ = M (k). Condition ii) implies the existence
of n € Ny such that \y := ¢(-+n) ! is holomorphic in the domain H := {z € C:Re(z) > — 2}
and saftisties the tollowing condition:

For every 0 < o < 7 there exist p > 0 such that y is of exponential type zero on {z € C :|
(2) the result of Lindelof we now apply [2, Theorem 1.2], due
to Amkelyan, ensuring '[hdt the power series p(z) = Y_; ¥(v)z" has an analytic continuation
to C\ [1,e0). Now, Theorem 2 implies that F € H({0}) is a multiplier from H(G) to itself
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for every domain G C C which is starlike with respect to 0 if and only if F € H(C\ [1,0)).
Therefore we may proceed as in the first part of the proof of Theorem 10 to get that T 1s
surjective on H(G) for all G which are starlike with respect to 0.

Clearly, i) is necessary, so it remains to show that condition ii) is also necessary. We decom-
pose f = h+ g as in the proof of Theorem 10. As remarked before, we geth_| € H(C\[1,0)).
Then part 1) (more precisely, the case o = 0) of the proof of Theorem 10 implies that there
exists a domain € asymptotic to [Ty, such that ¢! is of exponential type zero on €.
To prove that the conditions ii) and ii) are equivalent, we apply Proposition 8.
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