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EXTENSION OF ANALYTICITY FOR SOLUTIONS OF PARTIAL DIFFERENTIAL
OPERATORS ’

MICHAEL LANGENBRUCH

Abstract. We introduce a quantitative version  of the complement of the analytic wave front
set and study its extension for solutions of partial  difSerentia1  operators. This  quant i ta t ive
resul t  can be appl ied in  the s tudy of  surject ive partial  difSerentia1  operators  on spaces of  rea1
analy t ic  funct ions .

In the study of surject ive partial  differential  operators on spaces of rea1 analytic functions
(Langenbruch [ 181) and of  el l ipt ic  systems of  partial differential  operators on nonconvex sets
(Langenbruch [ 191) a centra1 idea is to apply arguments coming from the theory of analytic
wave front  sets  to rea1 analytic functions.  This seems to be useless since  the classica1 analyt ic
wave front set of a rea1 analytic function is void. We in fact  use a quantified version  of the
(complement of the) analytic wave front set (called regularity set) which is nontrivial also
for rea1 analytic functions and we have  to know how the regularity set extends for solutions
of partial differential equations. The introduction of this regularity set and the study of its
extension propert ies  is  the main aim of the present paper.

The paper is organized as follows: in section 1 we introduce the regularity set reg L(fj
of f E C-(Q) by means of a quantitative version  of the estimates used to define  the ana-
lytic wave front set of distributions (see  Definition 1.1). We also  introduce hyperfunctions as
forma1 boundary values of harmonic functions and, correspondingly, the notion  of the uni-
form regularity set of a harmonic function (see  Definition 1.3). In Proposition 1.4 we then
show that the regularity set of f E C”(Q) can be described by the uniform regularity set of a
harmonic representing function us  for f. We thus can use the theory of boundary values of
harmonic functions to s tudy the extension of  the regulari ty set  of  C”-functions.

Let P(D) always be a partial differential operator  with constant  coefficients  in n  variables.
The extension of Cm-regularity  for solutions of P(D) has been characterized by Hormander
([ 111, see  also  [ 12, section 11.31) using a sequence  of distributional parametrices which are
regular on sufficiently large sets. Correspondingly, in section 2 we will construct a sequence
of regular generalized elementary solutions for P(D) ( see  Theorem 2.3). The elementary
solutions are harmonic functions in (n  + 1) variables defined outside thin strips near Iw”  and
thus can be considered as generalized hyperfunctions.

By means of a suitable duality (see  Lemma 3.1) the regular elementary solutions from
section 2 are then  used in sect ion 3 to extend the uniform regulari ty set  of  harmonic functions
(see  Theorem 3.3; this is simiiar to the use of distributional parametrices with small C”  -
singular  support  to  extend C”-regularity  (see  Hormander [ 12,  section 11.31)).  The main resul t
of this paper is given in Theorem 3.4, where we prove that the regularity set of f E C”(R)
extends in cones  with polynomial bounds on the regularity parameter L. This centra1 result
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is needed in the study of partial  differential operators which are surjective on rea1 analytic
functions (see  Langenbruch [ 181).

In section 4 we finally obtain as an easy consequence of Theorem 3.4 a Holmgren type
theorem for the analytic wave front set of hyperfunction solutions of P(D) which essentially
is a special case of Sjostrand [24, Theorem 15.11 and then prove some of its consequences.
The extension of analytic regularity has been studied  (usually for operators with variable
coefficients)  by many authors. A selection of corresponding papers is contained  in the ref-
erences (J.M. Bony [3,  41, J.M. Bony, P. Schapira [5],  A. Grigis, P. Schapira, J. Sjostrand
[6],  N. Hanges [7],  N. Hanges, J. Sjostrand [SI,  L. Hormander [lo],  M. Kashiwara, T. Kawai
[ 141, P. Laubin [20, 211,  0. Liess [22, 231,  J. Sjostrand [24], the reader  is also referred to the
literature cited  in these  papers).

1 Regularity sets

In this section hyperfunctions are introduced  as forma1 boundary values of harmonic func-
tions (Bengel  [2],  Hormander [ 12, chapter  1X]).  Correspondingly, we introduce the notion  of
the regularity set of CW-functions  (see  Definition 1.1) which is a quantitative decomposition
of the complement  of the analytic wave front set W&(f)  for f E C-(Q)  and which can be
described by means of the uniform regularity set of a defining function ~f (see  Proposition
1.4). The regular generalized elementary solution  constructed in section 2 can thus be used
to extend the complement  of the analyt ic  wave front  set  of  zerosolutions in sect ion 4.

In this paper, II E W is always at least 2. A point in lR ~+t is usually written as (x,y) E
R”  x R. Open Euclidean balls in IR”  are denoted by Us(c)  and U, := Ut(O).  Let S”  be the
Euclidean unit sphere in Rn and

A = k$n!a/axk)2  +  @/aY) 2 is the Laplace operator  on Rn+’  and the harmonic functions on

an open set V C IR’*+1 are denoted by CA(V).  For a subset  A C IR”+‘,  the space of harmonic
germs near A is denoted by CA(A).  By CA  we denote  the corresponding spaces  of harmonic
functions which are even with respect  to y.

In the following, Q always is an open set in Rn. As a definition of the hyperfunctions
‘23(Q)  we set (see  Bengel  [2]  and Hormander [ 12, chapter  IX])

%3(Q)  :=  c,(sL  x (iR\ {O}))  /c,(Q x R)

The elements of [u]  E %9(Q) are called defining functions for [u].  Restrictions of a hyperfunc-
tion  are defined via defining functions. For a closed  set S C IR?  let A(S) denote  the germs
of rea1 analytic functions near S. For an analytic functional T E A(K)‘, K c Rn compact, we
define  a hyperfunction via the defining function

Q(X,Y)  := (gW(x-k,~))>  (x,Y) E IF*+~  \ (K x (0)) (1.1)

where E is  the canonica1 elementary solution  of A defined by

E(x,Y)  := -I(x>~)l’-~/((n-  lh+i)
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(c,+i is the area of the unit sphere Snt’ c Iw”+‘, see  e.g.  Hormander [12, Theorem 3.3.21
and notice  that (n + 1) 2 3). In this way A(W)’  is embedded into the hyperfunctions and
coincides  with the hyperfunctions with compact support. Thus, also the distributions with
compact support are embedded into hyperfunctions. More generally, [UT]  E %3(Q)  represents
a distribution T E D(Q)’ iff UT  can be extended to a distribution Zr E D(Q  x 88)’ such that

AUr=T@$ (1.2)

(compare Langenbruch [ 161).  UT  is called a representing function for T.
TO prepare the notion  of the regularity sets we now introduce the class A~,Q  which will

serve as “analytic cut  off  functions” as in the theory of wave front sets  for distr ibutions (see
e.g.  Hormander [ 12, Lemma 8.4.41).  This class is defined as follows (for Q c  Iwn  open and
CZ  1):

(1.3)

Some useful technical results follow: by Leibniz’ formula we have

((Pkhk)  E AC+B,Q  if ((Pk) E AC,Q  and (hk)  E AR,.Q.

There  is Bt  > 0 such that the following holds: for K CC a and 6 := dist (K,&)

(1.4)

there  is (Q)  E AB,  ,s,~  such that <Pk  = 1 near K for each  k. (1.5)

TO see  this, we Set (Pk := & *  h  where h  E D(Us14)  satisfies s h(k) dk = 1 and gk  E D(K $
Uss,~)  is chosen by Hormander [12, Theorem 1.4.21  (with dl  = 6/(8k)  for 1 2 j 5 k) such
that gk  = 1 near K + u’sp. h  is needed to estimate the P-derivatives  in (1.3).

The Fourier transforms of functions in A,-.Q  satisfy the following typical estimates: there
is BZ > 1 such that for (<Pk)  E Ac,~,  we have

(1 + ISj)d/$k(S)l  <  B&d(B2kC/(l  + Isl))‘if j < kands E Iw’“. Cl.61

One  reason to include the P-derivatives  in (1.3) is the fact  that then (@k)  is bounded in Li (R’)
for (tpk) E AC,Q  (see  also  the proof of Remark  1.2). Obviously, (t+rk)  = (v)  satisfies the esti-
mates for AL]  ,Q, Lr > h,  if v satisfies the Cauchy estimates

[V’“‘(X)/  5 C(&jlal)iU’  on Q. (1.7)

We  thus get by (1.4) and (1.6): there  is B3  > 1 such that

(l+lsl)dl(~kV)-(~)I  <cdB3(B3k(Lo+C)/(l+I~l))~on~” (1.8)

if ((Pk) E Ac,-J~  and v satisfies (1.7). This motivates the following definition of regularity
sets for C”-functions  which corresponds to an estimate like (1.8) on cones.  This notion  will
also be used in the s tudy of  partial  differential  operators which are surjective on rea1 analytic
functions (Langenbruch [ 181).  For 0 E S” let

I-b(O) := {s E Iw”  1 Is/IS  -01  <b}.



32 Michael Lmgenbruch

Definition 1.1 Let Q c Rn  be open, 0  E  Sn  and L = (&,LI  ,Lz) E  [l,~[~.  Let f E  C-(Q).
We sny  that LI x (0) C reg L(f)  ifffor any  C > 1 and aizy  (Q)  E AC,Q  there  is  Cl  >  1 such
tlzat

I(f(~k)^(s)I  5 cl  ((L0+W)k/(l+  Isi))k  0 E  rllL2(o).

Except for Theorem 2.3 below we will only use L = (Lu,  LI) E [ 1,  c=[*  and

(1.9)

in this  paper.

re (L&)(f) := reg  (L”,L,  ,L,) (f)

Definition 1.1 is a quantitative version  of the estimates needed to define  the analytic wave
front set, that is, (x,0) 6 wF~(f)  if there  is L > 1 such that Ulta  x (0) c  reg ~,~)(f)
(Hormander [ 12, Lemma 8.4.41).

If u  and C are fixed in (1.9) and if supp <~k  C K c c R for any k, the closed  graph theorem
implies that the constant

Ct in (1.9) only depends on the sequences (C~)~OY((P~)  in (1.3).

If f E C”‘(Q) and Q x (0) c reg L(jJ,  then

(1.10)

Q x (0) C reg ~(apf)  if Lo < Eu and L1  < LI. (1.11)

We must prove this only for the case that p  = ej is a canonica1 unit vector. But then (1.11)
easily follows from the product  rule (notice  that (DjCpk)  E A~,Q  and ((~k-t)k  E Ac,0 if (Q)  E
Ac,n).

In the calculations with the cones  Ib  (0) we will often use the following fact:  let 0 < b <
1. Then

In fact,

(1.12)

Remark 1.2 There  is B4 2 1 such that the following holds:

a) If (<~k)  E Ac.u,  with sup l]qkl] =: Co < 00 and if (VX)  E D(IlF)”  satisfies
k

supllvkll~ =CI  < mand  I~iAs)I  5 (L&/(l  + 1~1))~ ifs  E rliL, (0)
k

then

I((PkVk)-(s)I  5 (COfC1)((2Lo+B4L1C)k/(l  i- 1~1))~ ifs E rl/(2L,) (0).

b) If for f E C”(IP) there  is {fk 1 k E N}  bounded in D(Ui)  such that fk(x)  = f(x) for
x E Q c VI  and

I.h&I  5 (LoW  +  14))k ifs E b/L,  W,
then  Q  x (01  c reg  (2L(&&.,)  m
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Proof. Using (1.12) we get the following estimate for cp, v E D(EV),  k E N,  b EIO,  l] and
s 6  l-b,,  (0)  (by  H ormander [12, (8.1.3’)]  with M = 0, C = ]]v]]r  and c = b/4):

(1  +  I#l(~‘d-(s)l  <  2k11+111  sul’{ lG(q)l(l  + tqli? 1 q E rb(0)}
+Wb)kllvll~  Sl%~)l(l +  hl)‘%.

(1.13)

a) This follows from (1.6) and (1.13) (with B4 = 5&).
b) This directly follows from a) and Definition 1.1. 0

We finally show the basic  fact  that the regularity set of a Cm-function f can be character-
ized by a uniform regularity estimate (1.9) valid for any defining function ZAR (see  (1.2)). Of
course,  the wave front set of uf is void since  uf is rea1 analytic. We introduce the appropriate
notion:  let

BC@  x (IR\ (0))) := {u E c,(n  x (Ei\  (0))) 1 YK  cc CZ?,  a E iY; :

sup{  I~y%+~Y)I 1xEK,O<  ]y]  < l,d=  1,2}  <-}.

Definition 1.3 Let L E  [ 1,  m[2 and let  u  E  BCA(Q  x (R \ (0))). We  say  that  L2  x (0)  C
UReg  L(u)  ifSfor any  C > 1 und any (Q)  E  AC,Q  there  is Cl  >  1 such thatfor  d = 0, 1

I(+C  ,~h)-(s)l 5 CI ((Lo+W)W  +14)k
ifs E  QLi  (0) und 0 < IyI  5  l/Ll.

(1.14)

Proposition 1.4 Let f E  C-(Q)  and let  uf be a dejiningfcwzction  of f.

a)  Uf E BcA(n  x @\ (0)))
b)  There  is BS > 1 such thot  the following holds:

i)  Let di)  c JR’  be open und o  + U, CC Q.  Zf Q x (0)  C reg ,(.f),  then 0x  (0)  c
UReg  Bg(LO+l/E,L,)  (4

ii)  Zf G x (0)  C UReg L(Uf), then Q x (0)  C reg L(f).

Proof. a) TO prove this we can assume that f E o(Q)  and that ~f = E *  f. One  easily sees
that for any K CC Iw’*  there  is Cl 2 1 such that

IIK JydE(x,y)ldx<C1  forO<  (yJ < 1. (1.15)

This implies the claim.

b)i)  Let  (ed  E Ac,~. Choose v  E D(Q) such that \I’  E 1 on 01 := CO  + U,i,.  Let U,,,f  be the
representing function of tpf  defined by (1.1). Then

Uf =U,,,f+Von~rx~forsomeVECA((i)1  xR).

Since  the Laplacean is elliptic, there  is B > 1 such that

li$Q(.x,y)l <Cz(Bla\/~)‘~’  for(n,y)  E ox [-l,l]. (1.16)



3 4 Michael Lmgenbruch

(QV(  , y)r  thus sat isf ies the required est imates by (1.8).
TO prove (1.14) for U,,,f  we choose  two sequences of functions (gk),  (hk)  E AsB~,R~  in

the following way by (1.5): gk(x) E 1 for 1x1  2 ~/8 and supp (gk)  c  U,,,,  /Q(X)  E 1 on
o  - supp (w)  and supp (hk)  c  K := o  - supp w + Ur  .
Ford=O,l,y#OandxEwwethenhave

qA&Y)  = (vf)  * kk@( ,Y))(X)  +vf* ((1  -gkPkqw ,Y))(X).

Since E satisfies (1.16) (with new B) for 1x1  2 ~/8, x E K, and ]y]  5 1,  we get

1 (fw*  ((1 - ‘crk)hk@( >Y>)W  1

(1.17)

5 iifwiil l((l  -gdh&E(  ,Y))^(s)/  5 G(Usk/(~(l  +  IM))’
(1.18)

for some BS > 1 by (1.8). Since the last term in (1.17) is bounded in D(W)  (uniformly in y),
(1.14) follows for this term by (1.18) and Remark  1.2. Since G x (0) c  reg L(f),  we get for
s  E l-tl~~, (0) and 0 < /y]  < 1 by (1.15) and (1.10)

ii) Let (1.14) hold for ~f. Since ~f satisfies (1.2), the distributional boundary value  of aYuf  is
f by Langenbruch [16, Satz 1.21. Since ~f is even w.r.t. y, this means that for (Q)  E AC,Q

I(fvk)-(s)I = I(f,vke-  4 ”  4 )I = 2l$+O I@pf( ,Y): qke -4 4) 1

- 2lim,,a- 1 (a.?u.f(  ,Y)<pk)A(Ly)l 5 cl ((LO +LlC)k/(l  + bi))”  if.7  E  rl/~,  (0)

by (1.14). The proposition is proved. 0

2 Regular elementary solutions

In the remaining part of this paper P(D) = P(&) always is a partial  differential operator  in
IZ (x -) variables with constant  coefficients  and degree m. Pm  denotes  the principal part of P.
Also, 0 and N are always vectors in the unit sphere S”  C W.

TO show that the regularity set of harmonic zerosolutions of P(D,)  extends in certain
directions we need  to construct (generalized) elementary solutions for P(D,)  which have
large regular sets. This onstruction  is given in this section. The elementary solutions will
be defined in the space CA  (Q x (Iw  \ [-c;  cl)),  c > 0, which can be considered as defining
functions of a sheaf more general than hyperfunctions (these  correspond to the case c = 0).
E E &(Q  x (R\ [-c,cI)) is canonically written as E(x,y)  = E+(x,  ]y])  with E+ E  c~(Qx]c,
-[). The appropriate  notion  of an elementary solution  for P(D) on Q now is the following
(compare the embedding of distributions into hyperfunctions in (1.2)):

Definition 2.1 Let 0 E  Q.  E E  ?A(Q x (IR \ [-c,c])) is called  an elementary solution  far
P(D) on Q ifP(D)E can be extended to S2  x R as a distribution H such that AH = 6.
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The existence of regular elementary solutions can be shown if there  are suffìciently large
regions in C’I where P(z)  does not vanish. This can be proved under weak assumptions (see
Lemma 2.2 below).

For P,,, (0) = 0 let P,,?,e  be the localization of P,,, at 0 defined as follows: let

40 := min{k  E N 1 3 p E Wz  : IpI  = k and DpP,,  (0) #  0}

be the order of the root 0 of P,,. Now,

en,o(S) := &=,, CP’ (@)S”/a!. (2.1)

Alternat ively,
P,,,@(X)  = l~o(rin(O+sx)s-q~), (2.1’)

where sq@ is the lowest  order term of the expansion of P,(O  + S-X).  For 0 = el  this means
that

P,,(x)  = P,,o  (x’)xi-“” + c Qk  (x/)x! (2.2)
Ojk<m-q.

if x = (~1  ?x’) E R x R”--  ’ where the Qk are homogeneous polynomials and Qk = 0 or deg( Qk)  =
m-k. Let

P(x,t)  := sup{  IP(x+c)I  1 161 5 t}  andFIN,(X,t) := sup{  IP(x+zN)/  1 /zI  <  t}.

It is well-known (Hormander [ 12, Lemma 10.4.21)  that there  is C > 1 such that

p(x,t)  5 P(x,ts)  < Cp(x,t)P  for any t 2 0 and s  2 1

and this  a lso holds  for  &.

(2.3)

By means of a linear change  of coordinates  we will mainly be concerned  with the standard
case 0 = eI and N = e,,  and then write x = (~1  ,x”,x,) E IR  x LW2  x R. We  will finally need
the following unsymmetric cones  T, (p,  X)  for p > 1 and 0 < sz  5 1: for I > t > 0 let

C(p24  := { 5 E  w / / (51 - I~I-X,P~%)  I_ < N==}
1 { 5 E  w ) 51  = Kl-,  FI-  <  flS11,  LI <  +T?l  J/P}.

TO see  this equality we notice  that the second  set is obviously contained  in the fìrst,  and the
opposite inclusion follows since  the assumptions ~E,~oo  = Ir\-.  IcI- = jtnl  and IsI-  = -51
directly lead  to obvious contradictions. Except for Theorem 2.3 we will always have  x = 1
in this  paper.

Lemma 2.2 Let P,,,, (e,,) #  0. There  is  p  2 1 suck that for any  h >  1 there  are b > 0 and
O<y<lsuchthatforanyO<t~l/(ph)th ere is  C= C(t) > 1 such tkatforany 5  E  Th(p,  1)
with 151  >  C there  is  19  E  IR  witk 119  5 titI/  suck tkat

lP(5+ Ci%  +zfih + C)  1 2 @(S,tl51) (2.4)

for any  z E  @ with Iz(  = 1 und any  5  E  c’”  witk 151  < 2ytl4.
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Proof. We will show that there  is p > 1 such that for any h > 1 there  is 61  2 1 such that for
anyO<6<  l/(ph)

(2.5)

This implies the claim by Hormander [ 12, Lemma 11.3. lo] (with the constant  x in loc. cit.
chosen as 1/2,  V’ = (e,) and q”  = e,). TO show (2.5) we use the form (2.2) for Pm. In the
proof below the constants  Ak  can be chosen independently of h.  Let 0 := el.
i) There  are p 2 1 such that for any h 2 1 there  is b2  > 1 such that

@‘mX(1,~“,~),~) L b2(PmT<e,>((l,rl”,z),t) (2.6)

if 171  5 l/p,  Iq”l.,,  5 ht and 0 < t < l/(ph).
Proo%  Let q” E IKP2  with hl”l-  5 ht 5 1/2 and 7 E IR  with 171  5 1/2. Then by (2.2)

(PmX(l,T”>T)>t)  5 (Pm.0X(~“,~),t)2”-q0  +Ck<m-qg  ~k(($‘,+t)2k

5 Al Ck<m-qo  ((h+  l)t  + 171) )m-k <  Az(ht  + lT1)qo.

For 1/2  2 ,ut > ht we get similarly using (2.3) first

(2.7)

Pmfie,>ml”At) >C,(PrnTie,)((l,r”,z),lut)
2 Cp(Pm,c&,)  ((r”,~),P)  - Cp%(vt  + lkl)q”+l.

(2.8)

W e  have

where H,, (x”) E c #  0, Hj are homogeneous polynomials and Hj = 0 or deg(Hj)  =  40  - j.
This shows that for p > h

(PnZ.oTie,)((r”,z),P)  2 IP,,,o(rl”,T+  sgn  (TIP)  1
2  ~(1~1  +pt)”  -A&(pt+  [TI)~‘-’ >  ~(1~1  +pt)“/2 (2.9)

if also ,U  > TA&/c.  We now fix ,D  := max( 1,  2A4/c)h and get by (2.8) and (2.9)

if 1~1  +pt  < c/(4A3). Together with (2.7) this shows (2.6).

E) Let P = CPk be the expansion of P in homogeneous polynomials. For p from (2.6) and 5 E
TOP, 1) we have 5 := k,lkL  = (1,5”/151~,5n/151~)  with  l5”l-/ICI-  < ht  and 15n1/151w  <
l/p  by the definition of Ik(p,  1). We can thus apply (2.6) if 0 < t 5 l/(ph)  and get (using
also (2.3))

p(!otltl)/(cn”‘2)  5 (PmT(!otlkI=-)  +Ck<m(PkXt,@%)

5 ISI~(PmXS,t)  +A615lm-’  5 G151~(Pmfie,)(i,t)  +A6lK!-’
5 C,&,)(k,t161)  +AT@~-’  fort  E Fh(p,  1).

This shows (2.5) since  P(c,t151) > Ag(tl~Iw)“. cl
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The following Theorem 2.3 now States  the existence of appropriately regular (general-
ized) elementary solutions. It is formulated only for 0 = el and N = e,.  We have  included
parameter dependent polynomials Pt  for later purposes. In this paper we will only use the
case where Pt  is independent of t.

The claims in Theorem 2.3 i) and ii) are stated in the form needed to prove the main
extension result for the regularity set in section 3 (see  Theorem 3.3). There  we will need
simultaneous est imates as  sat isf ied by the fol lowing regular  cut  off  funct ions

Bc,n := { ((Pk,“)  E  .(,)“’  1 ‘#d  E  N  3 Cd  >  I’dk,v  E  N  :

Il(p(“+Y+p)I/,  < Cd(kC)~a~(VC)~r~  if Ial  < k, IyI 5 v and IpI  < d}kv

and also the following unisotropic variant (for Z > 1) :

i&(z)  := { (<Pk,v)  E  ,(fi)“’ 1 Vd  E  w  3  Cd  >  lVk,v  E N :

Ilcp(a’Y+P)II_  < Dd(kC)iYi(vC)lalZan’~n  if Ial  < k, IyI <v  and IpI  5 d}.kv
The following Paley-Wiener estimates hold (compare (1.6)): there  exists B2 2 1 such that
((Pk,v)  E &,(i,  (1) s&f&

and
](pk,,(z)]  5  C,,e”~1mz’(B2Ck/(1  +  ]zB)~(B~CV/(~  + ]z]j)”  forz  E  cr’

where Izr:=  l(z',zJZ)l. Let W, := { (x’,x,)  E  Rn-’  x R 1 1x’]  <  E,  I%  < E}.

(2.10’)

Theorem 2.3 There  exists Al  >  1 such that the following holds  for any polynomial0  #  Pt  in
n variables with degP,  < m: assume that there  are p  >  1 and 0 < x  5  1 such that for any
h>1thereareb~>O,O<6~1andO<y<1suchthatforanyO<t~~thereisC~1such
thatfor any  5 E  Th(p,x)  with 151  >  C there  is 6 E  IR with ]6(  2  tItI/  such that

16  (5+ (451  +z*h +  C)  1 2 bfi(k,tl51) (2.11)

for any  z E  c  with ]z]  = 1 und any 5  E  c” with 151  < 2y]s].
Then there  are Az,A3 > 1 such thatfor any L2  2  p,  0 < E <  1 and 0 < t <  l/Az there  is

un elementury  solution  E = EE,t,~2  E  CA(W~~~  x (IR\  [-T/2,  T/2])), T := 64A3Et,  for Pt(D)
such that E can be written as E = F + G with F, G E  Ca(W2a3  x (IR\ [-T/2,  T/2])), where
G+  can be extended as a harmonic function to

X, := { (x,y)  E  W2.5,~~  x Ps 1 (1x’]  > ARE,  ].xn]  < &,y  > -&t
or (xn  2  0,y > -xnt/8)}.

Moreover  we have  the following estimates (far  T :=  64A3~t):
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i)  Zfco  c W2d3  und ifo  x {el}  c reg Jh)  for L = (Lo,Ll  ,Lz) und h  E  C-(a)),  then

$l(  (a;+dG+(  > T) * vvJWv,k)-G)  IW’~

5 C(k/(T(l  +Is])))~~o~s  E I!Y  andd  = 0,l

if (<PQ)  E  BK,,~,(Y+)  E  BK,,w~~~,  KI 2  l/&  and  t i min{ l/(AlLd,
l/(~~A,(Lo+fWd)}.

ii.J  Far  U~Y  (wv)  E  &m,(ti3j,wzti3 (AxZ),  I >  1, with  BI  tukenfrom (1.5) and uny bounded

set B C D(W2d3)  there  is  C 2 1 such thutfor uny  g E  B

suP@  CV (3,v+dF+(  ,T) *P,(D)R)lv,k)r,F)l7”/v!  I +/‘(W  + 14)))”
ifsEFf(el),d=O,lundift<  ~/(AI(L~A~Z)‘/~)

(2.12)

Proof. 1) The definition and the properties of G+ are prepared in a) - c):

a) Fix h,  p,  X,  6, b and y as above  and let L2 > p. Let

Fh :=Tb(4n1/2L2,x)  = {E,=  (kl,{“,cn)  E  EF  1

Let 0 < t 5 6 and 0 < E 5 1. In the proof below the constants  Ak  are independent of E, t and
L2  but may depend on h,  p,  X,  6, b and ‘y.

There  are Ak 2 1 such that for any 1 2 E > 0 and any 0 < t < 1 / (2~)  there  are ja  E N, Cm-
functions {xj}  and points tj E Iw”  such that CXj = 1 on Iw”  \ Ut and

SUPPX~CB~:={~~I~-~~~I:~~}CIW”\U~~~~L~~(~~:=~~~~~), (2.13)

the intersection of more than Ar  balls Bj is empty and

lD”Xj({)/ 5  A!‘+‘E~~‘,  if lo/  < Et,. (2.14)

This is proved similarly as Hormander [12, Lemma 11.3.1 l] by application of Hormander
[12,  Theorem 1.4.101  to II ]lY := ] I/(y]yl) w ic 15 a uniformly slowly varying metric onh’  h ‘.
Rn\(o).

With C = C(t) from (2.11) let

J:= {j > j0 1 SUppXj  C {XE Fb / 1x1 >C}}.

From now on let always j E J. ?, is contained  in Th(p,~)  since  L2  >  p. For 0 < 1 < 1/(2y)
wecanthuschoose6~for~jby(2.11)withl~,l~tl~5//2=tJ/2.ForxE@”weset

Q(x) := (x,x) = 1 RexI  - 1 Imxj2+2i( Rex, Imx). (2.15)



Extension  of anaiytic@ far solutions  ofpartial  differential operators 3 9

151  can be extended by (Q(E)) “* as a holomorphic function on

W:={~E~~~IR~~~>II~~~}

since Re Q(c) > 0 for < E W  by (2.15). We will denote  the extension of 151 by (5). For
(x, y) E Fin+’ we want to deiìne

uj(%Y)  = (2~)-n.ljzl=1 JXj(QeXP  (i(4W3  +zfij%) -Y(43 +Zfii%))  X
X ll(P,(S(S)  +Z*j%)(5(5)  +Zfij4)4W(4~iZ)

(2.16)

with c(c) = 5 + itlkle,  and dc = (1 + it&/jc1)d<.
When proving the existence and estimates for (2.16) we will consider  also complex 5 in

the integrand. This is needed in part b) of this proof. Let

Dj := (5 E Cc”  1 l<-kjl  5 3yli/2}.

Dj is contained  in W for t < 113  since

/ Re51 2 1S.j - IS-k,jI  2 IkjI(l-3tP) > 3tISjI/2  2 I&SjI  2 1 Id
for 5 E Di. Hence  (5) and c(k) are defined and holomorphic on Dj.

ForO<t<T1:=1/12andkEDjwehave

lQ(Sj) - Q(<) 1 =  /2(Sj>kj  - 5)  - Q(S-  5j)I L (3~ + (3~/2)~)  lCj12  < YISjI*/2

andthusforT  E [Q(Cj),Q(i)l  := conv (Q(kj),Q(S))
171 2 iSjl* - IQC3  - Q(Cj)l  2 15j12/4.

Since Re (Q(c))  > 0 for 5 E Dj C W, this implies for 5 E Dj and 0 < t  2 ~1:

103 - lk.jII I lQ(tJ-Q(5j)/su~{  IT”*/2 1 q E [Q(&),QWI}  <YIC~I/~ (2.17)
and thus

/5C3-4i-45/l~n~ 5 15-SjI+t~(5)-15jl~  <2yt15jl.
By (2.11) and (2.13) we thus have  for 5 E Dj

(2.18)

Ipt(<(t)  +Zffjet2))  2  bP,(5j,ti5jl)  2  Cl(tJSjj)degPf  L Cit.

(i(k)  +ztije,) E W for 5 E Dj,  1~1 5 1 and 0 < t  5 ~1  since by (2.17)

(2.19)

1 Re (<(5)+zis,jelz)l  = ) Rekt Re (it@)e,+Bje,Rezl
2 15.jl~lii,~SjI~tl~5~I~t15jl 2 (1-t(3/2+2Y))15il

>t(3/2+2Y)15.jI  2t(l(5)l+15jl/2)  L 1 Irn (5(5)+z8je~~)I.
Thus (c(k) + z6jert) is defined and holomorphic on Dj. Since Re Q(q) > 0 for q E W, we
also have

1 Im (C(5)  + zdjen) 1 5 Re (C(5)  + zfijen)
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and since l{jl < 2151  for 5 E Dj,  we get by (2.17) for 5 E Dj

Re (C,(5)  +  z*j+J  2 z-l’2 I(5(5) + zffjett)  1
2 2-“2(151  -tl(5)l -t15jl/2) 2 151/4.

(2.20)

By (2.19) and (2.20) the denominator in (2.16) is bounded from below near supp Xj by (2.13).
Uj is thus defined and infinitely differentiable on Rn+‘. Obviously,

Uj E CA(Rn+‘). (2.21)

For E, E supp Xj CC Dj we have  by (2.20) (since then lkjl < 12151/11  for t 5 21):

Re (i(-x,C(Q +zfijen)  -Y(C(Q  +zfijen))
5 -MISI  - Im (Z)xnfij -y151/4  5  (t(21xnl/3  -x,)  -y/4) 1 5 1  fory > 0. (2.22)

and  since  I(5(5)  +  z++jen)  1 < lC(5)  +  zfijen 1 < 2151

Re (ih 5(5) + zfijen) - ~(43  +zffj+>)

< ( -x,t/3  + 21~1)  151  for x, > 0 and y E IR.
(2.22’)

We  now set
U  := C Uj. (2.23)

jU

By (2.19), (2.20),  (2.22) and (2.22’) this sum converges  in C”(V) for

v  : =  (x,y) E JRn+l
{ 1 y > 8tlxnl  or (xn > 0 andy > -x,t/8)}

and u  E CA(V)  by (2.21).

b) There  is A3  > 1 such that u  can be extended as a harmonic function CO

Y, := { (x,y) E IR”  x R 1 Ix’l > Eq3, Ix,I < E, y > -Et}.

Pro05  Let /xnl < E and IyI  < 9ct.

uj(X,Y)  =(2~)-“eXp(-tjXn+i(X,~j+zfijen))X
x 4~1~1  JiSI<rtj”eXP(i(tjx,5))Xj(5j  + tjS)Fj,z(Sj  +tjWSW(4~iZ)

where
F,,z(~)  := exp  (xnt(lSJI  - (5)) -Y(CW  +zfij%)) X

x(1+it5n/(5))/(Pt(5(5)+z65en)(5(5)+zSJen)).
By (2.17),  (2.19) and (2.20) the denominator in Fj,z  is bounded from below on Dj (151  2  1 by
(2.13)). Thus Fj,z  is holomorphic on Dj.  By (2.17) Fj,z  can be estimated for 0 < t 5 ~1:

IFj,z(S)I 5 Czexp  ((1~~~1~/2+21~1)l~jl)  5 C2ed19Etl5jI)  for5 E Dj
since 1(5(c)  +z6je,)) < 2lcjl  for 5 E Dj.  By C auchy’s est imate with (poly)radius yj/(4n112)
wegetforI8  <Etjandreal~withl~--CjI  <yj

ID”F.  (c)l  <  C2Af’6!t-“’.l>z J exp(l9&tl~jl)  5  C2(A4E)‘6’exp(19&15j/). (2.24)
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By partial  integration, (2.14) and (2.24) we get for ]p]  5 ztj

Ix’uj(x,Y)( 5 C~(A~&)~B~15,~lnexp(21~~lSjI).

Let 1x’] > ARE  > II’/~A~~~~E.  We then set ] PI  = [Etj] in (2.25) and get

(2.25)

l”j(x,Y)l  5 Wjl”eXP(-EtlSjl).

The sum (2.23) defining u  on V thus converges  locally uniformly on { (x, y) 1 ]x’]  2 ARE,  1x,, / <
E and ]y]  < 9Et)  and it defines a harmonic function by (2.21). Since u  E Ca(V)  by a) the claim
of b)  fol lows.
c) The constant  A3  from b) will be fixed from now on. We now prove the estimate corre-
sponding to i): let o  C WZ~,  and h E C”(o) with o  x (0) c reg L(h). Let (q&“)  E BK, ,w
and (tl~k,“)  E BK, ,Q+.  Then for d = 0,l

(@;+“4  ,Y) *~z(Pk,“)Wk;“~s)Y”/v!/

5 C5CjEJ  &1=1 SXj(5)(5(5)  +Z8jen)V+d-1  (hTk,vr(i(S)  + Zejet2)  x

%,v(s-  C,(5) -zf+jen)/Pt(C(k)  +z6jen)exp  (-y(C(5)  -I-z8ie,))dSdz/z~lu’/v!

5 c6~j~~j(~)(2~~~IYl)“/v!e-y’5”4x

su~l+t  1 (h%x,vr(5(S)  +zffjen)qk,v(s - i(S) - zbje,l)  14.

If t < I/(~L~&z’/~),  then

Indeed, if 5 E f;h, then

rht C ri/(2L2)(ei).

I(5”,L)l  L J’21(5”,5n)l-  I d2max (hf, l/(4fi1/2L2)  1511  5 151//(4h)>

and
151  - 151  1 = 151-51  I 141/((1+  l/W212)  1’2) I ISI  l/W212

and therefore

and 5 E rt,(2L2) (el).  For 5 E ^Tht we thus get by (1.12)

Re (c(c) +Zf+jen)  E r1/L,(el)ifalsot  < 1/(12L2).

Since  (vkv)  E KY~,~~ 0) C kI$A3E  and K1  > 1 /E, we see  by (1.4) and Cauchy’s estimate that
((Pk,vexp((Imrn, )-3&hI  Imrlnl))v  EAK,+I/~,~ C A~K, .w for ?J E Rn-’ x c  with constants
Cd which are uniform w.r.t. Irnrl,  and k. Since o  x {ei} c reg ,.(h), we thus get by (1.10)
forE,E?h and IS-~]  > ]s//2

;=lI  (Qk,vT(5(5) + Zf+j%)?k.v(s  - C(5)  - Zfijen)  1

<‘C~(v(L0+211KI)I(I+l  Re  (i(5)+zffje~)I))“x

X(~~2K1/(l+l~-i(S)-z~je~l))~exp(5~3IIm(5,,(5)+z~j)I)

5 C7(4v(Lo+L1K1)/(51)“(4kBzK1/(1  +isl))kexP(10~3tjkl)



if t < ~1 (use also (2.20)),  since then

Similarly  as above  we get

I)(cPk,vex~((Imiln,  ) -3=b  Imrln/))‘a+Bi/~_

5 Cd  (2KI (k  +  4) ‘=’ if Ial  5 (k+v)  and IpI  5 d.

Since  0 x {et} C reg L(h), we thus get for 5 E flI and IS - 51 5 142  (and hence  151  2 ls//2)
again  by (1.10)

sup/*/=1  j(NnJ(i(5) ++?Jk+  i(S)  -7fw) 1

~G(:(v+W(L~+LIK,)/(I+~  Re  (C(~)+Z~,~,~)~))“+~X

x exp(jAiel  Im (i&) +ze,)  1)

Here we have  also used the trivial estimate

(j+d) J+d < &(j+d)!  5 eJtdj!d!-
c )

‘Td 5 (2ej)‘(2ed)” ifj,d E NO. (2.26)

Summarizing we have  proved that for s  E R” and d = 0.1

1 ((a;+%  ,Y) * h<p~.v)  yrl”,)^(S)Y”lV!  1 i

<C~n(l6e’(Lo+~1~1)I~!)~((16e+4B~)h-(L~~+L1K1)/(l+/s~))“x
x Sexp  ((lO&r&  -.~/4)lkl)~C

i  C,12-“(A7(Lo+L1K1)1</(1+  IsI))”
ify  > 40EtA3  andv < l/(32e2(Lo+LtKt))

(2.27)

11)  The definition and properties of F are now prepared in d) and e). The choice of h will be
fixed in e).

d) We now set

L:=  {Dj”  Ieg.z, supp  Xf c  LT7  \ Uz(t)  , supp  XI  P GLI  }

(compare the definition of J in a)) and define  vt  for B E z by a modification of the construction
of Hormander 112,  section 7.31  as follows: let a>  E C”(  Po1 “(m) x K?)  be chosen from [ 12,
Lemma 7.3.121 such that @(H,wl=  0 for lwl > 1. With the path c(c) and (5) defined as above
we set for (x,y) E BY*+’  and 4 E L
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@ is constructed such that for some Cr > 0 we have  for any 5 and w

I~(P,(5(5)+.),w)l//pt15(5)+w)/  iCI.

It is clear (by (2.13)) that (i(c)  + w) E W  for 5 E supp X( and that

Re  K(5)  +w)  2 2-‘+G) +w/  2 151/4.

Hence YC  E C~(lR’@’  ) and
v:=  CV{.

1EL

converges  in C”(V), (compare (2.20) (2.22) and (2.22’)). Thus v E CA(V).

(2.29)

(2.30)

e) We will show now that h can be chosen SO large that an estimate like (2.12) holds for 1;:
‘et  (Vk.v)  E K5B,,(EA1)  wz+ (Asl)  for BI from (1.5) and A3 from b). For v > l6A3~t  we get
I&,+  x {y} C V. For s  E !X’  and these  y we get by (2.29),  (2.30),  (2.10’) and the properties
of @  (see  Hormander [ 12, 7.3.191) for g E B if B is bounded in D(W2dA?):

I(@;+“v(  ,Y)  *~t(~)g)wk,vr(~)Y”/v!/
I cw”C~~~ 1 Sxc(S)(i(s))v+d-‘g(~(i))~~,“(,-5i4))/2e-’(~(T))~~  / lYl”/V!

<C?~~.I.x~(~)(2l:/~l)l)~/~~(l6B1Bz~/(CA3(1+I~-i!~~~~>)  x
(2.3 1)

x ( 16BlB2v/(EA3(1  + IS- ~(4T)))“~7”“‘“~~~ (~n(~))~-Vl~1/4d<.

We now show that for 5 E supp xr,s  E r,(el) and IxL  := ) (x~,.w”..x,~/(A~I))  )_

IS-&  2 l#$,/s  ifl < l/(h(4n11”LzA31)““). (2.32)

If (2.32) were not true,  then IS/,  5 2151-  if t  5 l/(Aihl).  Moreover, if also  h 2 8

i(F”,~,~)l-IA3Z~(Sli.jn/(A31)))  <A31(15-sr,+ls-(slell)

< (W + +431/5/w I GA31(51,/4  I 151-12

since s  E IYr(el).  Hence 1st  1 = /cl-  and therefore 51  = ItI- since otherwise (2.32) would hold
(if t < 8/h)  since SI  > 0. We thus get for t < 1/(?~(4n’/~L2A31)‘/“)

IC5 - lSI~e,,5”,5,~4n1’2(ht)“L2)  Im  L I(k”,5J(&4)  I_ < WL/4. (2.33)

This leads to the following contradiction: by the definition of z there  is q E supp xp\?h.
Thus

/q - {lm 5 Iq  - 51 < 27151  < 2tnri2/5/-  5 4tn’+lj,  for 5 E supp x1

ift < min(l/(2y),1/(4n1/2)),and



44 M i c h a e l  L a n g e n b r u c h

This contradicts (2.33) and proves (2.32). Hence  we get for 5 E supp X! and s  E Fr(et)

IS - rm IS - cr> b - 5rw 2 ~~~~~~2~. (2.32’)

We now show that for 5 E supp Xe  and s  E r, (el )

b - cr2 wii~. (2.34)

TO prove this we can assume by (2.32’) that 151  < lsl/2. If (2.34) is not true we get the
contradict ion

ISI = Ilhj-5 1.~ - wlf+ b - cr+ l5r
I (s  - Islel 1 +Wl/(16n’/2) + 151

< (t+hr/(16n’~2+1/2))~sl<lslift<min(l/h,1/4)

since  s  E r,(el). By (2.31), (2.32’) and (2.34) we get fory = T := 64A3-a

C” 1 @;+“vc TV)  *P,(~)g)wk,“)~s)Y”/v!I

5 G Jexp  ( -%4~1)&( 2%&&k/(&ht(l  + /SI))+  (214&&d’2/h)V (2.35)

<G(LI(V+lsl)))k for s  E rr(er)  and d = 0,l  if h = 215eBtB2n’/2.

111)  We finally change  u  such that we obtain an elementary solution  for Pt (&) and dehne  F, C
and E in g):

f) Since (c(k) + zfijie,)  is holomorphic in z for Iz]  5 1 and 5 E supp xj, j E J, (see  a)), we
get for j E J by Cauchy’s integra1 formula

P,(Dx)u~(x,Y)  = (2n)-“/2/Xj(@exp  (kS@)  -Y(‘X)))  /(Wi.)PL

Similarly, we get for C E z by the properties of Q (see  Hormander [ 12, (7.3.19)])

P,(D&~(x,Y)  = (2~)-“/2/xe(S)exp  (ih<(\))  -~(5(8))/(5(5Nd5.

We now set ~(5) := C Xj(k) and get for (x,y) E Vl  where
jE.lUL

Vl := { (x,y) 1 x, > 0, y > o} :

P,@L)(u+vk~)  = (W>‘/2/x(5)w  @(d(5)) -y(5(5)))/(5(5)b% (2.36)

Choose Cl > 1 such that x(k)  = 1 for 151  2 Cl. Since ((c,cn))  is holomorphic in cn  near
S:=  {& 15’ E Iwn-‘,I  Im&  <t]~],]~]  2 Cr} andsatisfies

Re((!!,U)Z  IReW4for5~S
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(compare (2.20)) we can shift the path ((5)  in (2.36) by Cauchy’s integra1 theorem to 8 % if
15’1 2 Cs. Similarly, for 15’1 < Cl we can change  the path c(k) for ]&l  2 Cr such that it is
contained  in Iw for ]cn  1 > Cl + 1. We can assume that ) Im q ] 5 t 1 Re q ] on these  new paths,
which we denote  by y. For TJ  E SP(Y) with Re IJ  E supp x we have

exp(  -y(rl))l(W)  = /ReiF/(2nQ(%4)dT

with Q(q,r)  = (~,TJ)  +r2.  For rp  E D(Vl) we thus get

PtPJ(u+v),cp)  = (2~)-“~~Sy~(Rerl)(~~(~)(-‘1,~)(e-~(”)l(2(rl)))~~dy
= (2~)-n-1 JRJrJRx(  Rerl)(~~x<p)(-~,Y)eiy~lQ(r,z)dzdrldy (2.37)

= (2~:)-~-’ h.f,x(  Rer)~(-r\,-t)/Q(rl,z)drld~

by Fubini’s theorem since (zXcp)(-n,y)/Q(q,z)  E Lt ((IK?’  \ WC,+~)  x Ps)  (here zX denotes
the partial  Fourier transform w.r.t.  x). By means of (2.37) Pt (DX)  (U  + v) can be extended to a
distribution H on EX’+‘.  For cp  E D(IIV+’ ) we get by the Fourier inversion formula

W,(P)  = (27V-‘hS,x(Re~)~(-rl,-~)drld~
= (2n)-“Sy~(Rel?)~~x(<p)(-r,0)d~  = (6-t&@&(~)

(2.38)

with h  E H(C).  Thus H E CA(KY  x]O,=j) and H extends Pt(Dx)(u+v)  also from V to l!Y+l.
Let H(x,y)  := H(x,  -y). Since G = AHon  Iw ‘+l by(2.38),wehaveH-H=:gEC~(ll8~+‘).
Set

Cu+ v~~,Y) := 4~  iyl) +4x,  lui) far 6,~) E V2 := { (x,Y) 1 IYI > Wnl}.
T h e n

Pt(&)(u+vJk~)  = fky) = H(x,Y)  +dx,y)  fory  < -844.

Let v  be the characteristic function of 1wn  x] - m,O].  Then H +g~  is an extension of Pt (Dx)  (u  t
vrfrom  V2  to IPi’  such that

A(H+gw)  = 6+ (h-234 ,O))  %SY =: S-f@S,

by partial integration, since g is odd w.r.t. y and thus g]Rpl  = 0. Since f E H(Cn)  we can solve
the equation

P,(D,)wl  = f/2 with WI  E H(C)

and then solve the Cauchy problem

Aw = 0 on ll4?‘, w(x,  0) = 0, ayw(x,  0) = wt  (x).

g) We finally set for (x,y) E V2  :

GY) := 4x, IVI), G(~,Y) := 4x, lui) + +4x, IvI)
and E(x,y)  := F(x,y)  + G(x,y).

Then E E CA&).  G also satisfies b) and c) since w E H(C’+l). Pt(&)E is extended to IP+’
byH1  :=  (H+gyr‘tP,(D,)w(,I 1))  andH 1is an elementary solution  for A since

APt(D,)w(,I 1) =2$Pt(D,)w(  ,0)@6, =2Pt(&)w1  CG, =.f@Sy.

The theorem is  proved. 0
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3 Extension of the regularity set

In this  sect ion we wil l  apply the regular  fundamental  solut ions constructed in Theorem 2.3 to
extend the regularity set of C”- zerosolutions of P(D). As an abbreviation we introduce the
fol lowing nota t ion:

Forf,~ED(IKYx]a,h[)  anda<yk<blet

(f( >Yl) “d  ,Y2))(4  :=  J (f(x-S!YlPydS?Y2)  -a,f(x-S,Yl)g(S,Yz))dS.

TO apply the regular fundamental solutions constructed in section 2 we use the following
simple lemma:

Lemma 3.1 Let E E  c,(Q  x (R \ [-T/2,T/2])) h e an elementury solution  far  P(D) and
let H be a  distributional extension of P(D)E as  in Dejnition  2.1. Let u  E  CA(W  x [-T,T])
where W C RSn  is  open. Then we haveforx E  O ifO+ W C Q and iyI  < T/2

+,Y)  = (E(  ,y+T)*f’(D)(hu)(  ,-T))(x)-(E(  >~-T)*p(D)(hu)(  >T))(x)
+.L+T,T,H(x-~>Y  -Whu)(5>W!drl

ifh  E  D(W) und h = 1 neur  0.

Proof. Let x be the characteristic function of 8%’  x I-T, T] and let h E D(W). By Leibniz’
rule we have

A(Xhu)  =~A(hu)+2,@  (6-~(y)  -Z,(y))d,(hu)+
+ 1,  @ (~,WY)  - +Wy))  hu.

Choose cp  E Cr(Q x IR) such that <p  E 1 near (W-W) x [-2T,2T].  We then get for h,x  and
y  as above  since  H(k,r\)  = P(D)E(c,q)  for 1~1 > T/2

u(x,y) = Xhu(x,y)  = A(<pN)  *~hu(x,y)  = H*A(Xhu)(x,y)
= JM+T,T~~+-~,Y-  W(hu)(LWSd~

+(H(,y+T)*hu(;-T))(.~)-(H(,y-T)*hlc(,T))(x)
=(E(,Y+T)*P(D)(~~)(,-T))(~)-(E(,Y-T)*P(D)(~L~)(,T))(~!

+J&-T>T~H(x-~>  Y -+i(hu)(S>WSd~

-
LI

We also need  a more precise version  of the fact  that harmonic functions are real  analytic.
LetVh:=  {(qy)  ER*+’  / \(x,y)l  SS}.

Lemma 3.2 There are BS 2 1 a n d C 2 1 such thntfor ang 0 < 6 < E 5 1 a n d a n y u E C*(V,)
which is  bounded on V,

li+&~(0)I  5 C(F-~)-‘“-~V!G-“~!(B~/(E-O))‘~‘sU~{~U(W)~  / w E VE}
for any v and a.
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Proof. By the Poisson integra1 formula we have  for (x,y) E us,  and 0 < 6 < 61  < ~1  < E

44Y) = (4 - l(X>Y,l”)  /( wn+lEl)JaVEi  4S,Q)l(5,Qj  - (x,Y)l-n-lwoQj. (3.0)

Por  l(ctq)l  = EI and z E @ with IzI  5 61  we bave

~q+(Q-z)‘$q-“,o].
i<n

Indeed, if this were not true, then IJ  = Re z and

4 = l(5,r1)12 = 16 Rez)12  5 l# = S?,
a contradiction. The integrand in (3.0) can be extended for x = 0 as a holomorphic function
of y to the complex bali with radius EI.

in~{/~~~,~~+h-~~~/~)l(5,~~l=~l,l*/2=fi:}
=inf{(El-2q,Y+x2-y’)2+(2xy-2qy)2/  I~/<Etrx2+y2=8~}

= inf(f,(q)  := 46:q2  - 4?lx(E:  + 6:)  +4x2$  + (E: - Fy)2  j 17)  < E; i 1x1  5 611
2 (El - w4.

TO see  this we notice  that for fixed x the global  intìnumum of fX  is attained at QO  = no(x) :=
(x/2) (E: + Sy)/S:.  If Irlo1  > EI we have

inf(fX(q)  / Iqj < El} = minf,(Sr&t)  = min (E: + 6: I2x~zt)~  2 (Et - 61)”

since  1x1  2 61.  If /‘qnl  < ~1, then

x2  < 4&;iq/(E:  i- Sf)”

and therefore

inf{.UQj  11111  5 EI) = 4X2&!  + (&T  - q2 -X’(EI  +  6:)2/F:
= (ey-4:) (I-x”/sf) > (E:-6:)4/(Ey+6T)2>  (&14q4.

This shows the above  estimate. By Cauchy’s estimate with radius 6 we get

/ilTu  / 5 C(Ei - 6)-“m-‘V!6pv  sup{  Iu(w)l  / w E  VE,  } for any v.

This is applied to 3:~  and the claim follows from the well-known fact  that there  is Bo 2 1
such that for any y  > 0

iDpv(0)  1 5 Bo(Bo/~P sup{  IV( 1 r\  6 VT}  if 1) E CA&)

(take~l = (8+&)/2  andy:=  (c-6)/4)). 0

The basic  result on extension of the uniform regularity set is contained  in the following
theorem. For R C R”  let

n+:={XERIxn>O}

and let
gE(k) := {x E IR’ / IC’--x’l CE,  lcn -x,1  < c/Aj}  andgE := @,(Oj

with A3 from Theorem 2.3.
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Theorem 3.3 Let P,,,,, (e,) #  0. There  are Ak  > 1 such  that the following holds  far  any
0 < E < 1 /Ao  und L1  >  AO: Zet  Q C IR?  be open and let o  C iR”-’  sati&  (o  + %,)  C Q.  Zf
u  E BG(Qx (IlX\{O})),Q+  x {el} C UReg,(u)  und Qx {ei} C UReg,(P(D,)u),  then
6x {el} C URegL(u)  whereG:=  (fi+U  (co+$,,,,))  andZ=Al  ((Lo+L~/E), (Loe:+Ll)).

Proof. We can assume that the conditions hold for 4~ instead of E. When proving Theorem
3.3 we will consider  only y > 0 (the case when y < 0 is treated similarly).

1) There  is A > 1 and CI > 1 such that for any 0 < y < 1/(2Ll)  and any 5 E o  + %zE  there  are
Uk,y  E 0(@,(k))  such that { uk,y  IkEN,  O<Y  < 1/(2L1)}isboundedinD(iij,(E;)),1lk,yl~,,,~(~)  =

4 ,Y) and
Iuk,y(s)I  <Cl(A(Lo+L~/&)k/(l+Isl))~

far  w  s E ~l/(A(~,@+~,~))(el)  and  aw  0 <Y  < 1/(2-b).

P r o o f .  a)LetO<y<  1/(2Lr)andO<T<  1/(4Lr).FurtherboundsonTwillbegivenin
the proof below. We can assume that 5 = 0 and get for T < ~/(2A3)  and x E FE

w h e r e

u(x,y)  = ~+(x,y+  T)(-T)“/v!
”

sup C sup /@~$(x,Y+  T)IT”/v!  < w  for any n E Nt.
O<Y<lP  " XElg

(3.1)

(3.2)

(3.2) is seen as follows: since  u  E BCA(n  x (Iw  \ (0))) for any a E N’ there  is C > 1 by
Lemma 3.2 (used fora = 0) such that for d = 0,l

c sup ldzdG+du(x,y+  T)/G  5 Cypnp2  if 0 < y 2 1/2 and0 < T < ~/(2A3).
”  x&  -

Since  a;u,  = -A,uf,  this implies that for these  y and T and 0 5 j < IZ  + 3

c SUE  ld;d,vfJu(x,y+  T) IT”,‘v!  <  CY-‘-~.
”  XGW,

By Taylors formula with Lagrange remainder term we get for these  y and T

CV sup,&?E  (a;+(x,y+T)IT”/v!

5  CV Coggl+1  suPxEn  V,1 a  “+~+,;+T)~T”~~-;~~/(v!~!)

+&supxEQJ~$  /(y-t-t)nf2~~~~+“+2u(x,T+f+t)1Tv/(v!(n+2)!)dt

5  eC+CJY.-b ((i+t-y)/(i+t))n+2/(n+2)!dt<C(e+l).

b) Choose (vk,v)  in the following way: applying (1.5) to the variables x’ and x, separately
we can choose  (vk) E D(%E,,)  such that vk = 1 on @,,s  and (E) E D(@E,16)  such that
s ijk (x)dx  = 1 and such that
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Set vk,v  := vk *  yiv. Then

(vk,v) E ~16a,lc,~5,,,,(A3)  and  wk,v  = 1 on  @/IC

49

(3.3)

Set
uk,y :=  xvk,v$u( ,y+T)(-T)‘/V!.

V

Then &g(x)  = u(x,y) forx E @q,,  by (3.1) and (3.3), and {!qy  1 k E  N,O  < y <  1/(2Lt)}  is
bounded in D(@ sE/t6)  by (3.2) since {vk,V  1 k,v  E N}  is bounded in D(%5,,l,)  by (3.3).

With BG  :=  128Br we now choose  (qk,v)  E BB6A3,E,%zE (again  by (1.5) and convolution as
above)  such that

suPP  ((Pk,v) C  {x 1 121  5 25&/16, I&z 5  9&/(16A3)}  =:  w
and (Pk,v(X)  = 1 if Ix’i 5 3s/2  and Ixnl 5 &/(2As). (3.4)

The assumption (2.11) of Theorem 2.3 is satisfied for Pt  f P and x  = 1 by  Lemma 2.2. If
2Lr  2 p  and 0 < t < 1 /Az  we can apply Lemma 3.1 (with h  = (PQ, w = %.sE,t6  and Q = WzE)
to u(x, TI)  := U(X,  T + y + 11) and an elementary solution  E = EE~A3,t,2L,  chosen by Theorem
2.3. Taking derivatives w.r.t. ?J  and setting q = 0 this implies (since E is even w.r.t. y) for
s  E Iwn

I&,y($  = (~v~~k;v(~)~~~(x,y+T)~-‘(x~S)dn(-T)v/v!/

5 CV  (w,,v<~;E<  >T)*(P(D)@Pk,vu)(  ,Y)-p(D)(cPk,vu)(  ,~+2T))))$)i$

+ CV  ~~~~T~k;v(x)~~~ix-S,Il)a(<Pn,vu)(5lvtT+11)E’(”’“)dl1d~d~~~

5 CV  (vk,f&(  >T)*(P(D)b/w)(  ,Y)-p(D)(<pk,vu)(  ,~+2T)))j+)i$ c3,5j

+ CV  (Vk,v@;G(  > T) * (Pk,v  (p(D)u(  ,Y)  - P(D)4  ,Y  + 2T))$@)  15

+ Ca#o,v  I(Y’k,v(~;G(  ,T)*$&‘k,v(p(“)(D)u(  ,u)-P(“)(D)u(:v+2T)))i(s)I~

+ ~,Ij-~~  Wk,v(x)a~H(x-S,-rl)A(ck,v~)(S,y+T+ll)e-i(’1”drldidxl~
lbd<T

where T = 64s.

c) The four terms in (3.5) are now estimated uniformly for 0 < y 5 1/(2Lr),  where in i) - iii)
only U(  , y) is considered for shortness since U(  ,y  + 2T) can be treated in exactly the same
way.

il {(Pk,va$u(‘,Y)  1 d  = 0,  1; k,v E W  0 <  Y 5 l} is bounded in D(WzE)  since u  E BCa(Q x
(IR\ (0))). We thus we get by Theorem 2.3ii)

CV 1 (Y’k,d;~(  > T)  * (p(D)(cPk,vu(  >u)))-b)  IT”/v!
5 C(k/(T(l+  1.4)))”  ifs  E rt(el),

(3.6)

and if t < 1/(2AlLtAs)  (set Z := 1).



ii) Since i&  x {el} c UReg  2L(f’(D)u)  and (yk,“), (<~k.~~)  E BB6AjlE,~2et  we get by Theorem
2.3i)forsEWandO<yI  1/(2Lt)

i f t  <  1/(2A1(L&+B&A3)).

iii) TO estimate the third term in (3.5) we choose  fk.”  = &,(x,~)  such that (fk,v)  E BB6A3/E,~+,[
and such that & = 1 near [E/  ( 16A3),  11. Then we have  for a #  0

CV 1 (Wr.vW(  >T)  * (mk,“)w%4  >Y))T(#-“Iv!

2 C” I(vk,v@;G(  ,T)  * (fk,van(Pk,v)p(“)(D)u(  >Y)))7)lT”lV! (3.7)

+Cv/(vd~~G(  ,T)*  ((1 -fk,v)aX<~k,v)f(~)(D)u(  ,y)))-b)lT”/v!

By assumption and (1.11) we get @II>+  x {el} C UReg  2L(I’(n)(D)u). Since (f&aXq~~) E
B -=+,A3/~>W2e.+ (compare (1.4)), we get by Theorem 2.3i) for s  E Il?/  and 0 < y 2 1/(2Lr)

Cv  1 (w.v(~:G(  i Tl*  (fk,vaX<~k.v)P(~~)(D)~(  ,y)))P) IT”/v!

5 C(kI(TU  + I.d)))k

if t < 1/(2At (La&  + 2B&lA3)). TO estimate the second  term in (3.7) we use the harmonic
extension of G+ (see  Theorem 2.3) and Lemma 3.2 and get for x E supp vk,v  and 5 E
supp  (( 1 - .kv)  grad 9k.v)

laXa;‘dG(x  - 5, )/ “/T T v! 5 Cl  ((1+ 1/(32A3A4))-“(Aslal/T)IUI

if T < ~/(64A3)  (with Ae  := 64B5A3A4  and d = 0,l).
SO (?‘IG( ? T) *  (( 1 -f~,v)ax~k,v)f’“‘(D)u(  $y))  satisfies these  Cauchy estimates on

supp vk.  v. Since the functions in ~C.Q  satisfy estimates in k and v simultaneously, we can
use (1 .S) (for (vk,“)k  uniformly in v) and thus get for any s  E W  and 0 < y < 1/(2Lt)

cv I(w.v(JY-4  ,T)*  ((1 -fx,v)a:lwk,v)p’“‘(D)u(  J))fl#-“/“!

L  G(W(&/T+  16BlA+)/(l+  Id))”

if T < &/(64A3).

iv) Since

dist  ({Xp51XE  suPPVk,v>kE suPP  grad%,v},{O}U~(~~~  XR))  >~/(8A3)

we get for these  x and 5 by Lemma 3.2 if T < &/(32As)  and d = 0,l

la;a;H(x-<,q)(T”/v!  2 C3(BsInl/T)“*‘2-“.
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We now use (1.8) to estimate the last term in (3.5) as in the second  part of iii) and get for
s~IPandO<y<  1/(2Lr)

Cv 1 hW&-$H(x  - 5, -rlP(cpk,vu)  (S,Y  + T +Wi(x%&dxI  5

ICv&,l~ wv J;ff( >-~-~)*A(cpk.vu)(  ,Y+T+Y))IC  (
iCisup{IA(cpn.vu)(x,ll)l  ~w-[Y,Y+~~~,~~~~

x(~3(~51~+~6A3B11E)kI(l+Isl))k

<Cg(B3(BsIT+16A3B1/E)k/(l+lSl))k.

We now set t := 1/(212(Ar +A~)(&z+B~L~A~)).  Then T = 64~t  = 1/(64(Ar  +A~)(&I  +
A&$r  /E)) and t and T satisfy the restrictions needed above.  This proves claim 1).

11) From 1) the theorem follows by means of a resolution of the identity chosen as  fol-

10~s:  choose  kj E CI+ W3E/2  and x,j E D(Wc/(32A3)  (cj))  such that CXj  = 1 on O+  W5,,,.
Choose (8%)  E A32B,A~/~,Wr,~3W3~ such that J&‘k = 1 and Set yk,j  := Xj *  gk.  Then (yk,j)k  E

A3m~do%i;E,,,~~,j~
a n d

vk := cyk,j  = 1 On O+%e.

Chooseuk,y,J far@,($)  by0.  Far  ((Pk) EA,5,6:=  Q+U  (w+%~),  wethenhave

‘( IYh’k  = ~Uk,y,hh(Pk) +u(  ,Y)(l  -vk)(Pk.

Since  (‘%dk) E A328,A3/F+C,ii;,,r6(Sj) by (1.4) and since  uk,y,j satisfies 1), there  is A > 1 such
that (by Remark  1.2)

ifsET l,(u(LoE+L,))  (el).  Since  ((1  -vkhk) EA~~B~A-&+c,o+  anda+ x {el)  c URegL(U)

we can estimate also  / (U(  ,y)(l  - vI<)<pI<nS) 1 uniformly for 0 < y 2 1/(2Lr)  by Definition
1.3 (obtaining better bounds). Since  -3;~  = AXu,  also  8,~ satisfìes  the assumptions of the
theorem (use also (1.11)). By the proof above  we thus have  the same  estimates for C$U.  The
theorem is  proved. 0

Repeated application of Theorem 3.3 yields the following quantitative result on the ex-
tension of the regularity set in certain  cones  up to the edge (with polynomial bounds on the
index L measuring regularity). It is the main result of this paper and it will also be a centra1
tool in the paper Langenbruch [ 181 on partial  differential operators which are surjective on
rea1 analytic functions. Let always P,(O)  = 0.
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Theorem 3.4 a) Let Pm,@(N)  f 0. There  are B 2 1 and open cones Kl  c K2  c {x E  IR”  1 (x, N) >
0} such that&n{xc  lRT~(x,N)  5  0) = (0) art d such that  the following  holds  for  the  trun-
cated cones Sj and C, dejned  by

Sl  := {XE K$,  < (x,N) < t2}, S2  := {x E  K2  1 (x,N) < t2)
and&  := {x E  K1  / 2  < (x,N) < (tl  +t2)/2)  :

foranyO<tl<t2<2tlIlthereisBo~lsuchthatforanyLLBandO<z<tl:  i f
f E C”(S2),&  x (0) c w(L,L)(f)  and& x (0) c reg(L,L)(Wx)f),  then  CT x (0) c
reg h(zI(L,L)  (f) with h(T)  := BOT?.
b) If there  are C 2  1 an.d  0 < c such  that

(PmXx,  t) <  C(Pmfiq  (x, t) ift  610,  l] and ]x  - 61  5  c (3.8)

then a) holds for any 0  with 10  - 61  <  c/2  with the cones Kj and the constant  B and Bo
independent o f  0.

Proof. a) i) N and 0 are not collinear since P,,@(N)  #  0 = P,,@(O)  since P,(O)  = 0. We
can thus choose  an invertible rea1 n  x n-matrix M  such that ‘Me, = N and ‘MeI  = 0. Now
consider  FI := MK,,  SJ := MS,, 5, := MZ,,  el  ,e,, Q := P 0 tM and f := f 0 Mm1  instead
of K,,Sj,&,O,N,P(D)  and f. Then f E C-($2)  and there  is B1  > 1 such that $1  x {el} C

reg  LQ(L,~)  <fL 52 x {el > c reg  Bl (L,L)  (QP)?) and Qm,el (4 = Pm,dN) # 0. If the claim  is
proved for 7, then it directly follows for f. We can thus assume that 0 = el and N = e,,  and
we will show that the claim holds for the truncated cones Sj and & defined by

SI := {x 1 max (tl,]x’]/(2B2))  <x, < t2}, S2  := {x 1 ]x’]/(2B2)  <x, < t2}
and& := {x 1 max(q4]x’]/Bz)  <x,, < (tz+t1)/2},

where B2 := 2A withA :=AlA3 forAt fromThcorcm  3.3 andA  fromTheorem  2.3.
ii) We first show by induction how the regularity of a defining function uf for f extends
through a union Qk of layers defined as follows:
FixO<tl<t2and&:=A3/2andsetz_t  :=~:=t2--(t2--t1)/4,~:=tt+(t2-tr)/4and

Qk  :=  {X E  IR”  1 3 0 5  j <  k : Tj < X,  5  Tj-1,  ]x’]  < d,}  for k 2  0.

We then have  for large C > 1 (independent of t l , t2)  and Cl = Cr (tl , t2) 2 1:

Qk x {el)  C UReg LC,Ck(l,EkI (uf) for any k > 1 with &k  := 8q-1.

Proof. We want to apply Theorem 3.3 to Q k,+:=Qk-l,nk:=Qk-lU(Ok+WFk)>k>l,
w h e r e

o)k  := { (x’,zk-1)  1 1X’/ < dk).

First notice  that there  is C 2 1 such that

fik x {el} c URegLC,Ck-I(l,Ek-,)  (P(&)us)  fork  > l(&o := 1). (3.9)
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Indeed, if Ix’I  < dj  and ~j  < x, 5 Ti-1  for some j > 0, then

Ix’\/B~ <  dj/Bz  =  ‘tj/2  <x,

and therefore

Q~-~cL~:={xEIW”IIX’I/B~IX~,~~~-~/~<X~<~~}CS~.

Also ,
wk+iyEk CLkfork>  1

since we get for 5 E ok + WE,

15’1lB2  < (dc+%)/&  =Tk-1/2=2k-l  -Ek/& <&z.

Since
dist (,!zk,  82)  2 8k  := min ((t2  - t1)/2,Zk-,/6)

we get  by Proposit ion 1.4

fik  X {el}  C UReg z(f’(&)q)

withz=  B&(l+l/Sk,I)  sCuCk-‘L(l,&k-t)  fork>  l,C> l/(l -6/A)  and sufficiently
large CO  = Cc(tt  ,tz).

Let k = 1. Since t2  < 2tl,  we get

dist (Qt,+,%t)  = dist (Qo,%t)  > (t2  - t1)/4

and Proposition 1.4 implies that for sufficiently large C 2 1

QI,+ x {el  >  c  UReg C(L,L)  (uf).

Using also (3.9) we thus have  by Theorem 3.3

(Qo+(Q  +%IA,))  =kd  c URegA,C~(l+l~E,rl+E,)(Uf)

andthusifCu>At(l+l/&t)andCt  :=Co

QI x {elI  c  UReg~,(,,E,)h)

since tl - &t /(AlAx)  = ~1. This proves the claim for k = 1.
If k > 1, then

ak,+ X {el)  = Qk-1 X {el)  C URegLC,Ck~I(l,Ek-,)(Uf)

by the induction hypothesis.  Using also (3.9) we get  by Theorem 3.3

(Qk-1 + (ak + %,,A,>> X {ei>  C UReg A,~C,Ck-‘(I+&k-,/&k,&~+&~-~) (9)

and thus
Qk X {el> C UReg~,cq,r~k)(~f)
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since 2k-1  - &k/(AlAj)  = ‘&  (if C 2 4A1  2 1 + &k-1  /&k).  Claim  ii) is proved.

iii)
~~cQkif~kL~L~k-l,k~l.

Indeed, let x E &.  If i; = TO  5 x, 5 7-r  = G we have

1x’/  < B2x,/4  5  As/2  <As  = do

since~~<2?r,andthusxEQo.Ifk>  j>OandTj<x,<zj-l,wehave

IX’I  < Bzx,/~  5 ATj-1/2  5  ATj = d,j

(3.10)

since (1 - F/A)  2 1/2. This shows (3.10). Set h(~)  := &Zr  (~C~/Z)~~(~)/~~(~Z)  with C2 :=
l/(l-6/A)andCfromii).Letk>land2k<T<<k-r.Then

&x{el)CQkx{el}C UReg &Lc~cql,l)  (99 = UR% h(z)(L,L)  (4

by (3.10) and ii). Hence
G x {el >  c  reg  h(T)(L,L)  (f)

by Proposition 1.4
This proves the theorem in case a) since 20 = 5.

b) As in ii) of the proof of Lemma 2.2 one  proves that (3.8) implies that there  exist 0 < 6 5
1, bt  2 1 such that for al1 0 < t < 6:

%,tl51)  Ibl~p)(Ltl5l)if5~ rs(@),  16-01  <c/4and  151  2CO). (3.11)

(Compare (2.5)). For 0 E lYcih(6) tl Sn  we can now make the normalization from i) with
matrices Me such that ‘Mee, = N and %f~er  = 0 and such that

{ (‘M~)-‘,‘M~  1 0 E r,,(6) nY>  is bounded. (3.12)

For Qe := Po ‘Me  we get: there  are b2  > 1 and p > 1 such that for any 0 E r,,,(o)  nSn,

anyh>l,O<t<l/(ph)andany~E~~(p,l)

!k(S,@4)  5 b2(Qo~,,)<h4&  ifl51 L c(t).
Indeed, for IcI- < l/p  < 1 we have  by (3.12)

(3.13)

ltM~‘-~l~~~~o<~“5:~~~~~~~<lt~~~,~;,.,lt I, < 1 C- - 1 ,n

if p > 4Bl/c.  Hence ‘Me<  E  r,,,(O). Also by (3.12) we get

(3.14)

a n d
(3.15)
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(use also (2.3)). (3.13) now easily follows from (3.1 l), (3.14) and (3.15). Since the constants
in (3.13) are uniform w.r.t. 0 E Fe,,(o)  n,Y,  also the constants Ak  in Theorem 2.3 and hence
the constants & in Theorem 3.3 can be chosen uniformly for these  0. Since these  constants
(and the uniform bound from (3.12)) are the only data for the proof of Theorem 3.4a) this
proof shows the claim in b). 0

Though we will only use the sets reg (L,L)(p) in Langenbruch [IS], we had to consider
the more complicated sets reg (L,,L,)  (f) in this paper to obtain polynomial bounds on the
regularity in Theorem 3.4

4 Extension of the complement  of the wave front set

In this fina1 section the results of section 3 will be applied to get bounds for the wave front
set of hyperfunctions. These  are direct consequences of Theorem 3.4. Let always N E Sn  and
0 E Sn  with P,,,  (0) = 0.

Theorem 4.1 Let Q c iw”  be open and x0 E Q.  Let w E C’ (Q) with  N := grad W(Q)  #  0
und set Cl+  := {x E  Cl  1 w(x)  > W(Q) }. Let P,,@(N)  #  0. Then there  is  a neighbourhood
U of x0  such that the following  holds  for uny [u]  E  %(Q) : (U  x (0)  ) n WFA  ( [u])  = 0 if
(Cl+  x (0))  n WFA([U])  = 0 und if(Q  x (0))  n WFA  (P(D)[u])  = 0.

Proof. By Kaneko [13, Corollary 1.121 we can choose an elliptic loca1 operator  J(D) and
f E C-(Q)  such that [u]  = J(D)f. Since J(D) is elliptic, we have

Wfi(f)  = ~FA([u])  and  WFA  (P(D)f)  =  W&  (P(D)[ul).

(by Kawai [15, Theorem 4.1.81  (since  the support of the microfunction image of a hyper-
function [u]  coincides  with WFA  ( [u]))  and H”ormander [12, Theorem 9.3.3 and 9.3.41). f thus
satisf ies  the assumptions of  the theorem and we only have  to prove the claim for f.

b) We can assume that xa = 0. The second  assumption implies by Hormander [12, Lemma
8.4.41  that there  is L > 1 such that lJt/~ x (0) c  reg (L,L)  (P(D)f).  With the cones  K1  C K2
chosen for N by Theorem 3.4 we can choose t > 0 and 0 < tl  < t2  < 2tl  5 1 and define  the
truncated cones  Sj as in Theorem 3.4 such that tN + 31 CC Q+ and tN + S2  C Ulp.  Hence
also (tN  + St) x (0) c reg (L,L)(f) for sufficiently large L by the first assumption and [12,
Lemma 8.4.41  again.  By Theorem 3.4 we thus get (tN  + C,) x (0) C reg h(7)(L,L)(f)  and
hence (tN+C,)  x (0)  C wF~(f) for any 0 < z 5 tl  . This proves the claim since  0 E tN + &
for 0 < T < t. 0

Theorem 4.1 essential ly is  a special  case of a result  of  Sjostrand [24, Theorem 5.11. Holm-
gren type theorems for the analytic wave front set (usually for operators with variable coef-
ficients) have  been obtained by many authors (see  J.M. Bony [3,  41, J.M. Bony, P. Schapira
[5],  A. Grigis, P. Schapira, J. Sjostrand  [6],  N. Hanges [7], N. Hanges, J. Sjostrand  [8],
L. Hormander [lo],  M. Kashiwara, T. Kawai [14], P. Laubin [20, 211,  0. Liess [22, 231,
J. Sjostrand  [24], the reader is also referred to the literature cited  in these  papers).

We will now state global versions of Theorem 4.1.
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Corollary4.2 LetP,+(N)  #  0. Let [u]  E  %(Rn)  und (x,0)  $ WF~(P(D)[~])forunyx~  IE?.
Zf there  is  7  E  R such  that (x,0)  $z’  WFA([U])  if (x,N) < 7,  then (x,0)  # WFA([u])  for any
XE Rn.

Proof. Application of Theorem 4.1 to any x0 with (xa,N)  = r shows that there  is F > 0 such
that (x, 0) $ WFA([U])  if (x,N)  < z+ 6. This implies the claim. 0

Corollary 4.2 can be generalized to a global version  of Theorem 4.1 stated for convex
sets:

Theorem 4.3 Let 0  E  S”  und Let  !21  c Q2  c IR?  be open und convex. Assume thut every
hyperplane 5 + N’ with P,,@(N)  = 0 intersects Q2  if it intersects !&.  Then the following
holdsfor  [u]  E  !13(Q2):
(x, 0) @  WFA  ([u])  for uny x E  Cl2  if (x, 0)  $2  WFA  ( [u])  for uny x E  CZ1  und if (x, 0) @
WFA  (P(D)[u])  for uny x E  Q2.

Proof. This is proved exactly as the corresponding corollary of Holmgren’s theorem (see
Hormander [9,  Theorem 5.3.31, with referente  to [9,  Theorem 5.3.11  substituted by the refer-
ente  to Theorem 4.1). cl

The convex sets in Theorem 4.3 can be chosen as columns if  the vectors N with P,,@(N)  =
0 are contained  in a hyperplane. We are then in the extreme case where singularities trave1
along  lines:

Theorem 4.4 Fix 0  E  9.  Assume that there  is N E  S”  such thut

(N,M) = 0 ifP,+(M)  = 0. (4.1)

Let [u]  E  93(Q)  and (x,0)  E  WFA([U]).  Then Z  x (0)  E  WFA([U])  ifZ  C Cli1  (x+NR)  is a
line  segment contuining x such thut (Z  x (0))  n WFA  (P(D)[u])  = 0.

Proof. Assume that there  is x0 E Z such that x0 6 W&(  [u]).  We can assume that x0 =
x + UN  for some u > 0. We can choose  Q := U,(xo) and R2 := [O,u]N  + U,(O)  such that
(Qi x {@})n WFA([U])  =0and  (Q2x{@})n WFA(P(D)[U])  =0.  By(4.1)theassumptions
of Theorem 4.3 then hold for Qt and Q2, and therefore (x, 0) $ WFA  ( [u])  by that theorem, a
contradict ion. 0

(4.1) is clearly satisfied for P,,,  if 0 is a root of first order: then e,@(x)  = ( grad Pnz(0)  ,x)
and (4.1) holds for N E span { Re grad Pm(O),  Im grad P,(O)}. Thus Theorem 4.4 ex-
tends the corresponding result  for operators of rea1 principal type (Hormander [ 12, Theorem
8.6.13]),  i.e. where any root of P,,,  is of first order and P,  is real.

Theorem 4.4 also contains the following result of Liess [23, Theorem 1.81 who proved the
conclusion of Theorem 4.4 under the following assumption (for 0 = e, and N = el, q := Pm,0
and P,(D) involving only deratives w.r.t. x1 , . . . ,x,(,x, for some n’ < n and q = (r,6) E
@ x te):
there  is /3 > 1 such that for any 0 #  q”  = (r”,tYo)  E lP’ with P,Q(TJ’,O)  = 0 there  are ck  > 0
such that
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ifP,,o(r\O,O)  =O,lq’/lq-  Req/lReqII <c2andIImrll <c2IReql.

Since we can take q = q0  in this condition, we get (N,q’)  = Z’  = 0 if
P,+(q”,O)  = 0, q”  E Rn.  Since P,,o  only depends on the variables in R”‘,  (4.1) holds for
P,>@

Acknowledgement

The author would like to thank V.P. Palamodov (Moscow)  for valuable discussions  concern-
ing the subject  of this paper.



References

[l] K. G. Andersson, Propagat ion  o f  analy t ic i ty  o f  so lu t ions  o fpar t ia l  d i f ferent ia l  equat ions
with constant coeficients, Ark. Mat. 8 (197 l), 277-302.

[2]  G. Bengel,  Dus Weylsche Lemma in der Theorie der Hyperjìnktionen, Math. Z. 96
(1967),  373-392.

[3]  J. M. Bony, Extensions du théorème de Holmgren,  Sém. Goulaouic-Schwartz, Exp. 17
(1976).

[4]  J. M. Bony, Propagation of analytic and dtfferentiable  singularities for solutions qf
partial  differential equations, Publ. RIMS 12, Suppl. (1977),  5-17.

[5] J.  M. Bony, P. Schapira,  Propagat ion des  singulnrités  analyt iques  pour les  solut ions des
équations aux dérivées partielles,  Ann. Inst. Fourier (Grenoble) 26 (1976),  8 l-140.

[6]  A. Grigis, P. Schapira, J. Sjostrand,  Propagation de singularités  analytiques pour les
solutions des opérateurs à caructéristiques multiples,  C.R.A.S. 293,I (1981),  397-400.

[7]  N. Hanges, Propagation of annlyticity along  rea1  bicharacteristics, Duke Math. J. 48
(198 l), 269-277.

[8]  N. Hanges, J. Sjostrand,  Propagation of analyticity for a class  of non-micro-
characteris t ic  operators ,  Annals of Math.  116 (1982),  559-577.

[9]  L. Hormander, Linear partial  differential operators, Springer, Berlin/Heidelberg/New
York, 1963.

[lo] L. Hormander, Uniqueness  theorems and wave front  sets  for  so lu t ions  o f  linear  difleren-
tial  equations with analytic coejficients,  Comm. Pure Appl. Math. 24 (1971),  671-704.

[ 1 l] L. Hormander, On the singularities of solutions of partial  differenti& equations with
constant coeficients, Israel J. Math. 13 (1972),  82-105.

[ 121 L. Hormander, The analysis  of linear partial  difSerential  operators I+II, Grundlehren
Math.  Wiss. Bde. 256+257,  Springer, Berlin/Heidelberg/New York, 1983.

[ 131 A. Kaneko, Representat ion o f  hyperj ìunct ions by measures und some ofits  upplications,
J. Fac. Sci. Univ. Tokyo Sec. IA 19 (1972),  321-352.

[ 141 M. Kashiwara, T. Kawai, Microhyperbolic pseudodifferential  operators I, J. Math. Soc.
Japan 27 (1975),  359-404.

[ 151 T. Kawai, On the theory of  Fourier  hyperfunct ions  und i ts  appl icat ions  to  partial  differ-
ential  equations with constunt  coeficients, J. Fac. Sci. Univ. Tokyo, Sec. IA 17 (1970),
467-5 17.

[ 161 M. Langenbruch, Randvertei lungen von Nulltisungen  hypoel l ipt ischer Differentialoper-
atoren, Manuscr. Math. 26 (1978),  17-35.



Extension of analytici~  far  solutums  of partial  differentml  operators 5 9

[17]  M. Langenbruch, Continuation of Gevrey regularity for solutions  qf  partial  d$eren-
tial  operutors, “Functional analysis”, Proc.  of the first workshop at Trier university
(S. Dierolf, S. Dineen, and P. Domanski, eds.), W. de Gruyter, 1996, pp. 249-280.

[18]  M. Langenbruch, Localizations of partial  d@erential  operutors and surjectivity on
spaces  of rea1  analytic jììnctions, manuscript, 1997.

1191 M. Langenbruch, Solvahility  of systems ofpartial dzzerential  equations defined  on non-
convex sets, manuscript, 1998.

[20]  P. Laubin, Propagation des singularités analytiques pour des opérateurs à car-
actéristiques involutives  de multiplicité variahle, Port. Math. 41 (1982),  83-90.

[21]  P. Laubin, Analyse microlocale des singularités analytiques, Bull. Soc. R. Sci. Liège 52
(1983),  103-212.

[22]  8. Liess, Necessary  und suficient  conditions for propagation of singularities for sys-
tems of linear partial  differential  equations with constant  coeficients, Comm. PDE $
(1983),  89-l 98.

[23] 0. Liess,  Localiz,ation  andpropagat ion  o f  analy t ic  s ingular i t ies  for  operators  w i th  con-
stunt  coeflcients, Comm. Part. Diff. Equ. 13 (198X),  729-767.

[24]  J. Sjostrand, Singularités  analytiques microlocales, Asterisque 95 (1982),  1-166.

MICHAEL LANGENBRUCH
Carl  von Ossietzky Universi tat  Oldenburg
Fb 6 - Mathematik
Postfach 2503
D-261 11 Oldenburg
GERMANY
E-mail address: langenbruch@mathematik.uni-oldenburg.de


