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OPERATORS OF SOLUTION FOR CONVOLUTION EQUATIONS'

J. BONET, C. FERNANDEZ, R. MEISE

Abstract. We prove that the existence of a solution operator for a convolution operator from
the space of ultradifferentiable functions to the corresponding space of ultradistributions is
equivalent to the existence of a continuous solution operator in the space of functions. Our
results are in the spirit of a classical characterization of the surjectivity of convolution oper-
ators due to Hormander. The behaviour of a fixed convolution operator in different classes of
ultradifferentiable functions of Beurling type concerning the existence of a continuous linear
right inverse is also considered.

1 Introduction

In the early fifties L. Schwartz posed the problem to characterize when a partial differential
operator P(D) admits a continuous linear right inverse, that is, under which conditions a
continuous linear map R : E(Q) = E(Q) or R: D' (Q) — D'(Q) exists such that P(D)oR
equals the identity. After several partial results, the problem was completely solved in 1990
by Meise, Taylor and Vogt [16]. They characterized this property by giving many equivalent
conditions. In particular, they proved that the existence of a continuous linear right inverse
for partial linear differential operators with constant coefficients is equivalent to the existence
of fundamental solutions with prescribed large lacunas in their support. In [17] the same
problem was completely solved for non-quasianalytic classes of Beurling and Roumieu type.
The splitting of differential complexes was considered in [10, 18]. Though the surjectivity
of convolution operators bewween spaces of C”-functions or distributions on open sets of
RN was characterized by Ehrenpreis [11] and Hérmander [13], the existence of a continuous
linear right inverse for such operators was attacked for the first time only in 1987 by Meise
and Vogt [15] in dimension 1.

The purpose of this article is twofold. First we extend the results of [13, 16, 17] for con-
volution operators on spaces of ultradifferentiable functions on arbitrary open sets. Second
we show in Theorem 2 that if T, : E,)(X) — E,)(Y) is a convolution operator between

spaces of non-quasianalytic functions of Beurling type defined on open sets of RY such that
X = Y — suppy, which admits a continuous linear solution operator R : £, (Y) — Q)Fm} (X),

then 7, itself admits a continuous linear right inverse. The case of functions of Roumieu
type 1s also considered in Theorem 4. These results are inspired by the classical result of
Hormander [13], which states that a convolution equation u x f = g which can be solved for
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every g € C with a distribution solution f € 72, can be also solved in the class of -
functions. Extensions of this last statement for non-quasianalytic classes have been recently
given in Bonet, Galbis and Meise [6]. Our last section includes some examples.

This paper complements the articles of Meise, Taylor and Vogt [16, 17]. The methods
of these two articles and [6] had a strong influence in ours. On the other hand, the results
of [17], which are valid for linear partial differential operators with constant coefficients, are
extended here for arbitrary convolution operators. Sohr in [20] was the first one who observed
that the techniques of [16, 17] could be used for convolution operators 7, : C7(X) — C7(Y)
if X = Y — suppu. Condition (e) in Theorem 2 and in Theorem 4 appears here for the first
time.

2 Preliminaries

In this preliminary section we recall the definition of the standard spaces of ultradifterentiable
functions of Beurling type, convolution operators on these spaces and most of the notation
which will be used in the sequel. The definitions are taken from Braun, Meise and Taylor [8].
Compare also with Beurling [2] and Bjorck [3].

Definition. Let @ : R — [0,00] be a continuous even function which is increasing on [0, o]
and satisfies ®(0) = 0 and o(1) > 0. It is called a weight function if it satisfies the following
conditions:

(o) ©(2t) < K(1+w(t)) forallr € R

(B) [ %{%dr < o0
() log(1 +1?) = o(®(t)) as ¢ tends to o
(8) @ :t — w(e') is convex on R.

For a weight function ® we define @: C¥ — [0,0[ by ®(z) = ®(| z|) and again call this func-
tion ®, by abuse of notation. The Young conjugate of @ is defined by @*(x) = sup,{xy —

o(y)}.

Examples. It is easy to check that the following functions ® (possibly after a suitable change
on [—A,A| for some A > 0) are weight functions:

(M w(l)=™P0<PB <1,

(2) o(t) = (log(14+1))", B> 1,

(3) o(z) =t(log(e+1))"P, B > 1.

In case (1) we get the classical Gevrey-classes of exponent d := f;

Definition. Let ® be a weight function.
(a) For a compact set K C R and ¢ > 0 we set

LK) ={f€C(K):| f|

K,E{W}a

where ol
o
| f Ik := Supyexsupy | 19 (x) | exp(—£¢’ (T))-
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(b) For an open set £ C RN we define

Ew)(Q) :={feC7(Q):|| fllxe< VK CC Q,Vle Nj

and

Eio}(2) :={feC7(Q): VK CC QI EN || f ||k, <o}

The elements of Z, (2) (resp. E)(€2)) are called w-ultradifferentiable functions of
Beurling (resp. Roumieu) type on . We write E, (L), where * can be either (®) or {®} at
all occuring places.

(c) For a compact set K in RY we set

D,(K) = {f € E(R") : supp(f) C K}

endowed with the induced topology. For an open set Q C R" and a fundamental sequence
(K;j) jen of compact subsets of Q we define D, (€2) := ind;_, D, (K;).
The dual D, of D, is endowed with its strong topology. The elements of Q)E o) (§2) (resp.
E m}(Q) ) are called w-ultradistributions of Beurling (resp. Roumieu) type on 2.
(d) For an open set Q C R", an open subset U of € and X(Q), being one of the spaces
introduced above, we set X (Q,U) := {f € X(Q) : f |lu=0}.
The classical case £, = C™ is formally not a subcase of what we present here since we

assume condition (7). However, all our results also hold in this case after obvious modifica-
tions.

Convolution operators. Given u € E.(RV) and two open sets X and Y in RY with ¥ —
suppu C X we define

I E.(X) = E(Y) by Tp(f) = ux* f, ;U*f('x) - (Py:f(x_YD'

T, is a continuous linear operator on the space E,(X ), and u induces also a continuous linear
operator S, : D, (X) — D,(Y) where

Su(V)(@) = (u*V, @) = (v, 1x @) and (i1,¢) = (1,P) ,P(x) = @(~x)

forv € D,(X), and ¢ € D.(Y).
Note that for pt = ¥4 <m o ﬁﬁﬁ the corresponding convolution operator is

1 0.,

P(D) *_ Z aﬂflﬂ[ (ax) y

o} <m

while for u = ¢ € D,(RY) we get

() = [ FO)ex—y)d.

In the rest of this article we assume X = Y — suppu. For an open subset G of Y, if we denote
by H the set G — suppu, we define

N(H):={ve D,(H) : S,(v)=0o0nG}.
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We observe that S, (u)|¢ = S,(ul|) if u € D, (X).

Right inverses. For locally convex spaces £ and F we let L(E,F) ={A: E — F : A is
continuous and linear}. A map A € L(E,F) is said to admit a right inverse, if there exists
Re L(F,E)sothat AoR =id |F.

Definition. (a) An ultradistribution u € E(’ o) (RM) is called slowly decreasing for (o) if there

exists C > 0 such that for each x € RV with | x | > C there is { € C" with | x— (| < Co(x)

and | 2(0) | > exp(~C | Im | ~Co({)).
(b) An ultradistribution u € EE m}(RN ) is called slowly decreasing for {®} if for each

m € N there exists R > 0 such that for each x € RY with | x | > R there exists { € CV satisfying
x=|< Lo(x) such that | 4(€) | > exp(— Lo (1)),

Remark 1 If u € EL(RN) is slowly decreasing for x, it follows from [6, 2.9, 3.4] that the
convolution operator Sy, and consequently S, is surjective on DL (RN).

3 Results

In this section we show that the existence of a right inverse for a convolution operator 1s
equivalent to a (a prior1) weaker condition. Throughout this section, ® denotes a weight
function and u # 0 an element of .. For a non-empty open set Y in RY and € > 0 we put

]
Yo :={xeY:|x|< . and dist(x,dY) > €}.

We define X := Y — suppu. For € > 0 we set X(€) := Yz — suppu. We assume in the rest of
this section without mentioning explicitely that € < €y and Y¢, is non-empty.

Theorem 2 Let u # 0 be an element of E{ o) (RV). Let Y be a non-empty open subset of RV .
The following conditions are equivalent:

(a) S, : Dy o) (X) — E?Em](}’) admits a continuous linear right inverse,

(b) 1 is (®)-slowly decreasing and there exists an increasing sequence (Xi)ren of relatively
compact open sets of X, with | Jpen Xk = X such that for every k € N and every u € N (Xi+1)
there exists v € N(X) withv |x,= u |x,,

(c) uis (w)-slowly decreasing and for every € > 0 there exists Oq so that for all 0 < 6 <N <
0 < 8p and each § € Yy \ Ys there exists Ex € Q)Em) (RN) such that

(i) supp E, C (RY\X(e)) - & B
(i) SuEe = 0 + T with suppTe C (RV\Y5) = €,
(d) Ty . Ew)(X) = E)(Y) admits a continuous linear right inverse,
(e) there is a continuous linear operator R : E,)(Y) — “ﬂfm) (X) such that S,Rf = f for

every f € Eq(Y).
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Proof. (a) = (b): Since S, is surjective we can apply [6, 2.9] to get that u is (®)-slowly
decreasing. Let R denote a right inverse for S, which exists by hypothesis. Given € > 0, let
B be a total bounded set in D, (X (€)). The continuity of R gives 0 < 8y < € and a bounded
set D in Dy, (Y5, ) such that

Supcpeﬂ [ <Rf: (P> ’i CsupwED ‘ (f ‘4—’) |

for some constant C > 0. Consequently, if 0 <0 < §pand f € 9'_')" }(Y Y5),Rf € ‘I)’ }(X X(g)).

Given 0 <M< 0< 8y and u € N(X(T])) We take @ € Q){m (X(M)), o =1 ::m a neigh-
bourhood of X5. Hence Qu € {D‘{'m} (X), Sulou) |ys= Su(u|xs)) = 0. Therefore S,(u) €
‘I)"m) (Y, Ys) and RS, (ou) € Q)Em) (X, X(g)). For v=@u — RS, (¢u), we obtain v [xe)= u |x (¢
and S,v = 0. An induction argument gives the conclusion.

(b) = (¢) We may adapt the proof of [17, 2.6].
(@) = (e) and (d) = (e) are obvious.
(e) = (c) The first step is to show that condition (e¢) implies

Ve>0d0<0<evV0<nN<d3dLeNVYfeE (Y Ys) )
Jg € D), (X(n),X (&) with S,g = f |y, m@’ ( Yy). (cf. [17,2.5 (+)])

Given € > 0, we select a total bounded set D in Dy, (X(g)). Since R : Ey)(Y) —
(X ) is continuous, there is 0 < 8y < € such that, for some C > 0, m € N,

Wpoep | (RF, ) 1< C 1l - @
We take 0 < 1 < & < &g and consider the bilinear map
B: Eay () X Dy X(M) — K,

defined as B(f,@) = (Rf,¢). The map B is separately continuous, hence continuous. There-
fore we can find 0 < 6 < M, M, ¢ € N, C > 0 such that

[ (R, @) [ < C ol flly; 7 (3)

for every f € E,)(Y) and @ € Dy, (X(N)).
Note that, as in the proof of [17, 2.5], there are £ € N and D > 0 such that, for all p € N,

exp(~9"(5) < Dexp(~tg*(P1).

To show that £ € N just selected satisfies the statement, we fix f € Efmj (Y,Ys) and choose y €

Do) (Y) with y = 1 on a neighbourhood of Y. We take p € D) (B1(0)) with [ p(x)dx =
I, we let p;(x) = t7"p(3) for r > 0 and define f; := y(f * p;). For t > 0 small enough
fi € By (Y,Ys,). Moreover, || f; — f |7; 7 converges to 0 as ¢ | 0. Therefore (f;);>0 is a
Cauchy net with respect to || - ||7-; ( ) we conclude that (Rf;);>o is a Cauchy net in
Diw)(X(M))}, and there is g € ﬂ){m} (X (n))" with g = D) (X(M))}, — lim;oRf;. Moreover,
since f; ‘Yﬁu = 0 and D is a total bounded subset of D) (X (€)), we can apply (2) to conclude
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g |xe) =0.
Finally, since Y5 D Yy, we have, for ¢ € D) (Yy).

(Sug, ©) = (g fx@) = lim, o(Rfy, 1% @) = (SuRf;, 9) =

lim:i,[fl{ﬁ‘a (p> = <f:r (p}

This completes the proof of (1).
Now, the proof of [17, 2.6] can be adapted to show that condition (1) implies

Ve>038 >0Y0<o<n<8<8 V& e ¥y \T5 FE: € D)y (RY) (4)

such that
(i) suppEy C (RY\X(g)) — &
(1) SuEe = & + Tz withsuppTz C (RY \¥5) — &.

To see this, one only has to observe that convolution operators S, commute with ultradif-
ferential operators. Finally, observe that (e) implies §,, ‘I)Em) (X) D Eu(Y). By [6,2.5], uis
(m)-slowly decreasing.

(¢) = (d) and (c) = (a). Wetake 0 < g <27 ' withY¥, #0. f0 < g < ... < g
are already selected, we apply the assumption for € = ¢€; to find 0g and select 0 < g1 <
min(ﬁn,}-ﬁ). Welet Yy ;=Y ., kEN Xp =Y, —suppuand X = Yp=X_1 =Y =
X =Y 3=0.

Since u is (w)-slowly decreasing we apply [6, 2.5] to find a fundamental solution E €
'.’Dfm}(IEN ) with S,E = 6. At this point, proceeding as in the proof of [17, 2.4], we can
construct, for each k € Ny, a continuous linear map

Ar: Dy (Y, Yi) — @E (X, Xk—2)

)

such that S,Ar(f) ly,,,= f |y, forall f € Q)Em} (Y, Y ). It also follows from the construction
of the maps Ay thatAk(‘E(’m) (Y, Yy)) C Efm] (X, Xp—2). Weput Ry =Apand Ry (f) = Re(f) +
Ari1(f —uxRi(f)). Therefore Ry is a continuous linear map from D) o) (Y) into ‘IJE o) (X) and

(u*Ref) |v,.,= [ lv.., forall k € Ny. Consequently Ay (f —u*Ry) is identically 0 on X;_,
that is Ry.1(f) coincides with Ri(f) on X;_,. Hence R := limy_,.. Ry is well-defined and
S, ©R = id. This shows (c) = (a). The same arguments also give (¢) = (d).

The proof of Theorem 2 should be compared with [17] and [20]. Sohr [20], in the frame
of distributions, observed that the condition X = Y — suppu permitted to extend many argu-
ments of [16, 17] to convolution operators.

Remark 3 By the results of Meise and Vogt [15, 3.9], the conditions of Theorem 2 for N = 1
and X =Y = R are also equivalent to the following condition: u is (®)-slowly decreasing
and

sup{
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Now we consider convolution operators on spaces of ultradifferentiable functions of
Roumieu type.

Theorem 4 Let u # 0 be an element of ‘Ej{' m}(]RN ). Let Y be a non-empty open subset of RY
and let X := ¥ — suppu. The following conditions are equivalent:

(a) S, : @Eiﬂ} (X) — Q)f[ o) (Y') admits a continuous linear right inverse.

(b) i is {w}-slowly decreasing and there exists an increasing sequence (Xy)ien of relatively
compact open sets of X, with ey Xk = X such that for every k € N and every u € N (Xg+1)
there exists v € N(X) with v |x,= u |x,,

(c) 1 is {w}-slowly decreasing and for every € > 0 there exists &g so that for all 0 < 6 <1 <
0 < 89 and each § € Yy \ Y there exists E¢ € Q)E m}(]l%.N ) such that

(i) supp By C (RY\X(e)) - § B

(if) SyEr = & + T withsuppTz C (RV \¥5) — &,
(d) Ty Egoy (X) — Eqo}(Y) admits a continuous linear right inverse.
(¢) There is a continuous linear operator R : Eqz(Y) — ﬂ)im} (X) such that S,Rf = f for
every f € Eqgp(Y).

Proof. (a) = (b): LetR: 'I)j[ m}(}’) - Q)E m}(X ) be a continuous linear right inverse for S,,.
Given € > 0 the set

il S

B:={0 € Dy, (X(e)) : 1l @ l[x(e)1 < 1}

A r—————

is bounded in Dy} (X (€)), hence in Dy (X). Therefore

qs : Dy (X) = R, g(v) :=sup [ (v, ) |
oeB
1S a continuous seminorm on Q)fi o) (X). By the continuity of R there exists a bounded set C in
Dy (Y) and M > 0 so that

qg8(Rv) < Mgc(v)

for all v € ’Djim} (Y). Without loss of generality, since ‘I)?m}(Y) 1s a (DFS)-space, we may
assume that

C={9 € Diuy (Tag) 110 llz-1/m < 1}

for some m € N and some 0 < 0 < €. Proceeding as in [17, 3.4,(1) = (2)], foreach 0 < 0 <
g, and each f € "DEE}(Y, Ys) we have that Rf € @i'ﬁﬂ} (X,X(g)). Now, the same argument as

in Theorem 2, (a) = (b) finishes the proof.
(b) = (c), (¢) = (a), and (c¢) = (d): This can be shown as in Theorem 2.
(a) = (e) and (d) = (e): are obvious.
() = (c): The first step is to show that (e) implies

Ve >03d0< 0< eV0< n< 0do = o(w)ast — e such that 5)
Vf C E(UJ(Y, Yg) Eg S @Em}(X(T]),X(S))With S“g = f h/n in fDim} (Yn).

Givene > 0, the set B:= { ¢ € Dy} (X(€)) || @ |lx(ey.1 < 1} is bounded in Dy, (X ), hence
bounded in Dy (X). Therefore

48 : D)y (X) = R, g5(v) = supyes | V(0)
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1S a continuous seminorm on 'Dim}(X ). By the continuity of R and the description of the

continuous seminorms on Egq,1(Y) in [17, 3.3] we may find 0 < 8o < € and 6 = o(®) such
that gg(Rh) < M || h ||yﬁﬂig for every h € E,)(Y). Moreover, proceeding as in [17, 3.4] we

obtain that Rh € @Em} (X,X(g)) whenever h € E,y (Y, Y5,). We take 0 < M < 8 < 0p and we
consider the bilinear map

B: Ew(Y) X Dyuy(X(M)) — K, (h,0) = (Rh,@).

The map B is separately continuous and, proceeding as in [6, 3.5], for every m € N there are
o = 0o(w), a compact subset K,,, of ¥ and a positive constant C,, such that

| (RR, ©) |< Con || 1 |k 0] @ I3 m - (6

Now, using [8, 1.9], we find ¢ = o(®) such that ¢,, = o(c) for all m. Hence (6) implies the
existence of D, such that

| (Rh, ) |< D || 1 [0l @ liges - 7)

The inclusion E¢,1(Y) <> E)(Y) is continuous and has dense range. Then, given f €

E(s)(Y,Y5) we may find (y;)jen in Eg,1(Y) such that f = ) (Y) —lim;.\y;. Itis easy
to see that () jen can be taken in Eq) (Y, Y5,). Therefore, (Ry;) jen € D}, (X, X(€)) and,

on account of (7), it is a Cauchy sequence in D, o) (X(n)) endowed with the strong topology.
Therefore, it converges to some g € Q)fim} (X(n),X(g)) and Sug = f |y,. This proves (5).

Now, the proof of [16, 2.1] can be adapted and we may proceed as in the proof (¢) = (c), in
Theorem 2.

The remark after Theorem 2 also holds in the Roumieu case by the results in [15, 4.4].

Corollary 5 Let ® < © be two weights. Let 0 # u € ‘Efm)(lﬁ” ) (resp. 0 # u € Eim} (RM)).

Let Y be a non-empty set of RY and let X := Y — suppu. If T, . Ew)(X) = E)(Y) (resp.
Tu: Eoy(X) = E)(Y)) has a continuous linear right inverse, so does T, : E5)(X) —
f(ﬁ}(}’) (resp. TP: E{G}(X) — f{ﬁ}(}’)).

Observe that it can be proved as follows: Let L: E,) (Y) — () (X) be a continuous lin-
ear right inverse of 7}, : E,)(X) = Ey)(Y). Let j : Eg)(Y) = E)(Y)and J : Q)Em}(X) —
‘DE 5) (X) the canonical continuous injections. Then R:= JoLo j: Eqy(Y) — Q‘J[’ o) (X) is
continuous and S,Rf = f for all f € E(Y). The conclusion follows from Theorem 2 for
the Beurling case. For the Roumieu case one proceeds in the same way and uses Theorem 4.

Corollary 5 follows also from the characterization using fundamental solutions. It served
as a motivation to conjecture and prove Theorem 2. Corollary 5 must be compared with the
examples provided below, in which condition (7y) of the weights is needed.

Our next result shows that the converse of Corollary 5 does not hold.
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Proposition 6 Let G and ® be two weights such that ® = o(G). There is u € E,(R) such
that T, : ‘E5)(R) = E)(R) has a continuous linear right inverse, but T, : E)(R) —
E(w) (R) does not.

Proof. By [8, 1.7] there is m : [0,00[ = [0, 00| such that ®(z) = o(m(t)) and m(t) = o(c(t))
as t — . Proceeding by recurrence starting with r; > 2 , we select a sequence (r;)jen,
4r; < rj41, such that, forall j € N,

(i) 1 +0(rj) 2 m(r)),

(i) j(o(r;) + 1) < m(r)

(iil) (j+1)* < infrzr, g
By (iii), if n(t) = card{j € N; r; < t},t > 0, we have n(t) logt = o(w(t)) ast — o. For each
J € Nweselect z; € C with | z; |= r; ,Imz; = m(r;), and we set f(z) := [];en(1 - :)
z € C. By [19, p. 325], f is an entire function and its zeros are the z;’s. Proceeding as in [9,
3.11],

4
log | f(z) < n(|z])log |z| +log2 + 5, z €C.

Therefore there is u € Efm}(]l%.) with i = f, suppu = {0}, and 7}, is surjective on E(R),
hence on E4) (R) (cf [5]).

By our construction,

[Imz; |
su . jeENL <1
p{ 1+ o() } <
and ‘
|II’HZJ; . _
> j toreachj € N.
1 + (JJ(ZJ') J J

According to the characterization given in [15, 3.9], 7,, has a continuous linear right inverse
on £ (R) but not on £, (R).

Remark 7 It would be interesting to know whether it is possible to characterize the existence
of a right inverse for T, : E(y) (RN) — E(o) (RY) in terms of a Phragmén-Lindeldf condition,
similar to the one which appears in the work of Meise, Taylor and Vogt [16, 17].

4 Examples

In this section 1t i1s proved that x-hypoelliptic convolution operators do not admit a right
inverse, and that (®)-hyperbolic operators have a global right inverse.

The following proposition is proved as in [16, 2.11]. We include the short proof for the
sake of completeness.

Proposition 8 Letuec EL(RY), N> 2, XandY be as in Theorem 2. If N.(X) C ‘E,(X), then
Sy D(X) — D.(Y) does not admit a continuous linear right inverse.
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Proof. Let (Xi)wen be as in Theorems 2, 4, (b), and consider the space A (X;) NL™(X;),
endowed with the sup-norm, which is a Banach space. By (b) in Theorem 2 for the Beurling
case or Theorem 4 for the Roumieu case, the restriction map

o N(X) } N (Xi) L™ (Xk)
“AN(X, Xi-1) AN (X, Xg—1) L= (Xk)

is an isomorphism. Therefore, %(??f{ﬁk} 3 being a nuclear and a Banach space, must be finite

dimensional. However, the set

{exp((-,§)) : (&) = 0}

1S non-empty (see. [14, 16.7]), not finite (since N > 2) and it is linearly independent in
AN(X)
N(X, Xx~1)

, a contradiction. (]

Remark 9 Linear partial differential operator satisfying N(X) C Ey)(X) are exactly (®)-
hypoelliptic operators, as it is proved in [3]. The same is true for surjective convolution
operators on C (]RN ) (see [14]) and for convolution operators on ‘E, (RN ) admitting a fun-
damental solution [15, section 4], [4]. There are examples of non (®)-hypoelliptic operators

satisfying N(RV) C f(m)(]RN ) (see [4]).

To obtain positive examples, we recall that hyperbolic (resp. (®)-hyperbolic) convolution
operators were defined by Ehrenpreis in [12] and Abdullah in [1] in the following way. Let

0#uc E(RxRY),N >0 be given (resp. in %Em) (R x R™)). The convolution operator 7,

is ((@)- ) hyperbolic in x if there exist two fundamental solutions E, and E_ in /(R x R")
(resp. in D (R x RY)) such that, for some d’, " > 0,

suppE4 C {(x,y)EIE{xIRN cx < d — ||y|l}

|yl

au }

suppE_ C {(x,y) e RxRN : x > —d' +

Proceeding as in [16, 3.2] we get the following result

Proposition 10 If a convolution operator is hyperbolic (resp. (®)-hyperbolic) in x, then it
admits a continuous linear right inverse in C*(R x RY) (resp. in (o) (R x RY)).
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