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EXTENSION OF ANALYTICITY FOR SOLUTIONS OF PARTIAL DIFFERENTIAL
OPERATORS!

MICHAEL LANGENBRUCH

Abstract. We introduce a quantitative version of the complement of the analytic wave front
set and study its extension for solutions of partial differential operators. This quantitative
result can be applied in the study of surjective partial differential operators on spaces of real
analytic functions.

In the study of surjective partial differential operators on spaces of real analytic functions
(Langenbruch [ 18]) and of elliptic systems of partial differential operators on nonconvex sets
(Langenbruch [ 19]) a central ideais to apply arguments coming from the theory of analytic
wave front sets to real analytic functions. This seems to be useless since the classical analytic
wave front set of areal analytic function isvoid. We infact use a quantified version of the
(complement of the) analytic wave front set (called regularity set) which is nontrivial also
for real analytic functions and we have to know how the regularity set extends for solutions
of partial differential equations. The introduction of this regularity set and the study of its
extension properties is the main aim of the present paper.

The paper is organized as follows: in section 1 we introduce the regularity set reg; (f)
of f€(C”(Q) by means of a quantitative version of the estimates used to define the ana-
Iytic wave front set of distributions(see Definition 1.1). Wealso introduce hyperfunctions as
formal boundary values of harmonic functions and, correspondingly, the notion of the uni-
form regularity set of a harmonic function (see Definition 1.3). In Proposition 1.4 we then
show that the regulaity st of f € C(Q) can be described by the uniform regularity set of a
harmonic representing function ., for f. We thus can use the theory of boundary values of
harmonic functions to study the extension of the regularity set of C*-functions.

Let P(D) always be a partial differentia operator with constant coefficients in» variables.
The extension of C*-regularity for solutions of P(D) has been characterized by Hormander
([ 11], see also [ 12, section 11.31) using a sequence of distributional parametrices which are
regular on sufficiently large sets. Correspondingly, in section 2 we will construct asequence
of regular generalized elementary solutions for P(D) (see Theorem 2.3). The elementary
solutions are harmonic functions in(n + 1) variables defined outside thin strips near R” and
thus can be considered as generalized hyperfunctions.

By means of a suitable duality (see Lemma 3.1) the regular elementary solutions from
section 2 are then used in section 3 to extend the uniform regularity set of harmonic functions
(see Theorem 3.3; this is simiiar to the use of distributional parametrices with small C*
singular support to extend C*-regularity (see Hormander [ 12, section 11.3])). The main result
of this paper is given in Theorem 3.4, where we prove that the regularity setof f € C”(R)
extends in cones with polynomial bounds on the regularity parameter L. This central result
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is needed in the study of partial differential operators which are surjective on real analytic
functions (see Langenbruch|18]).

In section 4 we finally obtain as an easy consequence of Theorem 3.4 a Holmgren type
theorem for the analytic wave front set of hyperfunction solutions of P(D) which essentially
isaspecial case of Sjostrand[24, Theorem 15.11 and then prove some of its consequences.
The extension of analytic regularity has been studied (usualy for operators with variable
coefficients) by many authors. A selection of corresponding papers iscontained in the ref-
erences (J.M. Bony [3, 4], JM. Bony, P. Schapira [5], A. Grigis, P. Schapira, J. Sjostrand
[6], N. Hanges [7], N. Hanges, J. Sjostrand [8], L. Hormander [10], M. Kashiwara, T. Kawai
[ 14], P. Laubin [20, 21], O. Liess[22, 23], J. Sjostrand [24], the reader is also referred to the
literature cited in these papers).

1 Regularity sets

In this section hyperfunctions are introduced as formal boundary values of harmonic func-
tions (Bengel 2], Hormander [ 12, chapter [X]). Correspondingly, we introduce the notion of
the regularity set of C”—functions (see Definition 1.1) which is a quantitative decomposition
of the complement of the analytic wave front set W F,(f) for / € C=(£2) and which can be
described by means of the uniform regularity set of a defining function us (see¢ Proposition
1.4). The regular generalized elementary solution constructed in section 2 can thus be used
to extend the complement of the analytic wave front set of zerosolutions in section 4.

In this paper, n € N is always at least 2. A point in R"*! is usually written as (x,y) €
R" x R. Open Euclidean balls in R" are denoted by Ue(§) and U, = U:(0). Let §* be the
Euclidean unit sphere in R" and

<X,E_,> = szE_.‘,' forx,§ e C*.
A= ¥ (3/dxy)? + (0/9y)? is the Laplace operator on R"*! and the harmonic functions on

k<n
an open set V c R"*! are denoted by C, (V). For asubset A c R""', the space of harmonic
germs near A is denoted by Cx(A). By Cx we denote the corresponding spaces of harmonic
functions which are even with respect to y.

In the following, €2 always is an open set in R". Asadefinition of the hyperfunctions
B(Q) we set (see Bengel [2] and Hormander [ 12, chapter 1X])

B(Q) = Ca (@ x (R\ {0})) /Cr(@ xR

The elements of [u] € B(Q2) are called defining functionsfor [u]. Restrictions of ahyperfunc-
tion are defined via defining functions. For a closed set S ¢ R” let A(S) denote the germs
of real analytic functions near S. For an analytic functional 7 € A(K)*, K C R" compact, we
define a hyperfunction via the defining function

ur(x,y) = <§T,E(x~§,y)>, (x,y) € R\ (K x {0}) (1.D)
where E is the canonical elementary solution of A defined by

E(x.y) = =)™/ ((n= Vewsr)
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(¢y41is the area of the unit sphere §"+! ¢ R**!, see e.g. Hormander [{2, Theorem 3.3.2]
and notice that (n + 1) > 3). In thisway A(R") is embedded into the hyperfunctions and
coincides with the hyperfunctions with compact support. Thus, also the distributions with
compact support are embedded into hyperfunctions. More generally, [ur] € 95 (€2) represents
adistribution T € D(Q)’ iff u; can be extended to a distribution uy € D(Q X R)’ such that

Aur =T Q®39, (1.2)

(compare Langenbruch[16]).ur iscalled arepresenting function for T.
To prepare the notion of the regularity sets we now introduce the class Ac o which will
serve as “analytic cut off functions” as in the theory of wave front sets for distributions (see
e.g. Hormander [ 12, Lemma 8.4.4]). This class is defined as follows (for @ C R" open and

C> 1)
Acg = {((pk) € D(Q)Y |Vd e NIC, > IVkeN:

10 < CukO) if [0 < kand |B] < . 3
Some useful technical results follow: by Leibniz’ formula we have
(Qxhi) € Acpif (0r) € Aco and (k) € Ao (1.4)
There is By > 0 such that the following holds: for K cc Q and § := dist (K,dQ)
there is (gy) € A, /5,0 such that ¢; = 1 near K for each k. (1.5)

To see this, we Set @ := g * h where i € D(Us4) satisfies [ h(E) d§ =1 and gx € D(K +
Uss;4) is chosen by Hormander [12, Theorem 1.4.2] (with d; = &/(8k) for 1 <j <k) such
that g, = 1 near K+ Ug,. hisneeded to estimate the B-derivatives in (1.3).

The Fourier transforms of functionsin A¢ o satisfy the following typical estimates: there
is B, > 1 such that for (@) € Ac, we have

(@ + 1))/ [Gx(s)| < B2Cu(B2AC/(1 + 1)) if j < kands € R". (1.6)

One reason to include the B-derivatives in (1.3) isthefact that then(¢y) is bounded in L, (R")
for (k) € Ac.o (see also the proof of Remark 1.2). Obviously, (y;) = (v) satisfies the esti-
mates for Ay, o, L;> Ly, if v satisfies the Cauchy estimates

W9 (x)] < C(Lola))! on Q. (1.7)
We thus get by (1.4) and (1.6): there is B > | such that
(14 1s)? (o) (s)] < CaBs (Bsk(Lo+C)/(1+1s]))  on R (1.8)

if (¢r) € Acy, and v satisfies (1.7). This motivates the following definition of regularity
sets for C*—functions which corresponds to an estimate like (1.8) oncones. This notion will
also be used in the study of partial differential operators which are surjective on real analytic
functions (Langenbruch [ 18]). For © € S let

(@) ={s € R" |s/|s| - 0| < b}.
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Definition 1.1 Let Q c R" beopen, O € S"and L = (Lo, L;,Ly) € [1,[*. Let f € C(Q).
We say that Qx {©} c reg ,(f) iff for any C> 1 and any (¢x) € Ac,q there is C; > 1 such
that

(o) ()] < C1 ((Lo+ LK/ (1 +s])* if s € Ty, (O). (1.9)

Except for Theorem 2.3 below we will only use L = (Lo, L1) € [ 1, «[*> and

reg (1. () = 18 g1, 1) (F)

in this paper.
Definition 1.1 is a quantitative version of the estimates needed to define the analytic wave
front set, that is, (x,©) ¢ WF,(f) if there is L > 1 such that Uy, (x)x {©} C reg (, ;) (f)
(Hormander [ 12, Lemma §.4.4]).

If wand C arefixed in (1.9) and if supp @ ¢ K C CQ for any k, the closed graph theorem
implies that the constant

Cin (1.9) only depends on the sequences(C,) for(@;)in (1.3). (110
If feC(Q)andQx {®}creg,(f),then
QOx{®)creg;(f)if Ly<Lyand L;< L. (111)

We must prove this only for the case that p = ¢; is a canonical unit vector. But then (1.11)
easily follows from the product rule (notice that (D ;) € Aco and (r—1)x € Ac,o if (¢r) €

Acq).
In the calculations with the cones ', (©) we will often use the followingfact: let 0 <b <
1. Then

s €T} (©) if§ €T, (0) and € - s| < bIE| /4. (112
Infact,

/15| = ©1 < |s/Isl = s/ 1&]| + |s = €| /16| + &/ [E] = ©] <|[&] = Is]|/1&] +3b/4 < b.

Remark 1.2 There is B4 > 1 such that the following holds:

a) If (¢y) € Acy, with sup lloell=: Co < 0 and if (1) € D(R")™ satisfies

Sl;Pilelll =Cy < woand [T (s)| < (Lok/(1 + Is))) if s € Ty, ()
then
| (@)~ (5)| < (Co+C1) ((2Lo+BsLiC)k/ (1 + |s])) " if s € T oz, (6).

b) If for f € C*(R") there is {f; k € N} bounded in D(U;) such that f;(x) = f(x) for
x€QclU and

[Fels)] < (Lok/(1 4 1s1))" if s € T2, (O),
then Q x {©} C reg (2L0.84L1)(f)'
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Proof. Using (1.12) we get the following estimate for cp, v € D(R"), k e N, b €]0, 1] and
s € T2 (©) (by Hormander [12, (8.1.3")] withM =0, C=|v||; and ¢ = b/4):

(14 Is)41(@v) ()| S 240@l supd FI(1 4 )* meT, @)} gy
+(5/B) IVl J )| (1 + D an. |

a) This follows (rom (1.6) and (1.13) (with B, = 5B;).
b) This directly follows from a) and Definition 1.1. O

We finally show the basic fact that the regularity set of aC”—function f can be character-
ized by a uniform regularity estimate (1.9) valid for any defining function uy (see (1.2)). Of
course, the wave front set of u¢ is voidsince iy isreal analytic. We introduce the appropriate
notion: let

BCx (@ x (R\{0})) = {u € Ca(@x (R\ {0})) VK cc Q. a €Ny :

sup{ [090%u(x,y)| x€K,0< |y < 1,d=1,2} <o},

Definition 1.3 Let L €[ 1,0[> and ler u € BCA(Q x (R\ {0})). We say that Q x {®}
UReg ; (u) iff for any C > 1 und any (@) € Acq thereis C1 > 1 such that for d = 0, 1

=~ k
| (0%u( ,)0) " (5)|< €1 ((Lo+LiC)k/(1 +]s])) (1.14)
ifse Ty, (0) und 0 < |y[ < 1/L;.
Proposition 1.4 Let f € C*(Q) and let us be a defining function of f.
a) us € BCA(Q x (R\ {0}))
b) There is Bs> 1 such that the following holds:
i) Let ® ¢ R" be open und ® + Uy cc Q. If Q x {®} c reg ,(f), then 0x {6} c

URCg B5(L0+1/E,L]) (uf)
i) If Qx{®}cUReg(ur), then Q x {B} c reg (f).

Proof. @ To prove this we can assume that f € D(Q) and that u; = E » F.  One esily ses
that for any K cc R" there is C; > 1 such that

A |0E (x,y) | dx < C1 for 0 < y] < 1. (115)

Thisimplies the claim.

b)i) Let (@x) € Ac,o- Choose y € D(Q) such that y = 1 on ; := ® + Ug/y. Let Uyy be the
representing function of yf defined by (1.1). Then

ur = Uys +von oy x R for some v € Cy(m; X R).

Since the Laplacean is elliptic, there is B> 1 such that

0904 (x, )| < C2(Blal/e)"! for (x,y) € @x [~1,1]. (116)
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(q)Lv f thus satisfies the required estimates by (1.8).

To prove (1.14) for Uys we choose two sequences of functions (gk), (h) € Agp, rn in
the following way by (1.5): gi(x) = 1for [x| < &/8 and supp (gk) C Ugs. hx(x) = 1 0on
@ = supp (y) and supp (k) C K := @ = supp v + U, .

Ford = 0,1,y # 0and x € ® we then have

AUy (63) = (wf) * (&"EC,y)) () +wif + ((1 —gwhkaﬁE( 7)) (). (117)

Since E satisfies (1.16) (with new B) for
(fw*((1= gk)hkal(E( ~V))A(S)

< Al (1~ g EC) ()| < G (Bsk/ (eC1 +15)))

for some Bs > 1 by (1.8). Since the last term in (1.17) is bounded in D(R") (uniformly in y),

(1.14) follows for this term by (1.18) and Remark 1.2. Since Q@ x {©} C reg , (f), we get for
s €Ty, (0)and 0 < |y < 1 by (L15) and (1.10)

(118)

(o[ 0wr) <axdBC)] Y16)| < | B0 supigrcesal (0x(- +E01T19)

. (1.19)
<C((Lo+LiC)k/(1+]s]))"

ii) Let (1.14) hold for u;. Since uy satisfies(1.2), the distributional boundary value of 0, is
/by Langenbruch[16, Satz 1.21. Since ¢ iseven w.r.t. y, this means that for ((pk)EACQ

|(fou) ()] = (/. <Pk€’i (i) = 2limy—0 [0y (,3), Qre=it )y
= 2limy—s0 (ayuf( ) QDI\ l <o +LiOk/(1+|s]) ) ifs €Ty, (0)
by (1.14). The proposition is proved. O

2 Regular elementary solutions

In the remaining part of this paper P(D) = P(D,) always is a partial differential operator in
n (X -) variables with constant coefficients and degree m. P,, denotes the principal part of P.
Also, @ and N are always vectorsin the unit sphere " ¢ R".

To show that the regularity set of harmonic zerosolutions of P(D,) extends in certain
directions we need to construct (generalized) elementary solutions for P(D,) which have
large regular sets. This construction is given in this section. The elementary solutions will
be defined in the space C, (22X (R \[-c, c])), ¢ > 0, which can be considered as defining
functions of a sheaf more general than hyperfunctions (these correspond to the case ¢ = 0).
E € Co(Q x (R\ [~c,c])) is canonically written as E(x,y) = E+ (x,|y]) with E+ € Cy(Qx]c,
o<[). The appropriate notion of an elementary solution for P(D) on Q now is the following
(compare the embedding of distributionsinto hyperfunctionsin (1.2)):

Definition 2.1 Let 0 € Q. E € Co(Q x (IR\ [~¢,c])) iscalled an elementary solution for
P(D) on Qif P(D)E can be extended to Q x R as a distribution H such that AH = §,
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The existence of regular elementary solutions can be shown if there are sufficiently large
regions in C" where P(z) does not vanish. This can be proved under weak assumptions(see
Lemma 2.2 below).

For P, (0) = 0 let P,,.0 be the localization of P, at O defined as follows: let

go = min{k €N 3B €N;: |p|=k and DPP, (0) # O}

be the order of the root ® of P,,. Now,

Puol8) = Tygyeye P (O)E/al. 2.1)
Alternatively,
Puo(x) = ‘1imO(P,,,(®+sx)s*q(")), (1)

where 5% is the lowest order term of the expansion of P,,(© + sx). For © = ¢; this means
that
Py (X) = Pm.@ (X/)X’{que + 2 Qk(X/)XII( (2.2)
0<k<m—ge

if x=(x;,¥)€ RxR""where the 0, are homogeneous polynomials and Q; = 0 or deg( Q) =
m-k. Let
P(x,1) = sup{ [P(x+E&)| |&] < 1} and Py (x,1) = sup{ |[P(x+TN)| |1/ < 8.
It is well-known (Hormander [ 12, Lemmal(.4.2]) that there isC > 1 such that
P(x,r) < P(x,15) < CP(x,1)s" for any 1 > 0 and 5 > 1 2.3)

and this also holds for 15<N>.

By means of alinear change of coordinates wewill mainly beconcerned with the standard
case © = ¢; and N = ¢, and then write x = (x.x”,x,) € Rx R""2x R. We will finaly need
the following unsymmetric cones I', (p. ) for p>land 0 < 2 < 1:for [ >¢>0let

fr(p,%) = { & € R (Eﬂ - mlma&”vp{%én) {oo < 11&:“}
= (R Gz Bl I8 < 61, [l < = P

To see thisequality we notice that the second set is obviously contained in the first, and the
opposite inclusion follows since the assumptions [E|.. = |€"|.. |&]. = |&, and |€|.. = =&
directly lead to obvious contradictions. Except for Theorem 2.3 we will always have » = 1
in this paper.

Lemma22 LetP, ., (e,) #0. Thereis p>1suck that for any L > 1 there are b > 0 and

0 <y < 1suchthat forany 0 <t < 1/(pA) there is C= C(t) > I such tkatforany £ ¢ lN“k,(p, 1)
with [€| > C there is O € R witk |9 <7|E|/2 suck tkat

|P(E+ (itl€] +20)en + §) >bP(E1]E]) (2.4)

for any 7 € C with |z/= 1 und any { € C" witk |{] < 2yr[E|.
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Proof. We will show that there is p > 1 such that for any 3, > 1 there is b; > 1 such that for
any 0 < 8 < 1/(pA)

P(E,tIE]) < b1Py,, (E.1]E]) if € € T, (p, 1) and [E] > C(1). 2.5)

This implies the claim by Hormander [ 12, Lemma 11.3. [0] (with the constant s in loc. cit.
chosen as1/2,V =(e) and 1’ = e,). To show (2.5) we use the form (2.2) for p,,. In the
proof below the constants A, can be chosen independently of A. Let® :=e;.

i) There are p> 1 such that for any . > 1there ish, > 1 such that

(Rnﬂ(l ,T\",T)’f) < bZ(PM)V(e”)((LnHaT)?t) 2.6)

if |7 <1/p, " <A and0 <t <1/(ph).
Proof Let " € R"2 with n”|.. < A < 1/2 and 7 € R with 1| <1/2. Then by (2.2)

(P)T(1,1",0),1) < (Puo)(N",0),0)277%0 +34 a0 O((M,7),1)2F 2
<A 12k<m c/@((}‘_‘_l)t M))m k<A2 A 4 |T1)q@ .

For 1/2 > ut >\ we get similarly using (2.3) first

(Pm)?e”) ((] 7n”7T)7z) Z CM(P’"T(&:) (( 1 71'1/,,'5)7,‘1[) (2 8)
> Cu(Pr0 e,y (", 7),ptt) = Cuz (ut +[T))%0+. '
We have
Pm@ X ;) z H N

J<4qe
where Hy,, (X") = ¢ # 0, H; are homogeneous polynomials and H; = 0 or deg(H;) = qo — j.
This shows that for y> A

(Ps@ e (N",7), i) > [Puo (", 1+ sgn ()

> e[t +ut)*® — Aghe (e + 1)) " > ¢ (|1 +ut)™ )2 (2.9)

if also u >2A4A/c. Wenow fix y:=max(1,24,/c)A and get by (2.8) and (2.9)

(PaTien (1,M",7),1) > Cue (|7 + 1) ™ /4

if ||+ ut < ¢/(4A3). Together with (2.7) this shows (2.6).
ii) Let P =3’ P, be the expansion of P in homogeneous polynomials. For p from (2.6) and¢ e

Diu(p. 1y We have § = &/[Ele = (1LE"/[Elo,u/[El) with |E7 | /|| < At and [Ex]/[Elo <
1/p by the definition of I, (p, 1). We can thus apply (2.6) if 0 <t <1/(p)) and get (using
dso (2.3))

P(EtE])/(Cn™/?) < (PuJTE,1[E]ee) + T (PTE 1 [E])
< |€|LZ(RHHCJ) +A6l§|271 < C jém(l)mﬁenl(gal) +A6|E.x|g_l
< 1P,y (§,1[8]) +A7[E|Z" for & e Ty (p, 1).

This shows (2.5) since P(&,1|€]) > Ag(t[€]o)™. O
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The following Theorem 2.3 now states the existence of appropriately regular (general-
ized) elementary solutions. It is formulated only for ©® = ¢; and N = ¢,. We have included
parameter dependent polynomials P, for later purposes. In this paper we will only use the
case where P, isindependent of ¢.

The claims in Theorem 2.3 i) and i) are stated in the form needed to prove the main
extension result for the regularity set in section 3 (see Theorem 3.3). There we Will need
simultaneous estimates as satisfied by the following regular cut off functions

Beo:= {(guy) € DIQVN VdeN3IC>1VkveN:

g™l < Co(kC) (v if |0 < K, M < v and [B] < d}

and also the following unisotropic variant (for / > 1) :

Bea(l):= { (gey) € DIQ™N Yd € N3¢ > IVk,veN :

oo Pllee < Da(kOM (vC) I 1+ i o) < k, |y < v and || < d.

The following Paley-Wiener estimates hold (compare (1.6)): there exists B, > 1 such that
(0ky) € Bey, (I) satisfies

1By (2)] < Coet! ™4 (ByCk /(1 + |2)) for z € €7 (2.10)

and
1Giy (2)] < Cpetl TMl (BaCH/ (1 + D) (Bocv/ (1 +|2])" forz €C" (210)

where |7[2= |(2,za/D)]. Let We = { (' x,) € RIX R |¥| <&, x| < €]

Theorem 2.3 There exists A;> 1 such that the following holds for any polynomial 0# P, in
n variables with deg P, < m: assume that there are p > 1 and 0 < 3 < 1 such that for any

A > 1thereare b >0,0<8 < 1and0 <y < 1such that for any 0 < t <& there is C > 1 such
thatfor any & € T'y,(p, ») with [§| > C there is 6 € IR with [9] < ¢|€| /2 such that

|P. (& + (it]€] +20)en+ ) > P (E,t[E]) (2.11)

for any z € C with|z]= Lund any { e C" with [{| < 2y[¢|.

Then there are A;,A3 > 1 such thatfor any [, >p,0<e<1and 0 <t < 1/A; there is
un elementary solution E = Eg; 1, € Ca (W2EA3 x (R\[-T/2, T/2])) T := 64As¢t, for P (D)
such that E can bewritten asE = F + G with F, GE'CVA(WZEA3 x(IR\[—T/2,T/2])),where
G, can be extended as a harmonic function to

Xe = { ()C,_V) € W2m3 x R (’xl| > Asg, |xnl <gy> €
or (x, > 0,y> —x,1/8)}.

Moreover, we have the following estimates (for T:= 64Aser):
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i) If ¢ Waea, und if o X {e;} c reg ; (h) for L = (Lo, L;,L2) und i € C*(w), then
%‘ ( (8;+dG+(,T) * (Pth)\Vv.k)A(S)lTV/Vg
< Ck/(T(1+|s))))" fors €R" and d = 0,1

if (okv) € Bkio(Wky) € By, wery, K1 2 /e and t < min{ 1/(AL),
1/(eA3A1(Lo+KiL1)) }.

ii) For any (Yry) € 51631/(%)1%% (Asl), I > 1, with By taken from (1.5) and uny bounded
set B ¢ D(Waea, ) there is C > 1 such thutfor any g € B

SUDgep v

TV/V! < C(k/(T(l + M)\))k

((awa( .T) *P,(D)g)\llv.k)\(s) , (2.12)

ifs€Ti(er), d =0,1and ift < 1/(A1(LaA3]) /)

Proof. 1) The definition and the properties of G+ are prepared in a) - ¢):
a) Fix A, p, », 6,b and y asabove and let L, > p. Let

f?»t | f‘h(4nl’/2L2,%) = {§= (éhé”v&n) € R*

E1] = &, 16" < ArfEnl, [Enl < (0)' 184 !/(4'11/2L2)}

Let0< 7 <dand 0 <¢<1. Inthe proof below the constants 4, are independent of €, ; and
L, but may depend on,p, 5,0, bandy.

There are Ay > 1 such that for any 1>€ >0and any 0 <7 <1/(2y) there are jy€ N, C*~
functions {y,} and points &; € R" such that ¥%; = 1 on R" \ U;and

suppxj C Bj = {& | [E=&;| <vj} CRI\Usif j > jo (t; :=11))), (213

the intersection of more than A; balls B; isempty and

D% ()] < APl if o) < e (2.14)
This is proved similarly as Hormander [12, Lemma 11.3.1 1] by application of Hormander
[12, Theorem 1.4.10] to || ||, :== |/(y|y]) whichis-a uniformly slowly varying meitric on
R\ {0}.

With C = C(t) from (2.11) let

J:=1{j>jo suppy; cpe Ty |d>C}}.

From now on let always j € J. T, is contained in Iy, (p, 5) since L, >p. For0<:1<1/(2y)
we can thus choose 9 for §; by (2.11) with |8 <¢|&;]/2 =1;/2. For x € C" we set

QX = (xX) = Rex|> = Imx]>+2i( Rex, Imx). (215)
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|&| can be extended by (Q(E)) 12 asahol omorphic function on
W:={£eC"||Re|>|ImE|}

since Re Q(§) > 0 for & € W by (2.15). We will denote the extension of || by (£). For
(x,y) € R we want todefine

wj(0y) = )" [y Jui()exp (itx, §(E) + 28 jen) — ¥(C(E) + 20 en)) X
X 1/ (P(C(8) + 20je,)(C(§) + 20 en)) dCdz/ (4miz)
with {(&) = £+ it|Ele, and dl = (1 +itE, /|E|)dE.

When proving the existence and estimates for (2.16) we will consider also complex & in
theintegrand. Thisis needed in part b) of this proof. Let

Dj := {5 € C" [£-¢, < 3w;/2}.
Dj is contained in Wfor t <1/3 since
Re&| > (8| - 6 - &l 2§11 =31/2) > 31[g;|/2 2 1§ =1 > Im|

for £ € D;. Hence (§) and {(£) are defined and holomorphic onD;.
ForO0<t <t :=1/12and § € D; we have

10€) Q) =268 & 0~ E)ILB+Bn/2?)El* < vIE;*/2
and thus for 1 € [O(&;),0(8)] := conv (Q(E;),0())
> g7 =[0®) -0 >[g;F /4
Since Re (Q(%))> O for & € D; ¢ W, thisimpliesfor £ € D; and 0 < t <1;:

(&) = [1] < |Q(€) — Q&) |sup{||7"/?/2 M€ [QE), @)} <vi&il/2 (@17

and thus

(2.16)

16(8) =& —irlE)len| < 1E—&j1+1](E) = IE;1] < 2w(&;l. (218)
By (2.11) and (2.13) we thus have for € € D,
|PI(E(E) +2Bjea)| > bR, t5,1) > CL(tlg;)) " > Cir. (2.19)
(C(&) +20e,) € Wor £ € Dy, |z/ < 1and 0 < « < 1y since by (2.17)
Re ({(&) +zﬁ,-e,f)‘ = Re&+ Re (it(E))e,+Ujeq Re z]

> [E)l = 6~ &~ 1B ~1lE;| > (1-1(3/2+21) &
>1(3/2+21) 18] = (B +16;1/2) > Im (L&) +207en)

Thus ({(E) + 20;¢,) is defined and holomorphic on D;. Since Re Q(n) > 0 for n € W, we
dso have

Im <§<§) + zﬂjen> < Re ({(E) + z0jen)
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and since [€;| < 2/{|for § € D;, we get by (2.17) for { € D;

Re (C(E) + 20jeq) > 272 [(C(E) + 20e0) (2.20)
> 2712 (JE] - 1|(E) —11E;1/2) > [E1/4.

By (2.19) and (2.20) the denominator in (2.16) is bounded from below near suppy ; by (2.13).
u;isthus defined and infinitely differentiable on R*"!. Obviously,

uj € Co(R™H). (2.21)

For & € supp j; CC D; we have by (2.20) (since then || < 12[€|/11for < 1):

Re (i(x, C(E) + 29 en) _,V<C(E.»)+Zﬁjgﬂ>) (2.22)
< —xpt|€] = Im (2)x,0; — || /4 <(t(2|xa|/3 —x4)—y/4) [E|fory > 0. '

and since [(4(€) + 20je,) < [G(E)+ 2Bjen <208

Re (i(x, §(&) + z0jeq) = y(L(E)+20jen)) (2.22)
< (=xut /34 2ly|)[¢ for x, > 0and y€ IR.

We now set
W=y . (2.23)

j€d
By (2.19), (2.20), (2.22) and (2.22') this sum converges in C” (V) for
Vo :{ (x,y) € R™™" y > 8t|x,| or (x, > 0 andy > —xnt/8)}
and u e Cy(V) by (2.21).
b) There isA3> 1 such that # can be extended as a harmonic functionco
Vo= {(xy) eR"'xR [¥|> eAs, |x,| <&y > —et}.
Proof. Let|x,| < €and |y| < 9et.

uj(x,y) = (2m) " exp(—tjx, +i(x,&; +20e,)) X
X =1 Jig <yt exPUidtx EN)x (85 + 1iE) Fj (€ +1,€)dE dz/ (4miz)
where

Fi(8) = exp (xat (I8 = (€)) = y{C(E) + 20 jen))
x (14 it€a/(€)) / (P (E(E) + 20 jen) (G (E) + 20 en)).

By (2.17), (2.19) and (2.20) the denominator in F; . is bounded from below on D (|§| > 1 by
(2.13)). Thus Fj . is holomorphic on D;. By (2.17) F; . can be estimated for 0 < t <1;:

|Fj<(8)] < Caexp ((Jxalyt/2+2Iy)IES]) < Crexp(19er[E;l) for & € D;

since|(G(&) +20 jea)| < 2|&;| for & € D;. By Cauchy's estimate with (poly)radius yr;/(4n'/?)
we get for |8| < er; and real € with | —&;| <,

IDSF(5)] < CAI8Y Fexp (19er(E)) < Ca(Ase)Plexp(19efes).  (2.24)
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By partial integration, (2.14) and (2.24) we get for |B| <er;
[oBu;(x,y)| < Ca(Ase)PIIE ;| exp (21er]E ). (2.25)
Let || > Age > n'/2Ase?’e. We then set B|= [er;]in (2.25) and get

|uj (2, y)| < Cal&j|" exp(—er[Ej)-

The sum (2.23) definingu on V thus converges locally uniformly on{ (x,y) |x'|> Agg, |x, <
e and |y| < 9¢r } and it defines a harmonic function by (2.21). Sinceu € CA(V) by &) theclaim
of b) follows.

) The constant A3 from b) will be fixed from now on. We now prove the estimate corre-
sponding to i): let ® ¢ Waea, and i € C”(0) with w x {O} c reg ; (/). Let (¢xy) € Bk, o
and (Vi) € Bk, i, - Then for a= 0, 1
[ (VT u(,y) * hgyy ) Wiy ()3 /V!|
< CsZjes figor S AT ENCE) +20jen) 7" (hopy JIE(E) + 28jen) X
Pia(s = LE) —2050) AL(E) + 20 en)exp (= (G(E) +287en))dCdz/z| 1Y !
SCoZ i (©) (AlIyl)" /vie Sk
sup—1 (hPuyJ(E(E) +20jen)Wen(s  C(E)  0jen)|dL,

If t <1/(4LyAn'/?), then

Ty C Ty, (er)-
Indeed, if £ €T, then

€8] < A ke < ' max (M, 1/(4n'PL)) 84 < [Ea/(4L2)

and 1/2
&=l = fel =& < I&i1((1+1/(402)7) ) < 1 1/(4L0)?
and therefore

&~ [Eler| < [€11/(2L2) < IE]/(2L2)
and § € Ty /51, (e1). For e T, we thus get by (1.12)

Re (C(é) +Zﬁlen)€ Ty, (er)ifalsot < 1/(12Ly).

Since (Qry) € Bk, .o, ® C Waaye and K > 1 /¢, we see by (1.4) and Cauchy’s estimate that
(prvexp({Imm,, ) —3eAs| Imm,|) ) € Ak +1/e0 C Ak, o forme R*™ "x C with constants
C; which are uniform w.r.t. Imn, and k. Since mx {e;} c reg , (h), we thus get by (1.10)

for§ € Ty, and |s—&| > [s]/2
sup | (hpev J(G(8) + 20 jen) W (s = E(E) = 2;e,)

|z)=1

§C7<V(L0+2L1K1 J(1+]| Re (§ §)+zﬁle”)l)> x
X (szK!/(l + ]S_ Q(é) 'Zﬂ enl ) eXp (5£A3| Im (C,n(&;) +3‘6})D
§C7(4V(L()—I-L1K1)/|§|) (4szK|/( +s]) ) eXp(l()EAg['él)



42 Michael Langenbruch

if 1 <1, (use also (2.20)), since then

s = C(8) —20jen] 2 |5 — & = 21[8] = s = GI(1 = 61) > |s = §|/2 > || /4.

Similarly asabove we get

(o+B)
H ((Pk,vexp << Immn,, ) —3eAs| ImnnD) ' Hoo
< Cy (2K (k+v)*if Jof < (k+v) and |p| < d.
Since o x {e;} C reg , (h), we thus get for ¢ ¢ Iy, and |s = & <|sl/2 (and hence |E| > |s|/2)
again by (1.10)
supp—; | (AP J(G(E) + 29 jen) Wew (s = §(E) —2Dyes) /
1 oo V+i
< G (20v+ ) (Lo +L4K) /(1 +] Re (L&) +20se) )
X exp(5A38| Im (G, (&) +28;) D
< Co(Bev(Lo-+LiK1)/IE))" (16ek(Lo-+LiK1)/(1+1s1))" exp (108143 .

Here we have also used the trivial estimate
(j+ad)itd < (1 d) < et jra (”, > < (2ej) (2ed)? if j,d € Ny, (2.26)
o J
Summarizing we have proved that for s ¢ R and 4 = 0.1

(@ u(,5) » hguy) w3V /¥ <
< C]()(l6€2(L()+L1K1)|yi)v((16€+4Bz)k(L() +L1K1)/(l —+ |S|))k><
x [exp ((10etAs —y/4) |<:|)d§ (2.27)
<Cn27V(A(Lo+ LiK)k/(1+ |s]))
if y > 40etAs and y < 1/(32(’2(L()+L]K[))

II) The definition and properties of F are now prepared in d) and €). The choice of A will be
fixedin e).

d) We now set
Li={t> jo|t¢J, supp g CR'\ Ugyy, suppxe £ T, }

(compare the definition of / in @) anddefine v, for ¢ € L by a modification of the construction
of Hormander [12, section 7.3] as follows: let @ € C=( Po] *(m) x C") be chosen from [ 12,
Lemma7.3.12] such that ®(H,w) = 0 for |w|> I. With the path {{£) and (&) defined asabove
we set for (x,y)e R"land 4 € [

vi(ey) = 2m) 7" QP (PEE) +),w) exp (e, LE) +w) =y(CE) +w)) x5
x 1/ (2P, (L&) + w){C(E) + w)dCdw. oo
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® is constructed such that for some C; > 0 wehave for any & and w
|@(P (L&) +).w)|/|P(CE) +w)] < Cr. (229
It is clear (by (2.13)) that ({(&) +w) € W for £ € supp j, and that

Re ({(E) +w) > 27'/7[L(€) +w

2 [E]/4. (2:30)
Hence v, € Cy(R*") and
vi= Z vy.
ieL
converges in C” (V), (compare (2.20) (2.22) and (2.22')). Thus v € Co(V).

€) We will show now that 2 can be chosen so large that an estimate like (2.12) holds for v:
let (W) € Emz;,/(mg) W, (A31) for By from (15) and A; from b). For y > 16A3¢er we get
Waea, x {y} C V. For s ¢ R" and these y we get by (2.29), (2.30), (2.10") and the properties
of @ (see Hormander [ 12, 7.3.191) for g B if B is bounded in D(W 4, ):

(@7 ( ) % (D)) Wi Ts)y* /9!
<R, RO HEE)hnls - LE 2 G b
f;Cbih;fxdi)(ﬂébdﬂ)v/v!(16B|sz/(a43(1+¢Y~AC(€N7))kX @3
X (16B1Byv/ (eAs(1+ |s— g(g)y))) Adgel Tm (La(©)|-y1El/4 g

We now show that for & € supp y;,s € I (e;) and [x[. == (), x, /(A3 1’))’

s — & > M[E|o/8 if 1 < 1/ (A(4n'LoAsD) /). 232
If (2.32) were not true, then |s|.. < 2|E|.. if 1 <1/(A3AI). Moreover, if also & > 8
€80l <Al (880/(4aD) | < AsI(1E= sl + s~ Isler])
(M/S + 1)A3I[E|. < MAIE) J4<El /2

since s € T (¢ ). Hence |€; = |E|.. and therefore &; = ii)w since otherwise (2.32) would hold
(if t <8/1)since s; > 0. We thus get for t <1/(M(4n'/2L,A51)1/%)

| (&1 = Elwer, &, Endn 2 (M) La) | <[(E",80/(A3D)) | < M|Ew/4. 2.33)

This leads to the following contradiction: by the definition of L there is n € supp X,\]A“K,.
Thus

121¢|.. < 4tn'?n|.. for & € supp s

n=El=<n
ift < min (1/(2y),1/(4n'/?)), and

I(&l — €|, €, E.w4”1/2(7‘t)yl‘°)i

> i( m'm //711;14”1/2(” %LZ | |ﬂ &im—“n!w_lélml
zz(x~8n'/’)|ntm>xz|>j J2if A > 16n' 2 and if t < 1) (Mdn'2Lp)1/>).
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This contradicts (2.33) and proves (2.32). Hence we get for & € supp x¢ and s €T (e;)
s = CENT>|s =& >1s — &L > ME]/(8n'/2). (2:32)
We now show that for £ € supp xs and s €T (e;)
s = E[> M]sl/s. (230

To prove this we can assume by (2.32') that |£] < |s|/2. If (2.34) is not true we get the
contradiction

sl = Isler[< s = Isler[+|s = &+ [T
< ‘S - IS\E] +7\,Z|S|/(]6n1/2)_|_ !§|

< (r+2/ (16112 +1/2) ) |s| < |s| if 1 < min(1/2,1/4)
since 5 € Ty(e1). By (2.31), (2.32') and (2.34) we get fory = T := 64Aser

v (@ v(,y) *B(D)g)\l/k,v)ﬂs)y:/\’!i
< Cs [exp ((—4Azer|€])dE (ZSeBszk/(ekt(l + |s|))) Y, (2'%eBBon!/2/0)" (2.35)
<Gy (k/(T(l + |s|)))k for s €Ty(ey) and d = 0, 1if A =2"3eB Bon!/2.

[1I) We finally change « such that we obtain an elementary solution for p, ( DX) and define F,G
and Eing):

f) Since (§(€) + z8ex) is holomorphic in z for |z] < 1 and & € supp ¥, J € J, (see @), we
get for j€J by Cauchy’sintegral formula

PADJu(x,9) = (2m) ™" /2 [,(€) exp (ix 50D —3(C(EN) /(EENE,

Similarly, we get for / € i by the properties of @ (see Hormander [ 12, (7.3.19)])

Pi(Dy)ve(x,y) = (275)_"/2/9615(&) exp (i(x,5(8)) — ¥{C(€))) /(E(©))dL.

We now set (€)= X x;(&) and get for (x.y) € V; where

JEJUL
Vie={(6)) x>0 ys>o:

P(D)(u+v)(x,y) - (2ﬂ)_"/2/x(§) exp (i(x.(8)) —¥(C(8))) /(C(E€))aC.  (236)

Choose C; > 1 such that x(£) = 1 for |§] > Cy. Since ((E',E,)) is holomorphic in &, near
S:={&,| & e R""1,| Im&,| < 1[g],|&| > C\ } andsatisfies

Re ((€.6)) > |Re&l/4forE €S
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(compare (2.20)) we can shift the path £(&) in (2.36) by Cauchy’s integral theorem to R if
'] > Cs. Similarly, for |£'| < C; we can change the path §(&) for |&,| > C) such that it is
contained in R for |§, >+ 1. We can assume that Im1 <1 Rem on these new paths,
which we denote by 7. For 1) € sp(y) with Re 1) € supp y, we have

exp(—ym))/(2()) = /R ¢/ (2n0(n, 7)) d

with Q(n,1) = (n, n) + 2. For ¢ € D(V;) we thus get
(P (D) (u+v), " o S x(Ren)(x0)(=n,3) (7™ /(2(n))) dndy
= (2m)™ f@ fyfo( ch)(&w)( n,y)e™* /0, 1)dwdndy (237)

= (2n) " fo ,x(Re)§(—n,—1)/C(n, T)dndt

by Fubini’s theorem since (F,¢)(—1,y)/Q(M,1) € L; (R"*'\ W¢, +1) XR) (here F, denotes
the partial Fourier transform w.r.t. x). By means of (2.37) P, (D, ) (« + v) can be extended to a
distribution Hon R**! For € D R"“) we get by the Fourier inversion formula

(AH, ) = 2m)™"" [ J,x(Ren)§(-n,—1)dndt
= (2m)™" [, x(Re n)8x(9)(—n,0)dn = (8+hy ©3y,0)
with h€ H(C"). Thus H € C (R*x]0,°[) and H extends P, (D;)(u+v) alsofrom Vv to R"**.

Let H(x,y) = H(x,-y). Since AH = AHon R"*! by (2.38), we have H — H =: g € CA(R"*1).
Set

(2:39)

(s v xy) = ulx, ) + vl [y]) for (x,y) € Vai={ (x.y) [y] > 8t}
Then
P,(D.,()(u—[—vﬂx’y) = ﬁ()@y) = H(x.y) +g(x,y) fory < —8¢|xy|.

Let y be the characteristic function of R" X] — o, 0]. Then H + g\ is an extension of P, (D) (ut
vJ from V;, to "+ such that

A(H+gy) = §+ (h—20,8(,0)) ®8, = §—f®8,

by partial integration, since g isodd w.r.t. y and thus g|g» = 0. Since f € H(C") we can solve
the equation
P,(Dy)wy = f/2 with w; € H(C")

and then solve the Cauchy problem
Aw =0 on R""! w(x, 0) =0, dyw(x, 0) = wi (x).
g) We finally set for (x,y) € V5:

F(x,y) :=v(x.]y]), G x, [y) + wix, [y])
and E(x y). F(x,y) + G(x,).

Then E€Cy(V5). G also satisfiesb) and ¢) sincew € H(C"1). (D) E is extended to R"*!
by Hy := (H +gw+ P(Dy)w(,||)) and H; is an elementary solution for A since

AP (Dx)w(, | 1) = 20, P (D )w( ,0) @ 8y = 2P (Dx)wi @8y = f ® 8.

The theorem is proved. O
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3 Extension of the regularity set

In this section we will apply the regular fundamental solutions constructed in Theorem 2.3 to
extend the regularity set of C— zerosolutions of P(D). As an abbreviation we introduce the
following notation:

For f,g € D(R” x]a,b[) anda < y; < b let

(fOy) xg(Hy)( /(f —&.y1)0y8(&,2) — 0y f(x —&,31)g(E, 2))dE.

To apply the regular fundamental solutions constructed in section 2 we use the following
simple lemma

Lemma 31 LetE ¢ fA(Q x (R\ [=T/2,T/2])) be an elementury solution for P(D) and
let H be a distributional extension of P(D)E as in Definition 2.1. Let u € Ca (W X [T, T])
where W c R is open. Then we haveforx € 0 if @ +W c Q and |y|< T/2

u(x,y) = (E(,y+T)xP(D )(’W)( =TNE) = (EC,y=T)*P(D)(hu)(,T))(x)
+fW>< o — &,y = M)A(hu)(&,m)dEdn

if h € D(W) und h = 1near 0.

Proof. Let y be the characteristic function of R"x [-7, T] and let h € D(W). By Leibniz
rule we have

25® (8 r(y) — 57()‘))3),(hu)+

8_7(y) = 007 (y)) hu.

Choose ¢ € C; (2 x IR) such that ¢ = 1 near (W-W) x [—27,27]. We then get for 4,x and
y as above since H(E,m) = P(D)E(E,n) for n|>T7/2

A(yhu) = yA(hu) +
+1,® (8‘

u(x,y) = yhu(x.y)= A(QH) % yhu(x,y) = H*Ak,(hu)(‘c y)
= Jwxrr HG =8,y — n)A(u)(§,n)dSdn
HHGy+T)*hu(,=T))x) = (H(,y=T) xhu(, T))(x)
=(E(,y+T)*P(D)(hu)(, =T))(x) = (E(,y = T) » P(D)(hu)( , T))(x)
+J\4’x[ T7]H(x_é;’Y_W)AU’M)(@“)didn'

0
We also need amore precise version Of the fact that harmonic functions are rea] anaytic.
LetVs:= {(x,y) e R"*" |(x,y)| <8}

Lemma 3.2 There are Bs > | and C > | such thntfor ang 0 < § <& < 1 andanyu € Ca(Ve)
which is bounded on V;

\ay.azu(())\ < C(e=8)™""'16™Val(Bs/(e -8 ) sup{lu )| woe Vel
for any vand a.
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Proof. By the Poisson integral formula we have for (x,y) € V5 and 0 < 8 <8;<¢g;<e
uley) = (& |@2)) /(@nrier) oy, w@mIEN) = (oy)| 7" HdoEm). (3.0
For |(€,1)| = & and z € C with |z < §, we bave

NeEi+ M-z ¢] -0

i<n
Indeed, if this were not true, then 1= Re ; and
el = |EM)? = (&, Reg)* < 2* = &,

acontradiction. The integrand in (3.0) can be extended for x = 0 as a holomorphic function
of y to the complex ball with radiuseg;.

2 )
inff{ | T8+ (=22 [ 1G] =e1. [ 12:52}
= inf{ (8%-2nx+x2_y2)2+ (zxy-_Zn}) || < € K y? =8}
= inf{ f,(n) = 45107 — dnx(e] + 87) +4x"e] +(e; - &) lnisal,ws&}
> (&1 = 8)*.

To see this we notice that for fixed x the global infinumum of f; is attained at 19 = no(x) :=
(x/2) (e} +87)/83. If Ino| > &1 we have
inf{f:(n) M <er}=minf(£e) = min (g + 8] +2xe))’ > (e &)
since x| < 8. If {nol < €y, then
2 < 46351/ (63 + 52)°
and therefore
inf{£u(n) | In| < &1} = 4%} + (] - 8)" — (e + 8)7/8%

= (e~ 5%}‘ (1-22/8) > (] -8))"/ (e} +8) 2 (e1 - 81) "
This shows the above estimate. By Cauchy’s estimate with radiusd we get

|0Vu(0) < Clei—8) " 'v15™ sup{ |u(w)| w eV, } for any v.

This is applied to ¢¢x and the claim follows from the well-known fact that there is By > 1
such that for any Y > 0

IDBv(0) < Bo(By/)™ sup{ |[v(n)] M€ Vy}if v € Ca(Vy)
(take €1 = (8 +¢)/2 and y:= (e - §)/4)). 0
The basic result on extension of the uniform regularity set is contained in the following

theorem. For Q c R” let
Qp ={xeQ|x,>0}
and et N - ~
We(®) = (X € RY |E | <&, [& —nl < /A3 } and W := We(0)
with A5 from Theorem 2.3.
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Theorem 3.3 Let P, () # 0. There are Ay > | such that the following holds for any
0< e <1 /Agund L;> Ag:let Q ¢ R" be open and let o ¢ R sazisfy (o + We) c Q. If
U BCA(QX R\{O} ) Q4 x {er} C UReg (1) und @ x {e;} C UReg ; (P(Dy)u), then
Qx {e1} ¢ UReg;(u) where Q= QU (0+W, ) andL=A, ((Lo+Li/e), (Log+L1)).

Proof. We can assume that the conditions hold for 4¢ instead of €. When proving Theorem
3.3 wewill consider only y > 0 (the case when y < 0 istreated similarly).

I) There iSA> 1 and () > 1 such that for any 0 <y <1/(2L,) and any & € ® + Whe there are
Uy € D(We(§)) such that {uy, [keN, 0<y <1/(2L;)} is bounded in D(We(§)) 7“’<->‘|W9/16(é) =
u(,y) and

iy (5)] < C1(A(Lo + L fe)k/ (14 I5])"
for any s € Ty ja(rpe+1,))(€1) and any 0 <y < 1/(2Ly).
Proof. a)Let0<y<1/(2L;)and 0 <T < 1/(4L;). Further bounds on T will be given in
the proof below. We can assume that & = 0 and get for T<e/(243) and x € W,

u(x,y) = Zav (x,y+T)(=T)"/v! 3.1

where
sup Y sup |d5dyu(x,y+T)|T" /v! < o for any a € Nj. (3.2)
O<y<1/2 v erg

(3.2) is seen as follows: since u € BCA(Qx (R\ {0})) for any a € N" there is C > 1 by
Lemma 3.2 (used fora = 0) such that for d = 0,1

Zsupta Nt u(x,y+T) |——<Cy "2if0<y<1/2and0< T< £/(243).
xeWe

Since d7us = —Auy, thisimplies that for thesey and Tand 0 < j < n + 3

D) sup 090y ulx,y+ T) [TV jvI< Cy™" 2
v oxeWe

By Taylors formulawith Lagrange remainder term we get for these y and T
CV SUP, i ‘8"8V u(x,y+T)|TV/V!
< ev 2o<j<n+1 SUPeo aga)‘ ( ’%‘*‘ T) TV|y—3 j/(V!j!)
+3y supxegf;)_% i(y— % —t>”+28§f8}’,+”+2u<x,T+ % +t> TV/(vi(n+2)!)dt
<ec+Cl ((; +r—y)/(§+z))”+2/(n+2)!dz <Cle+1).

b) Choose (W) in the foIIowmg way: applying (1.5) to the variables x’ and x, separately

we can choose (W) € D(Wey4) such that yy = 1 on Weyg and (i) € D(We/16) such that
J Wi (x)dx = 1 and such that

WP+ 1P < Cu(16B1k /)M A% if o < k and [B] < d.
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Set Yy v := Y * yy,. Then
(W) € 1631/9 e 16 (A3) and Wiy = Lon Wets. 33

Set
Uy = Z‘Vk,v dyu(,y+T)(=T)"/vL.

Then g y(x) = u(x,y) forx € We/16 by (3.1) and (3.3), and {uz, k € N,0<y <1/(2L)} is
bounded in D(WSC/K,) by (3.2) since {Wiv k,v E N} is bounded in D(W5E/16) by (3.3).

With Be := 1288 we now choose (9ry) € By 4. /e i, (again by (1.5) and convolution as
above) such that

supp (@) C {x [¥'| <25€/16, [xs| < 9¢/(16A3)} = W
and @y (x) = 1if [¥| < 3¢/2 and |x,| < &/(243). (34)

The assumption (2.11) of Theorem 2.3 is satisfied for , =P and » =1 by Lemma 2.2. If
2L >pand 0 < «< 1 /A; we can apply Lemma 3.1 (withh = @y, © = W58/16 and Q = W)
to u(x,m) = u(x, T+ y +n) and an elementary solution E = Eg/4, , >, chosen by Theorem
2.3. Taking derivatives w.r.t. 1| and setting 1 = O thisimplies (since E is even w.r.t. y) for
seR”
iy ()] = | Ty S Wi (2)Vu(x,y+ T)e™ 9 d(~T)¥ /v'l
Sy (Vs QYEC T (P(D) (@x30)( 1) ~P(D) (@i} ,y+27))))Ts)
S

Xy { H Wiy ()Y H (x — &, =) A(@uyu) €,y + T +m)e ™ dndEdx| L7
nis

S (Wer(OF(T) % (PD) (@) 13) = PD)(@rvt)(,y+27))))T)
S (Wis @YG(, T)* @iy (P(D)u( ,3) = P(D): <,y+zT>)>)1> i

o (e (BYG(, Tk (PODYU( )~ P (Dul,y+2T))) J1s)| &y
SIOH(E =&, ~M)A(Quyit) (€, + T +m)e~thdn dedx| Ty

IA

TV
vt

+

v

v! (3_5)

I

+

+

2a¢0.v

|Vl

+

where T = 64et.

¢) The four termsin (3.5) are now estimated uniformly for 0 <y <1/(2L;), whereini) - iii)
only u(,y) is considered for shortness since u( ,y + 2T) can be treated in exactly the same
way.

i) {Qryodu(-,y) d= 0,1;k,ve N, 0<y <1} isboundedin D(Wy)since u € BCA(Q x
(IR\{0})). We thus we get by Theorem 2.3ii)

Yo (Wen(@QVF(, T) = (P(D)(@ryu( ,y))Ts) [TV /V!

< Ck/(T(1+]s]))) ifs € F,(el), 36)

and if 1 <1/(2A1L1A3) (set I = 1).
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i) Since Wae x {e1} ¢ UReg 5, (P(D)u) and (Wiy), (Gry) € By s, jeiin,» We get by Theorem
23 forse R"and 0 <y < 1/(2Ly)

o | (WendUG (L T) * @ryvP(DYul ) N1s) | T¥ vt < C(k/ (T (1 4 s1)))*

ift < 1/(2A1 (LQE+B6L]A3)).

iii) To estimate the third term in (3.5) we choose fi.v = fiv(Xx) such that (fi.v) € Baya, /e 0.
and such that fiv =1 near [¢/ (1643),1]. Then we have for a # 0

T (WewG(.T) * (i) P! ><D>u< >>ﬂ>iT‘/v'
<30 [ (Wi UG, T) v (fin@iny) P ﬂs )| (37
+ 30 [ (Wi (VG (. T) * (1 - fu)a“(mv)P“’( )( INY)|TY V!

By assumption and (1.11) we get W . X {e1} c UReg 5, (PY(D)u). Since (fivdiory) €

B?B(,m/e W _ (compare (1.4)), we get by Theorem 2.3i) for s€ R" and 0 < y <1/(2L,)

Yo (Wi (0YG( T) * (frvdi 0w )P (D)l y)) JTs) [TV /v!
<C(k/(T(1+]s ‘)))

if t <1/(2A,(Loe + 2BsL1A3)). To estimate the second term in (3.7) we use the harmonic
extension of G+ (see Theorem 2.3) and Lemma 3.2 and get for x € supp vy and & €
Supp (( 1= fkv) grad (Pk.v)

08N IG(x = ET)TY/W < Oy (1 1/(324344)) " (Aglal/T)"
if T< 8/(64A3) (with Ag 1= 64BsA3A,and d = 0,1).
S0 (Y G(. T * (1= frw)Oiex, V) (@ (D)u(.y)) satisfies these Cauchy estimates on

supp Y. v. Since the functionsin Bco satisfy estimates ink and v simultaneously, we can
use (1.8) (for (. ), uniformly in v) and thus get for any s € R" and 0 <'y <1/(2L,)

Yo [ (Wen VG, T) = ((1 = fi )Wy ) P (DYu( ,3)JTs)| TV V!
< Co(B3k(Ao/T + 16B1A3 /) /(1 + |s]))"

if T< e/(6443).

iv) Since
dist ({x—&|x€ supp iy, &€ supp grad gy}, {0} Ud(Wae X R)) > ¢/(84;3)
we get for these x and & by Lemma3.2if T <g/(3243)and d = 0, |

|0VOLH (x — €,m)|TY/V! < C3(Bs|al/T)“127".
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We now use (1.8) to estimate the last term in (3.5) as in the second part of iii) and get for
s€R"and 0 <y < 1/(2L))

v Jw, V(wt ‘f OVH (x = &, —)A(Qvtt) (E,y + T +M)e S dndEdx| L
ni<r

<2y [m\<T ( (fk v ()VH , =) * A(Qryu)(,y+ T‘H])))( )‘Z\T\:
<F4§up{|A (pkvu x,m) { ‘ne Y, y+2T‘,x€IR”}
X (B3(Bs/T + 16A3B [e)k/( (1+1]s])"
< Cs(B3(Bs/T +16A3By Je)k/ (1 +]s]))~.

We now set = 1/(2'2(A1 +Az)(Loe + BsL1A3)). Then T = 6der = 1/(64(A; +A2) (Lo +
A3BgLy /e)) and¢ and T satisfy the restrictions needed above. This provesclaim 1).

11) From 1) the theorem follows by means of a resolution of the identity chosen as fol-
lows: choose &; € 0+ VNV;S/Z and y; € D(We /(3245 (§;)) Such that Sy, = 1 on @+ Wse .
Choose (gx) € Azp a4 /e, such that | g, = 1 and set Wi = Xj * & Then (w )k €
A and

We (3245
32B|A3/€‘Ws/m(§/)

Yy = ZW"/ =1on (D+Wg

Choose uy . ; for We(£;) by I). For (¢x) € AC.Q,QNZ = Q. U (o+W,), wethenhave

u(,y) Q= 2ty (Wi j0) +u( L) (1 — i)

Since (Wi, jPx) € Aspg 4 e i W16 ) ) by (1.4) andsince uy.,.; satisfies 1), there is A > 1 such
that (by Remark 1.2)

| (s, (Wi, 00) T9)| < € (( L0+L1/£)+CA(L0£+L1))I</(1+]s|))k

ifse F]/(ZA(LOHL‘)) (e1). Since (1 —Wi)@x) € Azzp,a,/erco, and Qy X {e1} C UReg (1)

we can estimate also (u(,y)(1 = i) JTs) uniformly for 0 < y < 1/(2L;) by Definition
1.3 (obtaining better bounds). Since —d2u = A,u, also dyu satisfies the assumptions of the
theorem (use also (1.11)). By the proof above we thus have the same estimates for dyu.The
theorem is proved. O

Repeated application of Theorem 3.3 yields the following quantitative result on the ex-
tension of the regularity set incertain cones up to the edge (with polynomial bounds on the
index L measuring regularity). It isthe main result of this paper and it will also bea central
tool in the paper Langenbruch [ 18] on partial differential operators which are surjective on
real analytic functions. Let alwaysP,,(8) = 0.
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Theorem 3.44) Let Py,0(N)#0. There are B> 1and open cones K ¢ K ¢ {xeR* (x,N) >
0} such that Ky {x € R"|(x,N) < 0} = {0} and such that the following holds for the trun-
cated cones S; and ), defined by

S = PE Kt < (RN)< 2}, S 0= {x €Ky (x,N)< B}
and X, := {x€K1 1< (LN)< (h+1)/2}:

Jorany 0 <ty <ty <2t; <1 there is By > 1 such that for any L > B and 0 <t <t if
f e C°(82), Six {0} C reg LL (f) and Sy x {©} C reg 1.1, (P(Dy)f), then Z; x {©} C
regjr)z.) (F)  with 2(t) := Byt =8

b) If there are C>1and 0<c such that

(PuJ(x, ) SC(Puliy (%, 1) if7 €]0,1]and [x - | < ¢ 3.8)

then a) holds for any © with |® @)| < c/2 with the cones K; and the constant B and By,
independent of ©.

Proof. ) i) N and © are not collinear since P, o(N) #0 = P, (0) since £,,(0) = 0. We
can thus choose an invertible real i x n-matrix M such that ‘Me, = N and ‘Me; = ©. Now
consider K, := MK;, S; = MS, X = M2y, e1,60, Q:= Po'M and f =foM" l'instead
of K,,S,,ZT,G N P( yand f. Then f € C=(S,) and there is By > 1 such that S x{ej} C
regg, (roff Szx{el}CregB LofQD)f) and Ome, (en) = Puo(N) # 0. If the claim is
proved for f then it directly followsfor f. We can thus assumethat® =¢; and N = ¢, and
we will show that the claim holds for the truncated conessS; and £, defined by

= {x max (t1,|xl|/(232)) <Xy < [2}, S = {x ]x"/(ZBz) <Xy < lz}
and& = {x max(t,4|x'|/By) <x. < (+11)/2},

where B, := 2A with A := A A3 for A| from Theorem 3.3 and A3 from Theorem 2.3.

ii) We first show by induction how the regularity of a defining function u, for f extends
through a union (; of layers defined as follows:
Fix0<f) <thandd:=A3/2andset1_) =t :=tr— (b —11)/4,11 :=t1 + (, —11)/4 and

T=10(1-8/A), di := Aty and
Qk ;:{xER” 30§J Ski‘tj< Xy < Tj,1,|X,|< d]}fOI’kZO

We then have for large C > 1 (independent of 11, z,)and C;=C (1, ) > Lt

Ok x {e1} C UReg LC/CH (1) (uy) for any k > 1 with g == d14_;.

Proof. We want to apply Theorem 3.3 10 Q ; | := Qg_1, 1= Q1 U (0 +ng), k>1,
where

o= { () [ < di)
First notice that there isC > 1 such that

Q x {el} ¢ UReg ¢, ck-1(1¢,_ ) (P(Do)uy) fork = 1(80 :=1). (3.9)
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Indeed, if || < d;and 1; < x, <t;_; for some j > 0, then
X'|/By < dj/B2=71/2< x,
and therefore
Q-1 C Ly :={x e R" | |X|/By <, o1 /2< 1, < B} C .

Also, N
o +We, CLgfork>1

since we get for & € oy TV~ng
1&'1/By < (dx+&) /B2 = Tu—1/2 = Ty — & /A3 <&,

Since
dist (Lk, dS2) > §; := min ((lz —11)/2,Tk_1/6)

we get by Proposition 1.4
Q X {e;} C UReg Z(P(Dx)uf)

with L = BsL(1+1/8;,1) < CoC'L(1,8_;) for k > 1,C > 1/(1 — 8/A) and sufficiently
large Cp = Cy(ty,12).

Let k= 1. Since r, < 2r;, we get
dist (Q 4+,081) = dist (Q0,951) > (2 = 11)/4

and Proposition 1.4 implies that for sufficiently large C> 1

Qi1 x {e1 } C UReg ¢ 1) (uy).
Using also (3.9) we thushave by Theorem 3.3

(Qo+ (1 +We,/a,)) x {e1} C UReg 4, crig1/e, 1vey) ()

and thus if Co > A;(1+ 1/¢;) and Cy := C}

Q1 % {e1} C UReg 1, (1¢,)(uf)

since 1 — €| /(A1A3) = 1,. This proves the claim for k= 1.
If k> 1, then

Qe+ x {er}= Qr—r x {e1} C UReg ¢ k114, ) (tty)
by the induction hypothesis. Using also (3.9) we get by Theorem 3.3

(Qk—l e ((Dk + ng/"‘l)) X {el} - URegA]LC]Ck_1(]+£kA]/€k,€k+Sk,l) (llf)

and thus
Or x {e1} C UReg Lclck(l,ek)(”f)
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since Ty — &/(A1A3) = 1, (f C > 4A; > 1 + & /¢;). Claim ii) is proved.
if) S C Ot <T<T | k> 1. (3.10)
Indeed, let x € X.. If ;=19 < x, <T_| = 7 we have
|X'| < Bax,/4 < Al /2 < At = do
since 1, < 211, and thus x € Q. If k > j > 0 and T; <x, <Tj_1, we have
[¥'| < Box, /4 < Atj_1/2 < At; = d;

since (1 = §/A) > 1/2. This shows (3.10). Set /(1) := 8C; (1C, /v) (O] with ¢, .=
1/(1—-8/A) and C from ii). Let k > 1 and 7y < T < T4_;. Then

Y x{er} C Qe x{er} C UReg gy ck(iny (uf) C UReE pgyrpy (ur)
by (3.10) and ii). Hence
Lo x {er} Creg yyp (f)

by Proposition 1.4
This proves the theorem in case @) since 1 = ;.

b) Asinii) of the proof of Lemma 2.2 one proves that (3.8) implies that there exist 0 < § <
1, by> 1 such that for all0 <z < 6:

P(E,1|E]) < biPyy(E,1]E]) if & € T¢(8), ©-6| < c/4and |E| > C(1). (313)

-~

(Compare (2.5)). For @ € T',/4(©) N §" we can now make the normalization from i) with
matrices Mg such that’Mge, = N and’Mge; = © and such that

{ (Mo)™" Mo © €T,/4(6) ms"} is bounded. 312

For Qe = Po ‘Mg we get: there are b, > 1 and p > 1 such that for any @ € FC/4(@) nast,
any A > 1,0 <t < 1/(pA) and any & € T, (p, 1)

Qo (&,1[E]) < ba(Qe (e, (E1EDf [E] > C(1). (313
Indeed, for || < 1/p < 1 we have by (3.12)
ltM@E: - e‘tMIteéH < l@(mw - IIM@};D’ + IIM®(07E;//7§11)] (3.14)

<2[Me(0,5",8)| < 2B1[E|/p <elg|/2

if p>4B;/c. Hence Mg € T'./2(©). Also by (3.12) we get

Oo(&,1]E]) < BrP('Mok,1|'Mot))

and
Py (Mo, 1| ME|) < Ba(Qo), (&,1IE)) (3.15)
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(use aso (2.3)). (3.13) now easily followsfrom (3.1 1), (3.14) and (3.15). Since the constants
in (3.13) areuniformw.rt. © € I',/4(©) N S", also the constants A in Theorem 2.3 and hence
the constants 4 in Theorem 3.3 can be chosen uniformly for these ©. Since these constants
(and the uniform bound from (3.12)) are the only data for the proof of Theorem 3.4a) this
proof shows the claim in b). O

Though we will only use the setsreg ; ,)(f) in Langenbruch [18], we had to consider
the more complicated sets reg ; , (f) in this paper to obtain polynomial bounds on the
regularity in Theorem 3.4

4 Extenson of the complement of the wave front set

In thisfinal section the results of section 3 will be applied to get bounds for the wave front
set of hyperfunctions. These are direct consequences of Theorem 3.4. Let awaysN € §" and
8 cS"with P, (©)= 0.

Theorem 4.1 Let Q ¢ R" be open and xp € Q. Let y € C' (Q) wirth N := grad y(xp) # 0
und set Q, := {x €Q y(x)> y(xo) }. Let P, o(N) # 0. Then there is a neighbourhood
U of xy such that the following holds for uny [u] € B(Q): (U x {0} ) NWF4 ([u]) = O if
(Q x {©}) NWEA([u]) = O und if (Q x {0} ) W (P(D)[u]) = O.

Proof. By Kaneko [13, Corollary 1.121 we can choose an elliptic local operator J(D) and
f €C”(Q) such that [4) = J(D)f. Since D) is dliptic, we have

WFA(f) = WFs([u]) and WE, (P(D)f) = WF (P(D)[u]).

(by Kawai [13, Theorem 4.1.8] (since the support of the microfunction image of a hyper-
function [u] coincides with W Fy ([u])) and Hérmander [12, Theorem 9.3.3 and 9.3.4]). f thus
satisfies the assumptions of the theorem and we only have to prove the claim for f.

b) We can assume that xy = 0. The second assumption implies by Hérmander [12, Lenma
8.4.4] that there is L > 1 such that U, ;; x {©} C reg LL)( (D)f). With the cones K C K,
chosen for N by Theorem 3.4 we can choose t > 0 and 0 <1<t <2 < 1and define the
truncated cones S; as in Theorem 3.4 such that 1N + S;ccQuandN + S, C Uy Hence
aso (tN + §y)x {@} c reg (1.1 (f) for sufficiently large L by the first assumption and [12,
Lemma 8.4.4] again. By Theorem 3.4 we thus get (IN + Z:) x {O} C reg )0y (f) and
hence (tN +Z;) x {©} C WF,(f) for any 0 <t <1. Thisprovestheclaim since 0€ tN + £,
for0O<T<t. O

Theorem 4.1 essentially is a special case of a result of Sjostrand [24, Theorem 5.11. Holm-
gren type theorems for the analytic wave front set (usually for operators with variable coef-
ficients) have been obtained by many authors (see J.M. Bony [3, 4], JM. Bony, P. Schapira
[5], A. Grigis, P. Schapira, J. Sjostrand [6], N. Hanges [7], N. Hanges, J. Sjostrand [8],
L. Hormander [10], M. Kashiwara, T. Kawai [14], P. Laubin [20, 21], 0. Liess [22, 23],
J. Sjostrand [24], the reader is also referred to the literature cited in these papers).

We will now state global versions of Theorem 4.1.
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Corollary4.2 Let P, o(N) # 0. Let [u] € B(R") und (x,0) ¢ WFs (P(D)[u]) for any x € R".
If there is T € R such that (x,0) ¢ WF([u]) if (x,N)< 1, then (x,0) ¢ WF,([u]) for any
XE R".

Proof. Application of Theorem 4.1 to any x with (xo, N) = T shows that there is & > 0 such
that (X, ©) & WF4([u]) if (x,N) <1+ 3. This implies the claim. O

Corollary 4.2 can be generalized to a global version of Theorem 4.1 stated for convex
SEts:

Theorem 4.3 Let © € §" und ler £ c {; ¢ R" be open und convex. Assume thut every

hyperplane & + N- with P,, o(N) = O intersects Q; if it intersects Q. Then the following

holds for [u] € B(€):

(X, ©)¢ WF ([u]) for uny x€ Q) if (x, ©) ¢ WF, ([u]) for uny x €Q, und if (x, ©)¢

WFy (P(D)[u]) for uny x € Q.

Proof. This is proved exactly as the corresponding corollary of Holmgren's theorem (see

Hormander [9, Theorem 5.3.3], with reference to [9, Theorem 5.3.1] substituted by the refer-

ence to Theorem 4.1). c
The convex sets in Theorem 4.3 can be chosen as columns if the vectors N with P, g(N) =

0 are contained in a hyperplane. We are then in the extreme case where singularities travel

along lines:

Theorem 4.4 Fix © € §". Assume that there is N € §" such thut
(N,M) = 0if Pyo(M)= 0. “.1)

Let [u] € B(Q) and (x,0) € WFs([u)). Then I x {©} € WEy([u]) if I ¢ QN (x+NR) is a
line segment contuining x such thut (7 x {©}) N WF, (P(D)[u]) = O.

Proof. Assume that there is xq € / such that xy ¢ WFa( [u]). We can assume that xy =
X + aN for some a > 0. We can choose ) := Ug(xq) and € := [0,a]N + Ug(0) such that
(Qix {0})N WFy([u]) =0and (2, x {0} )N WF4(P(D)[u]) = 0. By (4.1) the assumptions
of Theorem 4.3 then hold for ()} and Q,, and therefore (x, ©) ¢ WF; ([u]) by that theorem, a
contradiction. O

(4.1) isclearly satisfied for P, if ® isaroot of first order: then P, (x) = ( grad P,,(©),x)
and (4.1) holds for N € span { Re grad P,,(©), Im grad P,(O)}. Thus Theorem 4.4 ex-
tends the corresponding result for operators of real principal type (Hormander [ 12, Theorem
8.6.13]), i.e. where any root of P, is of first order and P,, iSreal.

Theorem 4.4 also contains the following result of Liess[23, Theorem [.8] who proved the
conclusion of Theorem 4.4 under the following assumption (for ©® =¢, and N =¢;,4:= P, g
and P,(D) involving only deratives w.r.t. x,... x,,x,forsomen <nandn=(1,9)¢€
Cx C7-1y:
there is B > 1 such that for any 0 # n° = (1°,9°) € R” with P,, o(n’,0) = O there are ¢; > 0
such that

| Re 7| < (| Imm| + [09/0°| = Re 8/| Re ||| Re 9])
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if Pro(n’,0) =0,m°/n°| — Ren/| Rem|| < ¢z and | Imm| < ¢2| Rem|.

Since we can take m = n' in this condition, we get (Nn°) = 1’ = 0 if
Pno(n’,0)=0, n’¢c R". Since P, o only depends on the variables in R, (4.1) holds for
Pm,e'
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