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ON THE CAUCHY PROBLEM FOR NONLINEAR EVOLUTION EQUATIONS AND
REGULARITY OF SOLUTIONS!

MARKUS POPPENBERG

Abstract. In some previous works a generalized implicit function theorem of Nash—Moser
type has been applied to prove the local well posedness for the Cauchy problem for several
types of nonlinear evolution equations. For instance, applications of this new method have
been given to ordinary differential equations in Fréchet spaces, to nonlinear parabolic partial
differential equations and to some specific nonlinear Schrodinger type equations. All these
results take C'([a,b],E) as the basic function space where E is a general Fréchet space or
E = H”(R"), respectively. The purpose of this note is to show that a similar approach based
on Nash—Moser techniques works with the function space C*(|a,b|,E) as well providing the
existence of C”—solutions smoothly depending on the initial value. In particular, sufficient
conditions on E are given such that C=(|a,b|, E) satisfies a required smoothing property.

1 Introduction

In [26] the generalized implicit function theorem of Nash—Moser type [25] has been applied
to prove an existence and uniqueness result for ordinary differential equations in Fréchet
spaces. Subsequently, similar techniques have been used to prove the local well posedness
for the Cauchy problem for nonlinear evolution equations of different type, for instance for a
class of fully nonlinear parabolic problems in [27] and for certain nonlinear Schrédinger type
equations in [10]. All the above mentioned results are concerned with a nonlinear Cauchy
problem of the form

{ Uy = F(t,u),tel0,a
u(0) = ¢

and provide the existence of a local solution u € C'([0,a],E) for some small a > 0 under
suitable assumptions. The abstract framework for the Nash—-Moser technique is set up with
the basic function space C!([a,b],E) where E is a general Fréchet space in [26] and E =
H=(IR"), the intersection of all Sobolev spaces, in [27], [10].

The purpose of this note is to show that a similar approach works with the function space
C>(|a,b],E) as well. As a consequence, the solution map ¢ — u is shown to be C* as a map
E — C*(|0,a],E) in several cases improving results of [26], [27], [10]. A motivation for
taking e.g. C=([a,b],H*) rather than C'([a,b], H*) comes from the fact that in the theory
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of evolutionary partial differential equations time regularity and space regularity are always
coupled.

The results [26], [27], [10] are based on an application of the implicit function theorem
of Nash—Moser type [25] which generalizes classical implicit function theorems (cf. [3],
171, [13], [16], [17]). While these classical results require that the involved spaces admit
smoothing operators as introduced by Nash [17] (cf. [5], [13]), it is in [25] enough that the
spaces satisfy the much weaker smoothing property (Sg ), introduced in [21] and property
(DN) of D. Vogt [31].

In section 3 we are concerned with the proof of the smoothing property (Sg), for the
space C*(|—1, 1], E) equipped with some natural fundamental system of seminorms (which
does not coincide with the usual "tensor product grading’). We first show that with E also the
space C*([—1, 1], E) has property (Sq), if E is tamely nuclear. It is then proved that for any
Fréchet—Hilbert space E which is an (£2)-space in standard form both E and C=(|—1,1],E)
have property (Sq),.

[n section 5 a general existence and uniqueness result 1s proved for ordinary differential
equations in Fréchet spaces; the proot of the main result Theorem 15 is based on the method
of [26] replacing the space C!([a,b],E) by C=([a,b],E). Different from [26] we have to
estimate higher order time derivatives of the linearized problem; some technical tools on
linear equations are given in section 4. The corresponding theorem of Picard-Lindelof for
Banach spaces 1s well known (cf. [35]). A lot of negative results show that a straightforward
generalization to Fréchet spaces fails (cf. [2], [4], [6], [12]), and positive results in Fréchet
spaces can only be obtained under rather restrictive assumptions (ct. [3], [5], [6], [11], [12],
[26]).

Finally, two applications on nonlinear parabolic and Schrodinger type equations are given.
Theorems 17, 18 are obvious modifications of [27], [10] taking C*([a,b],H*) in place of
C'([a,b],H”). The additional part of the proof requires estimates for the higher order time
derivatives of the solutions of the linearized problem. Since this is quite similar to the proof
of Theorem 15 it will be omitted.

2 Preliminaries

In this preliminary section we state some notations and tormulate the implicit function theo-
rem which 1s proved in [25].

A Fréchet space E equipped with a fixed sequence | |o <| || < |2 <... of seminorms
defining the topology is called a graded Fréchet space (cf. [5]). Graded subspaces and graded
quotient spaces are equipped with the induced seminorms, the product £ X F is graded by
(e, )| = max{ x|, [vle},x € E,y € F. A linear map A : E — F between graded Fréchet
spaces 1s called tame (cf. [5]) if there exist a fixed integer b > 0 and constants ¢, > 0 s0
that |Ax|, < cp|x|,4p for all n and all x € E; if b = 0 then A is called normwisely tame. E is
called a tame direct summand of F if there exist tame lincarmaps 7 : E - Fand S: F — E
so that So T = idg; if in addition 7 o § = 1dr then we say that E = F tamely isomorphic,

and T is called a tame isomorphism. A short exact sequence 0 — F = G = E — 0 of
graded Fréchet spaces with tame linear maps is called tamely exact if the induced linear
isomorphisms i : F — iF and G : G/iF — E are tame isomorphisms.
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In [21] a smoothing property (S, ), is introduced for graded Fréchet spaces generalizing
the classical concept of smoothing operators ([5], [7], [13], [16], [17], [33]).

Definition 1 Let E be a graded Fréchet space.

(i) E has property (S), (smoothing operators) if there are b, p > 0 and ¢, > 0 so that for
any 0 > 1 there is a (not necessarily linear) map Sg : E — E so that

‘Sﬁxln < L'HB”_FF_H-’:‘R , b<k<n+p , x€L.
x—Sexl, < a®" P K|y , k>n+p , x€eFE.

(it) E has property (Qpyz) (cf. [19]) if there exist p > 0 and constants ¢, > 0 so that for
Uy={x€E x|, <1} andalln> pand all r > 0 we have

- = s _k_._
Un C ffn(m:‘l.:p FI pUﬂ—f) + (ﬂk:._ﬁ Cn4-k? I}Un—l—k) .

(iii) E has property (L2ps) (cf. [20]) if there exist constants ¢, > 0 so that

U, C cy{((rUp—)NU) + (1 1) Ups ) NU,)) , 0<r<1,n>1.

(iv) E has smoothing property (Sﬂ)l (¢f. [21]) if there exists a tamely exact sequence
0 — F — G — EXH — 0 of graded Fréchet spaces so that F has property
(Qpz) and G has property (S); where H is arbitrary.

(v) E has property (DN) (cf. [31]) if there exist b > 0 and for every n a constant ¢, > 0
and k so that |x|? < c,|x|p|x| sk for all x € E.

Remark 2 (i) The properties (S),, (Qpz) and (Sg ), are preserved by tame isomorhpisms,
(DN) by topological isomorphisms. If both E,F have property (Sg), (or (S),. (Qpz),
respectively) then E X F has this property as well.

(ii) Property (S), implies (Sq),, property (Sq), implies (Qpz).

(ii1) If the compact K C R" is the closure of its interior and is subanalytic in the sense of
Bierstone [1] then the space C(K) satisfies both properties (Sq ), and (DN) (c¢f. [21],
5.3., 5.4. for (Sq), and [1] for (DN)). If K has singularites like cusps then C™(K) does
not admit classical smoothing operators (cf. [34]).

(iv) Any graded Fréchet-Hilbert space which is an () space in standard form has property
(Sq), ([21], 4.7.). Here Fréchet—Hilbert means that the seminorms are defined by
semiscalar products, and (€2) in standard form (cf. [33]) means estimates of the form
|12 <enl X, |k for all n where the extended real valued dual norm is |0 :=

sup{[0(x)[ : x|, < 1} € [0,00],0 € E”.

The assumptions of the implicit function theorem [25], 4.3. are formulated in terms of
the expressions | ]n:,k forming part of a general symbolic calculus (ctf. [25]).
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Definition 3 ([25], 1.1.) Let p,q > 0 be integers and E\, ... E,, Fy,...,F,; be graded Fréchet
spaces, p+q 2> 1. Form,k > 0,x; € E;,y; € F; we put

[I] RERER. 24 PR :}’q]mﬁ — SUP{ - ‘xﬁ:l ‘m—i-:’l ‘e ‘xk,-lm—l—f,- Y1 'm—l—j] R |yc;\m+jq}
where the “sup’ is running over all iy,... iy, j1,...,jqg 2 0and 1 <kp,...;k, < p with 0 <
r<kandiy+...4+i,+ j1+...+ j, <k (for r =0 the |x|-terms are omitted). For g =0 we
write [xy,...,Xp|mx (Where the |y|—terms are omitted), and for p = 0 we write [;y1,...,Yg|mk-
For m = 0 we always put |...Jr = [.. .Jox.
In addition, for the vectors x = (xy,...,Xp),y = (¥1,.--,¥q) we shall use the abbreviation

Yk = [X1se - X0 Y15 oo Yglmk and [x;9]x = [x5¥]ox.

Observe that the expression [xi,...,Xp}¥1,.-.,Yq|mk 1S @ seminorm seperately in each y;—
component while it is ’completely nonlinear’ in the x j—components. The expressions | |«
are increasing in m and in k. For the purely nonlinear expressions we have [xi,... ,.I"p]mj() =5
and [x1,...,Xp|mx > 1 forall m, k.

The following theorem on implicit functions is proved in [25]. For the notion of differen-
tiability in Fréchet spaces we refer to [5] or [25].

Theorem 4 (on implicit functions [25], 4.3.). Let E,F,G be graded Fréchet spaces so that
E,F € (Sq), and E,F,G € (DN). Let U C E and V C F be open sets and xo € U,yy € V.
Let f:U XV — G be a C-mapping, f = f(x,y), and f(xg,y9) = 0. Assume that for any
w € U x V the partial derivative f,(w) : F — G is bijective so that for some fixed d > 0 and
suitable constants ¢,, > 0 for all n > 0 the following estimates hold:

(1) ffw)xln < enwixlyn . WwWe€UXV |, x€EXF.
(2) lﬁ'(w)_lz n £ Ch :W;Z]d,n , WE UXV , Z€ G.
3) |f"w){x,x}t, < ceulwix,xlyn , WweUxV | xeUxV.

Then there exist open neighbourhoods Uy C U of xo, Vo CV of yo and a C*-map h : Uy — V)
so that f(x,y) = 0 is uniguely solved by y = h(x) for all (x,y) € Uy x V.

3 The Smoothing Property for some Function Spaces

For a graded Fréchet space E let E, denote the Banach space obtained by completion of
(E/ker| |i,| |x). We call E tamely nuclear (cf. [18], 3.2.) if there is a fixed b > 0 so
that the canonical maps Ey4p — Ej are nuclear for all k; this definition coincides with other
tame variants (cf. [18], 3.2.) of nuclearity. The spaces C”(K) in Remark (iii) are tamely
nuclear by means of Whitney’s extension theorem (cf. [21], 5., [22], 4.2., 4.12.) since tame
nuclearity is inherited by graded quotient spaces. Any nuclear (DN)-space in standard form
(i.e. | |7 <ckl |k=1] |x+1 for all k) and any nuclear space admitting smoothing operators is
tamely nuclear (cf. [18], 3.3.). We call E locally /; if E; = [;(J;) for all k and suitable sets Jj.
For 0 <oy <op <... 7" 40 we consider the E—valued power series space

AZ(){E} = {x=(x;)72) CE:|x|x = sup sup |xj|x—;e'™ < 4o for all k}.
' i=0,....k jEN
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Observe that this grading is not the "usual tensor product grading’ (indicated by the curved
brackets). If £ = R or E = C then we write AZ(a), and for € > 0 we put s = AZ(elog j) and
s = s1. The space s{E} is defined in the same way. Likewise the space C*{{—1,1],E } of all
E-valued C=—functions in [—1, 1] is equipped with

fle = sup  sup |-, £ECT{[~1,1],E}.

i=0,....k —1<x<]

Analogously we can consider the graded Fréchet space C5, {R,E} of all 2n—periodic C”—
functions f : R — E equipped with the grading of C*{[—m,n],E}.

For tamely nuclear spaces properties ({2pz) and (Sq), are equivalent by means of the
following theorem which 1s proved in [19], 7.1. We say that a linear map g : G — E between
graded Fréchet spaces has property (), (cf. [19], 5.1.) if there are a fixed b > 0 and constants
Cy > 0 sothat for Uy = {x € G : x|y <1} we have

(* )t ﬂ?{:{} rEQ'(Uk—E) C Ckﬁ?(ﬂf;h ri_bUk—j) , k>b,0<r<1.
Theorem 5 ([19], 7.1.) For a graded Fréchet space E the following are equivalent:

(1) E is tamely nuclear and has property (Qpz).

(i1) E is tamely isomorphic to a graded quotient space of some nuclear AZ(Q).

(111) There exist € > 0 and a tamely exact sequence 0 — sg — S¢ 4 E - 0 so that g has
property (* ),.

(iv) E is tamely nuclear and has property (Sg),.

The proof of Theorem 5 given in [19], 7.1. relies on the existence of tamely exact se-
quences of the form 0 — s; — se — (s¢)™ — 0 satisfying the lifting property (), (cf. [19],
6.11.); for a different construction of such sequences we refer to [29], 4.1.

Lemma6 Let 0 = F 5 G35 E — 0 be tamely exact where q has property ( x ),. Then
D(x;); = (dx;); and Q(x;); = (gx;); give rise to a tamely exact sequence

0 — s{F} B s{G} % S{E} > 0.

Proof. We only have to show the tame surjectivity of Q. We consider D, Q also as maps
D:FN 5 GYand Q:GN = EN. Let Uy = {x € G : |x|x < 1} and choose b so that condition
(%), above holds for g. We choose a,p > 0 and constants 1 < Dy < Dy so that inf{|C|; :
g =1z} < %Dk|z|k+ﬂ and |dx|x < Dg|x|iqp, x|k < Di|dx|g+p forall x € F,z € E and all k.
Now let n > 0 and z = (z;); € s{E} such that |z],+4+» < 1. For 0 <i <n+ b we choose
xji € Gwithgxj; = z;and |x; i|n4p—i < Dusb|2jlntarb—i < D,.pj " hence (%), implies that
Zj € Dy ﬁ?i{j? j_f‘ij"(UffWh—f) C CH+bDn+hQ(ﬂ:‘;U j_EUﬂ—f)* .
Wefixz€s{E},k>2p+2,e>0. Forevery nthereis x" = (x7) € G" so that Ox" = z and
X", < CogpDptp| 2l nsasp. For fixed n the finite vectors are dense in {x = (x;); € FN: x|, :=

sup ¥ |xj|n—ij' < +eo} with respect to || ||,, in particular s{F} is dense. Thus for any
0<i<n j
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n > p+2 we can choose h" € s{F} so that ||D~ ! (x*! —x") = h*||,— p—» <27"D; 'e. Here we
consider D! as a map D(F") — F" and observe that X"*' —x" € D(F") and ||D~!(x**! —
X"Mn-p—2 < 2D, |x" ! — x|, < +oo. Putting H” = Dh" we get |x"! — x" —H"|p2p-2 <27
forn >2p+2. Forx=x*+ ¥ (X" —x" — H") we have x € s{G} and Qx = z. The result

n>k
follows since |x|x—2p—2 < CrspDi+b|zlkta+s + €. O

Remark 7 (i) Let 0 <oy <op <... MN4ooand 0 < ﬁ} < Bz < ... '+ be two se-
quences. Then there is a sequence Q0 <y} <y < ... 7 +4oo 50 that

AL(0){AZ(B)} = AZ(y) normwisely tamely isomorphic

since for x = (x")n € AZ(){AZ(B) },x" = (x7); € AS(B) we have

x|y = sup supleflef“”e{k_fjﬁfzsup|x’}\max{ec‘”?eﬁf}k
0<i<k n,j nj

and an increasing rearrangement of (max{e*, e }n.j gives the assertion.

(ii) For every graded Fréchet space E we have C5, {R,E } = s{E} tamely isomorphic. This
follows by Fourier expansion (cf. [22], 3.1.).

(iii) For a graded Fréchet space E the space C*{|—1,1],E} is a tame direct summand of
CHAR,E}. For this it is enough to show the existence of a (normwisely) tame linear
extension operator C*{[—1,1],E} — C”{[—4,4],E} because then cutting off yields
the result. This extension operator can be obtained by applying Seeley’s construction

[30] (for the estimates see [22], 4.6.).
(iv) If E has property (DN) then C*{|—1,1|,E} has (DN) as well (cf. [22], 4.1].).

Theorem 8 Let the tamely nuclear graded Fréchet space E have property (£2pz). Then the
spaces E and C7{[~1, 1], E} have the smoothing property (S, );-

Proof. By Theorem 5 there 1s a tamely exact sequence 0 — s¢ — s¢ % E — 0 where q has
property ( * ),. Therefore Theorem 6 gives a tamely exact sequence 0 — s{s¢} — s{s¢} —
s{E} — 0. Remark (i) shows that s{s:} has properties (S), and (Qpz); thus s{E} enjoys
smoothing property (Sg),. By definition, condition (Sg,), is inherited by tame direct sum-
mands; hence C*{|—1,1],E} satisfies this property as a tame direct summand of s{E} by
means of Remarks (i1), (i11).

Lemma9 Ler E be a graded Fréchet—Hilbert space which is an (£2)-space in standard form.
Then there exist a Hilbert space H and a tamely exact sequence

0 — s{H} = s{H} 5 Exs{H} — 0

where g has property (x),.



On the cauchy problem for nonlinear evolution equations and regularity of solutions 19

Proof. The existence of a tamely exact sequence of this form 1s proved in [21], 4.7. It remains
to show property ( * ), for the map ¢ constructed there. There exist a Hilbert space H and a
tamely exact sequence 0 — £ — HN 5 HN 50 (cf. [21],4.6.). For H there is a tamely exact
sequence 0 — s{H } — s{H} 2 HN = 0 where p has property ( * ), this is proved in the case
H =K in [19], 6.11.; the same proof gives the result for a Hilbert space H. A well known

construction of D. Vogt [32], 3.3. gives a commutative diagram with tamely exact columns
and rows.

0 0
T T
O — E — HY — HY — 0
TP Tp
O — £ — G — s{H} — O
T T
s{H} s{H}
T T
0 0

It is easy to see that the map P in the first column inherits property ( * ), from the map p in
the second column (it 1s not necessary that the surjective map in the first row has property
(*),). The second row splits tamely by means of the tame splitting theorem [28], 6.1. The
same procedure applied with the first row 0 — s{H} = E x s{H} — H" — 0 and the same
second column as above gives the desired tamely exact sequence (cf. [21], 4.4.) where the

map ¢ appearing in the first column inherits property ( % ), from the map p occuring in the
second column. U

Theorem 10 Let the graded Fréchet—Hilbert space E have () in standard form. Then the
spaces E and C{[—1,1],E} have the smoothing property (Sg),.

Proof. This holds for £ by Lemma 9. As in the proof of Theorem 8 it remains to show that
s{E} has (S ),. Lemmas 6 and 9 give a tamely exact sequence

0 — s{s{H}} — s{s{H}} — s{E} xs{s{H}}.

This shows the assertion in view of the previous remark (1).

Examples 1 The following spaces satisfy the assumptions of Theorem 10.

(i) E=H"(R") = ﬂ:f’:UHk(]R”) with its canonical norms (cf. [14], 14.12.). We notice that
H*”(IR") is by no means nuclear.

(ii) E = H*(Q) = N7_oH*(Q) for a bounded open Q C R" with C*~boundary.

(iii) Let m be a positive integer. With E then (E, || ||.) satisfies the assumptions of Theorem
10 and thus C™{|—1,1],(E,| |m)} has property (Sg),. In particular, this applies to
E = H>(R"). Hence C*{[—1,1],H”(R")} has (Sg), for the grading (which naturally
appears in the theory of evolution equations where m denotes the highest order of the
space derivatives involved)

uly = % sup ”Hm (I)HH"!H—JJ(RH}; we C{[—=1,1,H"(R")}.

0<i<k —1<t<1
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Theorem 11 Let the graded Fréchet space E be locally [y and have property (2ps). Then
both the spaces E and C{|—1,1|,E } have the smoothing property (Sg, ),-

Proof. By [26], 2.4. (cf. Theorem 10) there exist a Banach space B and a tamely exact
sequence 0 — s{B} — s{B} 4 E x s{B} — 0 where ¢ has property ( x ),.

For instance, the convolution algebra (A'(a),*) (cf. [26], 5.4.) satisfies the assumptions
of Theorem 11 if the Kothe space X! (a) has () in standard form.

4 Linear Equations

In this section some results on linear ordinary differential equations in Fréchet spaces are
stated which are important for the application of the Nash-Moser implicit function theorem
in the next section. For a graded Fréchet space E the space

LNT(E) = {A:E — E linear : |A], := sup |Ax|, < +oo for all n}

x[n <l

of all normwisely tame endomorphisms of £ 1s a graded Fréchet space for the grading

|A|lx = sup |A|,. The following generalization of the theorem of Picard-Lindeldf for linear
0<n<k
equations 1n Banach spaces (cf. [35], 3.3.) 1s proved 1n [26], 3.4.

Lemma 12 Ler E be a graded Fréchet space, I C R an open interval, to € I, let A : [ —
ILNT(E),b: 1 — E be continuous. Then the linear initial value problem

(IVP) (1) = A(t)y(t) + b(t) , ¥(to) = Yo
has for any yo € E a unique solution y € C' (I, E).
The following Lemma generalizing Gronwall’s Lemma 1s proved 1n [26], 3.6., 3.7.

Lemma 13 Let E be a graded Fréchet space. Let A . J — LNT(E) and b : J — E be contin-
uous where J = |0,d|,d > 0 and t) = 0. Assume that

k
A(t)x|y < Dy Y, Br—ilxli , |[b(t)|x < by forallt € J,x€e E,k=0,1,...
=0
where 0 < by < by41,0 < Dy < Dy and BiB; < D; ;Biyj for all i,j and D; j > 0. Then
for vo € E the unique solution y € C'(J,E) of (IVP) satisfies for all k with constants C =
C(k:d:B[],Dh (DfJ)]g,‘_,_jEk) the .'.'Hﬁ*quﬂﬁffﬁﬁ

k
POl < Coe 2 (1+ Bii) (bi + [yoli):
i=l(
Lemma 14 Let I C R be an interval, b € C*(1,E) and A € C*(I,LNT(E)). Lety € C'(I,E)
satisfy v (t) = A(t)y(t) + b(¢t) fort € 1. Then it follows that y € C=(1,E), and for any k > 1
there are constants c;, ;. and ¢;, . j..j SO that

YR (1) = b= (1) + 5 ci...i, A (t)o...0 Al (£)y(r)

1 <r<k,iy..iy>0
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+ > Ciy oAU (1) 0.0 AU (1)BU) (7).
0<iy +...4ir+j<k—2 o
[ <r<k—1,p.sir 20,520

Proof. For A,B€ C'(I,LNT(E)) and y € C'(I,E),z(t) = A(t)y(t) we have
Z() =A()y(t) +A0Y 1) , (A()B() =A(1)B(1) +A(1)B'(1).

Applying these rules the assertion follows by induction on k. [

S Nonlinear Equations

If £,F are graded Fréchet spaces and U C E 1s an open set then a continuous nonlinear
map f: (U C E) = F is called a C*—map if all directional derivatives ") : U x E" — F,
(yey,...,e,) — f(”}(u){e],...:,en} (cf. [5], I. 3.) exist and are continuous; in this case
f(”)(u){el,...:,en} is completely symmetric and linear seperately in ej,...,e, (cf. [5], L
3.6.2.).

Let E, P be graded Fréchet spaces, let U C RxX E X Pbe anopen set,and let f : U — £
aa:;- irj E}i*’f as a map
0N f: U xR x E/ x P* — E (or as a map U x E/ x P* — E), of. [5], L. 3.4. Using
multiindices we can write 9% f = 9, 9y20,° f for ot = (01,0,03) € N3; note that %P f =
oP9% f for any o, B (cf. [5], 1. 3.5.3.).

We now formulate and prove the main result of this paper. Several arguments are quite
similar to the proof in [26]. The additional part of the proof are the estimates for the
higher order time derivatives for the solutions of the linearized problem. To preserve self-
containedness we here give the full proof.

be a C”-map, f = f(t,x, p). We then can consider the partial derivative

Theorem 15 Let E, P be graded Fréchet spaces satisfying (DN) and (Sq, ), such that C*{|—1,
l],E} has (Sq),. Let U C RX E X P be open and (tg,xo,po) € U. Let f : U — E be a C”—map,
f = f(t,x,p). We consider the initial value problem

(P) { x’(f) — .f(f;X(f):,;J) 1 t € [f(}—ﬂ,f(]—l—a]

x(to) =y

fora >0,y € E,p € P. We assume that for any n > 0 and o = (0,1,0,03) € N{E’] there is a
constant ¢, o, > 0 so that for all u € U and 7 € R*™ x E®2 x P™ we have

(*) |a&f(u)(z)‘ﬂ < ﬂ'u,[x[“;Z]n -

(1) Then there exist a > 0 and open neighbourhoods U(xy) of xo and U (pg) of po such that

problem (P) has for any (y,p) € U(xo) X U(po) a unique solution x € C=([ty — a, 1) +
al, E).

(i1) The solution map (y,p) — Y(y, p) is C* considered as a map

b U(X[}) X U(p[}) — Cm([f{] — a. Iy +H],E).
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(1) If x1,x2 are C!—solutions of (P) fort in an interval J then x; = x> in J.

(iv) The solution map (t,y,p) — x(t;y,p) is C” on (ty —a,to+a) X U(xg) x U(pg). There is
a maximal open neighbourhood U of (ty,xo, po) in U where the solution map (t,y, p) —
x(t;y, p) exists and is C*.

Remark 16 Foru = (t,x,p) andz=(t|,... ,to,, X1, ., Xay: P1,-- - Poy) the term [u;2), in ()
is defined by [u;2), = [t, X, P3t1, .ty 3 X1y e o3 Xons Pls -« s Po In-

Proof. We write J = [—1,1] and consider the transformation in the time variable t = 1y +
as,z(s) = x(to +as) — y,s € J. Now problem (P) is equivalent to

(P1) { if((j)) i gf (fo+as,z(s)+y,p) , s€J

The map @ : (W C C*{J,E} x RX E x P)) — C*{J,E} x E defined by
O(z,a,y,p) = (Z(s)—af(to+as,z(s)+y,p),z(0) , s€J
1s a C”—map defined in the open subset W C C”{J,E} X R x E x P where
W = {(z,a,y,p) : (to+as,z(s) +y,p) € U forall s € J}.

We observe that (0,0, xq, po) € W,®(0,0,x9, po) = (0,0). Further (P1) is equivalent to ®(z, a,
y, p) = (0,0). The partial derivative ®, is given by

®.(z,a,y,p)(w) = (W(s) —afi(to + as,z(s) +y,p)w(s),w(0)) , s € J

for (z,a,y,p) € W,w € C*{J,E}. In order to apply Theorem 4 we have to solve the equation
D,(z,a,y,p)(w) = (u,ug) foru € C*{J,E},uy € E. We hence consider

w - {

where A(s) := afc(to +as,z(s) +y, p). Problem (LP) admits a unique solution w € C*{J,E}
sinceA € C*(J,LNT (E)) in view of (x). Hence ®,(z,a,y, p) is bijective as a map C*{J,E} —
C~{J,E} X E for all (z,a,y,p) € W. Next we verify the estimates (1), (2), (3) in Theorem
4. Shrinking U if necessary we may assume that |(z,a,y, p)|o < C for some C > 0 and all
(z,a,y,p) € W. We have

A(s)w(s)+u(s) , s€J
Uo

€"'\q
—
L
S
1

O (u){w,b,x,q} = P (u)w+ Py ()b + Oy (u)x + P, (u)gq
forallu e Wandw e C{J,E},b € R,x € E,q € P. Here ®,(u)w is as above and

DP,(z,a,y,p)b = (=bf(to+as,z(s)+y,p) —absfi(to +as,z(s) +y, p),0).
q)}'(za a,y, p).f (“Hfl(fﬂ +as, Z(*T) + ), p)I, O) :
D®,(z,a,y,p)qg = (—afp(to+as,z(s)+y,p)q,0).



On the cauchy problem for nonlinear evolution equations and regularity of solutions 23

For any n > 0 there are constants ¢, = ¢;.j, . so that

...;J.'_]

Al }( )x_La,k.fs”Lla"a"’f(m + as,z(s) + . P){Z{”}( 5), - - (- ]}( )X}

the sum taken over 1 < i+ j<n+1,i>20,j>1withl <ij+...+i;—; <n,i; > 1 where
x € E,s € J; this can be seen by induction on n. We have

k< Wleer +[A()w(s) ]k -

Inserting the above formula and writing sup for the supremum running over the set

I{bz(zﬁa!y? p)n’f

Sn< i<k < 12 :I._ 2 _. et = N
{0<n<I<k,i+j<n+1,i>0,j>1,1<ii+...+ij1 <ni > 1,5s€J}

we get for i := (z,a,y, p) with constants ¢, > 0 (which may vary from line to line)

Als)w(s)le
< cysup|0joLf (1o + as,z(s) +y, p) {2 (s), .., 251 (s), W= (5) i
< cpsuplto +as,z(s) +y, p; 7\ J( )ﬁ..-f‘:i-f—'}(s),w("“*” ()]~
<cpsup  sup (g |2 () g e |2 (8) sy W () |
mo+...+m;<k—I
< cpsup sup [”Ln” ‘Z|f| +my e 1E|i_;_]—|—mj_| |W|mj+f-n

mu—l—..--Fme‘E:k—f
ii Ck [(Z?HJ}}T p), “J]k'

We proved that |, (u)w|p < |w|pe1 +er|u;w]e < cplusw] g forallu e W andw € C7{J,E}.
Analogous calculations show that |D,(u)b|r < cx|u; by and |Dy(u)x|x < cx|u;x]x and | D, (u)glx
< crlu; gl This gives | D' (u)v|r < cplusv]ix foru e W,y € C*{J,E} x Rx E x P proving in-
equality (1) in Theorem 4.

To show inequality (3) in Theorem 4 we have to estimate |®"(u){v,v}|x for u,v € W.
The second derivative @”(u){v, v} is given as a finite sum involving terms ®,,, O, Oy, , D, ,
O, Dy, Dy, Py, Dy, Py, We here consider the term @, the other second order partial
derivatives are estimated analogously. We have

Q. (z,a,y, p){w,w} = (—afulto+as,z(s) +y, p){w(s),w(s)},0) ,

For derivatives B" (s) of the bilinear mapping B(s) = a fi(to +as,z(s) +y, p) we get the same
formula as for A" (s) with the modifications j > 2,2 < i+ j<n+2,1<ij+...+ li2<n
and replacing "x’ by ’(x,x)’. Applying the formula

(L) (B(s){w(s),w(s)}) = T cijuB" (){wl(s),w)(s)}

I+ j+n=I|

the same arguments as above give the estimates D, (u){w, w}|r < cx[u;w,w]; foru e Wow €
C~{J,E}. Analogous estimates for the other second partial derivatives yield [®" (u){v,v}|x <
cylu; vy vl for u,v € W proving inequality (3). It remains to show inequality (2). For that we
fix u € C{J,E} and ug € E and assume that w € C~{J,E} is a solution of (LP). We have to
estimate |w|; in terms of u, ug and (z,a,y, p) where |(z,a,y, p)lo < C. We have already proved
that

SUPIA(.F)Xik < H,Q[(Z,ﬂ.?y, PJ;“’T]R < ¢k sup [Z?H’TJ’J: P]k—ilxh , XEE.

seJ 0<i<k
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We apply Lemma 13 with B; = [z,q,y, p]; observing that |u;[{¢]; < [u]i+; and get

k
sup [w(s)|x < crsuplz,a,y, ple—i(sup|u(s)|i + |uoli) < ckl(z,a,y,p); (u,up) k-
sed i=() scJ

In order to estimate the derivatives w*)(s) we first observe that the above estimates for
[A(s)w(s)|x also show that |AY(s)x|; < ciyi[(z,a,y,p);x)itj,i,j > 0,x € E. This implies
[(z,a,y,p); AW (5)x]; < ¢irjl(z,a,y, p):x]is ;. Lemma 14 and the above estimate for |w(s)|y
imply for 1 <i <k and s € J the inequalities

Wl () |k—i < \H“_I}F(F)lm+t'k[(2:ﬂ:.yjp);w(5)]k

+ci Z{]{(Zaﬂj}%ﬁ);ﬂm ())k-j < ckl(z,a.y, p); (u,ug)]x-
J:

This shows [w|y = sup sup|w'D (s)|i—i < cxl(z,a,y, p); (u,up))x and thus (2).
0<i<k s€J

We apply Theorem 4 to @ and obtain open neighbourhoods Uy C U of (0,xg, pg) in R X
E x Pand Vy of 0 in C*{J,E} and a C”-map ¥, : Uy — Vp so that equation ®(z,a,y,p) =
(0,0) is uniquely solved by z =¥ (a,y, p) forall (a,y, p) € Uy and z € V. We hence can find
& > 0 and open neighbourhoods U (xg) of xg and U (pg) of pg such that ¥y : (—9,8) x U(xp) X
U(po) = Vpis a C”—map and z = ¥ (a,y, p) is a solution of (P1) which is unique Vj. Using
the above transformation z(s) = x(ty + as) — y we thus can choose a fixed small number a > 0
and a C*-map ¥ : U(xg) x U(po) — C{[to — a,to + a],E} so that x = ¥(y, p) is a solution
of (P). This proves (i1) and the existence part of (1). Now the proof of uniqueness 1s standard
and will be omitted (cf. [26]). A straightforward continuation argument gives (iv), and the
theorem 1s proved.

A lot of examples of spaces E, P and mappings f satisfying the assumptions of Theorem
[5 are given in [26], for instance, applications are given there to the spaces C”(K),S(R"),
B(R"),A (a), Dy, (R") and the general class of subbinomic Fréchet algebras (cf. [26]), show-
ing that the hypotheses of Theorem 15 are natural. Instead of repeating these examples we
prefer giving here some applications of the above Nash—Moser technique to the proof of well
posedness results for nonlinear evolutionary partial difterential equations. Due to the lim-
ited space we here only mention two particular examples without carrying out the details.
The first example in the parabolic case can be obtained with the arguments used in [27]; the
second example on nonlinear Schrodinger type equations follows from the results in [10].

Theorem 17 (c¢f. [27]). Let F be a nonlinear partial differential operator of even order
m given by F(u)(x) = F({0%u(x) }\q<m) for some real C*-map F with F(0) = 0. Let ¢ €
H*(R") and assume that F'(0) is elliptic, i.e.,

(h_ 1)111/2 z Fa“u({aﬂq)(x) }]ﬁ}ﬂnr)‘:m > ,LIIE_,]”?

|ol|=m
for all x,& € R" and some u > 0. Then the initial value problem

{ u, = F(u), t € [0,d
0) = o
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has a unique solution u € C{[0,al, H*(R")} for some a > 0. The solution map (U C H*(R"))
— C={[0,a|,H”(R")} is C™ in some neighbourhhood U of ¢.

In [27] the more general case of nonlinear smooth differential operators of the tform
F(t,u)(x) = F(t,x,{0%u(x) }|oy<m) i treated under some mild technical assumptions on the
map £, obviously, this case could be considered here as well. Theorem 17 improves the
statement on the smooth dependence of the solutions from the initial value proved in [27],
6.10. The proof of Theorem 17 is based on the arguments used in [27]. In addition, the proof
requires estimates for the higher order time derivatives for the solutions of the linearized
problem; since this is similar to the proof of Theorem 15 it will be omitted.

Theorem 18 Let x € R and ¢g € H*(R) such that 2x|0g(x)|*> < 1 for all x € R. Then there
exist a > O and an open neighbourhood U of ¢ in H™(R) such that

{ i, = —Au+ x(Aluf?)-u,t¢c[—a,a
u(0) = ¢

admits for any ¢ € U a unique solution u € C{[—a,a],H”(R)}. The induced solution map
U — C?{[—a,a|,H”(R)} is a C*~map between Fréchet spaces.

Theorem 18 can be proved following the arguments used in [10] supplemented by suit-
able estimates for the higher order time derivatives. A survey on the literature and an ex-
haustive list on references concerning Theorems 17, 18 are given in {27], [10]. The nonlinear
Schrodinger type equation in Theorem 18 has been considered in the theory of superfluids in
plasma physics, we refer to [8], [9] and to the references given in [10]. The various dithcul-
ties which arise when trying to solve this equation by means of more conventional methods
are discussed in [10]. A main problem 1s caused by the fact that the nonlinearity appears n
the highest order space derivatives, and the linearized equation fails to be dissipative. Using
the Nash—Moser technique the problem of loss of derivatives can be overcome.
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