ONE-PARAMETER SUBGROUPS AND MINIMAL SURFACES
IN THE HEISENBERG GROUP!
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Abstract. The purpose of this paper is to study the minimal surfaces of the Heisenberg group
Hy which are the product of two one-parameter subgroups. Minimal surfaces with harmonic
Gauss map into the Grassmann bundle of Hy are also characterized.

1. INTRODUCTION

In a recent paper ([1]), Y-J. Dai, M. Shoji and H. Urakawa make new contributions to the
theory of harmonic maps from a Riemannian manifold M into a homogeneous space N. In
particular, they determine all those harmonic maps from the standard Euclidean space R" into

the 3-dimensional noncompact Lie groups SE(2), E(1, 1), SL(2,R), Hx that are of the form
f(xl y X2y " '1*1'1;1)' — EKP(IIX] ) EKP(IEXE) e EKP(«‘&::Xm),

where X, X>,- - -, X, are tangent vectors at the identity element and the above groups are
endowed with a left invariant metric (see [3]).

On the other hand, in a earlier report ([6]) devoted to the harmonic maps into Grassmann
bundles, to stress on how much the nonconstant sectional curvature of the ambient space

modifies the Ruh-Vilms type results [5] on the Gauss map, the second author considered the
following example.

In the Heisenberg group H3 of all real matrices
[ x 2z
0 0 1

ds® = dx* + dy* + (dz — xdy)*,

with the left-invariant metric

the surface z = 0 is at the same time minimal and the product of two one-parameter subgroups.

But its Gauss map into the Grassmann bundle G»(TH3) is neither harmonic nor vertically
harmonic.

'Work partially supported by 40% and 60% italian M.U.R.S.T. funds.
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This fact suggested us to begin a detailed study of the minimal surfaces of H3 which are
the product ot two one-parameter subgroups.

In Section 2 we recall some results about Gauss maps into a Grassmann bundle, principally
to introduce some formulas used later on.

Section 3 is devoted to the study of the minimal surfaces of H3 which are the product of
two one-parameter subgroups and to a characterization of the minimal surfaces with vertically
harmonic or harmonic Gauss map. Such a characterization is related to the geometry of the
one-parameter subgroups. For this reason, in Section 4, we compute the Frenet formulas for
these curves.

2. GAUSS MAPS INTO GRASSMANN BUNDLES

Let M be an m-dimensional submanifold, isometrically immersed in an n-dimensional
Riemannian manifold (N, g).

The Gauss map I' of M into the Grassmann bundle G,,(TN) of the m-planes of the tangent
bundle 7N, to each point x € M associates the subspace 7. M of T, N.

The Grassmann bundle G,,(TN) is the bundle on N associated to the principal bundle
O(N) of the orthonormal frames on N, with the Grassmannian G,,(R") of the m-planes of
R” as fibre; G,,(TN) is endowed with a suitable Sasaki-like metric such that the projection
7 : G,(TN) — N 1s a Riemannian submersion with totally geodesic fibres (see [2] and [6]
for details).

Any tangent vector field on G,,,(TN) decomposes into a vertical component, which 1s tangent
to the fibres, and a horizontal component, orthogonal to the fibres. Hence the Gauss map
I': M — G,(TN) is said to be harmonic, or vertically harmonic, if its tension field T(I"), or
the vertical component of T(I"), vanishes.

Let {e;,e,} be a local orthonormal Darboux frame on M, where i = 1,- - m; a =
m+1,---,n, and let hY = g(h(e;, ¢)),en) = g(V,.€5,€,) be the components of the second

fundamental form. We denote by H = # g‘fhgeﬂ the mean curvature vector field of M.

Standard computations (see [6], [7]) show that I" 1s vertically harmonic if

mVEH® - RY, =0, (1)

J

where the covariant derivative and the components of the curvature tensor field of N are taken
with respect to this frame; for example

m m
Rﬂja — ZRN(Ej,Ek,Ej,Eﬂ) — Zg ((V[EJ,EE] — [vfj: VEJ) Ejseﬂ) . (2)
j=1 j=1

The Gauss map I" is harmonic if, in addition to (1), the following conditions are satisfied:

RN h& =0 (3)

akji'tkj =
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2pN 1B
mH® + A R:}Wﬁhij =0,

where A is a positive real constant fixing the metric of G,,(TN) (see [7]).

If M is a minimal surface and N has dimension 3, conditions (1) take the expression

N
RTrziz; — Ry =
Consequently (3) 1s automatically satisfied and (4) becomes

N _
Rk = 0,

)

(6)

3. MINIMAL SURFACES IN H; WHICH ARE THE PRODUCT OF TWO ONE-PARAMETER

SUBGROUPS

We consider the Heisenberg group

(/1 x z )
H3:<(O I }‘),I,}‘,:ERP'

0 0 1

.

with the group multiplication induced by the standard matrix product. The orthonormal basis

0 1 0 0 0 O 0 0
El._(O 0 U), Eg:(() 0 1), E;z(ﬂ 0 O
0 0 O 0 0 O 0 0 O

of the tangent space at the identity, determines on Hy a left-invariant metric
ds* = (w')* + (w?)* + (w)?,

where
w' = dx, w? = dy, w® = dz — xdy

1

)

1s the left-invariant orthonormal coframe associated with the orthonormal left-invariant frame

d d 0 d
€1 = T €y = Fx—, 3 = —.
0x oy 02 02
The corresponding Lie brackets are
e, e2] = e3, [e1,e3] = [e2,e3] =0,
and the Levi-Civita connection forms are given by
1 1 1
2 3 ; 2
wy = —zWw", W = ——w?, W = —w'.
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Then we have

]
vﬂel — VEQEZ — VE3E3 - 0} ‘véﬁ €1 = _vézel - 5531

(7)
] ]

Vees =V, e = —5e2, Ve,e3 =V, e = S €1

and therefore the nonvanishing components of the curvature tensor are

3 i
Rig12 = — =, Rizpz = -, Ro303 =

1
4 4 4

Let P be an arbitrary point of the surface § = expuXexpvY, where
X = aE), + bE; + cE;, Y = «E| + BE; + YE;

are two linearly independent vectors tangent to H3 at the identity.
Then P has coordinates

X = ua + v,

P(u,v) = { ¥ = ub + Vb, ®)

1 1
z=uc+vy-+ zuzab + —jvzfxﬁ + uval.

It 1s easy to see that .§ 1s a commutative subgroup of H3 if andonly if L = af3 — ab = 0.
Differentiating (8) with respect to u and to v we obtain

P, = a—i — b-a—- + (¢ + abu + an)ha- = ae; + bey + (¢ + vL)es
ox oy 02
0 0 0 ©)
P, = o - B F(y +aPu+ «pv)— = xe; + Pez + ves.
0Xx oy 02

It follows that the components of the metric induced on S by that of Hj are

g = ||P.)* = a® + b* + (c + VL)%,
812 — (PH!IPF) = HOL-FE?E?) + (¢ + vLY)y,
822 IPy)|* = o + B* + ¥,

and that the vector field N normal to § is given by

N = (by — B(c + vL))e; — (ay — &(c + vL))e; + Les.
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Now we can compute the components of the second fundamental form of S, that are:

N . (c+vD){v(@® +b") — (ax+ bB)(c + vL)}

hyy = (Vp, Py, -
= Vo ) = IV
(v (a* +b%) — (o + B )(c+wL)*+L}
hy = (Vp Py~ (10)
2 = (Ve HNH} TN
{(ac + bRYY* — y(&® + B*)(c + vL)}
hyy = (Vp P,
2 = (Vr, ||Nu> VI

[t 1s not difficult to check that the mean curvature H = ig’fh,j of S vanishes if and only if

vL? = 0, (acc + bR)L* = 0, (11)
that 1s, when
(1) L =0,
or

M) L0, vy=0,ax+ bp =0.
The example in the introduction 1s in Case (1), fora=1,b=c =0, =v =0, = 1.

Therefore, 1f X 1s fixed, the vector Y such that exp uX exp vY i1s a minimal surface of H-
verifies one of the following two conditions:

[. X and Y have proportional orthogonal projections on the plane {E/, E; };
2. Y is a vector of the plane {E|, E; } orthogonal to X.

Now we suppose that the Gauss map of the minimal surface § = expuXexpvY into the
Grassmann bundle G,(TH3) is vertically harmonic, and rewrite (5) in the form

R(Py, Py, P,,N) =0, R(Py, Py, P,,N) = 0.

Since

R(P,,P,,P,,N) = (c + vL)L(&* + B*) — Ly(acx + bp),

we see that this component vanishes for every v € R if and only if L = 0; in this case we also
have

R(PH#PV}PH&N) —

Fora = b = 0 (and «, [3 not both zero), one has L = 0 and the curve exp uX is a geodesic
of Hs; in this case, for any vector Y, the Gauss map of the minimal surface § = exp uX expvY
into G>(TH3) 1s harmonic, 1.e., condition (6) 1s also satisfied.

This fact 1s easily verified by using the orthonormal basis of H

Vi = €3
1 (e + [3e2)
Vy = Xé€ €7
Vol + 32
I
l V3 = (—B€| + ﬂﬁ"})

\ Vo2 + B2
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Suppose again L = 0, but (a, ) # (0,0). Making use of the orthonormal basis

P, 1
V] = = (ae| + bey + ce3)
[ Pull a2+ b2+ c?
1
vy = (—ace -—bc€2+(a2+b2)€3)
\/a2+b2\/a2+bz-|—c2
N 1
V3 = — (bﬁ'] _aEZ):
”NH \/az—l—bz
we obtain
|'"
cva? + b2
h(vy,vy) = %
Hv) P+
2 22
a + b —c
4 h(v , V — V3,
V1,v2) 2(@+ 02 +2)
cva? + b2
h(va,v3) = — V3,
l (2 2) ﬂ2+b2+C23

It follows that (6), that is, R(vs, v;, v;, v (v;, v;) = 0, is satisfied if and only if

cva? +bd? + b —c*)=0.

Then we have two cases:
1. ¢ =0, and the curve exp uX is a geodesic of Hj, or
2. @* + b* — ¢* = 0 ; this condition is equivalent to the vanishing of the torsion of exp uX

(see Section 4).

Hence we have the following

Theorem 1. Let S be a surface of H; of the form
S = expuXexpvY

where X = aE; + bE> + cE; and Y = «E| + BE, + YE; are two linearly independent vectors
tangent to Hx at the identity and let I be the Gauss map of a surface S into the Grassmann

bundle G,(TH3). Then
1. S is a minimal surface with T vertically harmonic if and only if exp uX and exp vY commute

(that is, ifand only if L = a3 — ab = 0)
2. S is a minimal surface with T harmonic if and only if the following conditions are satisfied
(a) expuX and expvY commute
(b) the one-parameter subgroup exp uX (or exp vY) either is a geodesic of Hs, or has torsion
equal to zero at every point (a* + b* — ¢* = 0).
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4. ONE-PARAMETER SUBGROUPS OF H; AND FRENET FORMULAS

As observed above, there are properties of a minimal surface § = exp uX exp vY of H; that
are related to the geometry of the curve o(u) = exp uX. In this section we derive some results
for the curve o(u), whose curvature and torsion are necessarily constant with respect to the

transitive action of the Heisenberg group.
If we put X = aE| + bE> + cEj3, the point P(u) = exp uX has coordinates given by

(X = ua,

Puy =< > = ub,
|,

7= uc -+ Eu'ab,

and therefore

1P
s (H) _ a | b a | ({‘—F(Ibf-f)jé = e +b€2 -+ cey,

a
du ox 0 dz
where {e;,e2,e3} is as usual the left-invariant orthonormal frame associated with the basis

{E|,E,, Es} of the tangent space of H3 at the identity.
The unit vector field tangent to ¢ is given by

l
T = \/5;2 T 7 n = ({!81 + bt‘i’g + ce3) (12)

and 1ts covariant derivative is

c
VT = T T (be, — aey). (13)

Thus o 1s a geodesic of Hs, that1s V#T = 0, if and only if eitherc = 0,ora = b = 0;if o
IS not a geodesic, supposing ¢ > 0, its curvature k 1s given by

cvVa® + b2
k=|| VT ||= a’? + b? 4 %’ (14)
and one obtains the first Frenet formula
VT = kN, (15)
where l
N = N (bey — aer)

1s the principal normal vector.
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By a straightforward calculation one gets

ﬂz + bz _ Cz g 2
VN + kT = (acey + bcey — (a” + b%)es),  (16)
2/ a? + b2 \/(az + b2 + ¢2)3

or
VN = —kT — 1B,

where
|

B =
Va + b2vVa? + b? + ¢

1s the binormal vector field and the torsion T 1s given by

(ace; + beey — (a* + b*)es) (17)

2 bz 2
= 4T C (18)
2(a? + b? + ¢%)
This result, which can also be deduced directly from the Frenet formula VyB = —1N,

completes the proof of Theorem 1, in Section 3.
Previous calculations suggest some remarks.
First, if o(u) = exp uX 1s not a geodesic, then & and T are always related by the formula

1
4+t = 7 (19)

The second observation concerns in particular the geometric meaning of the vanishing of
the torsion of o(u). This meaning is not trivial because in the Heisenberg group do not exist,
even locally, totally geodesic or, in general, totally umbilical surfaces (see [7]), and i1s given
by the following

Proposition 1. If the one-parameter subgroup c(u) = expuX is not a geodesic, its normal
surface (i.e., the ruled surface generated by the lines normal to o(u)) S1 = e€xp,,, VN, where
N is the principal normal vector, verifies the following conditions:
1. Sy is a minimal surface and coincides with the product surface exp uX exp vN, where N
is the principal normal vector of o(u) at the origin,
2. Sy is flat along o(u) if and only if the torsion of o(u) vanishes.

We shall now determine explicitly the surface S;. If u 1s fixed, a parametrization for the
geodesic exp,,,, VN is given by a triplet { x(v), y(v), z(v) } of functions satisfying the differential
system (see [4])

-xff+yf(zf_'xyf) :0
V' =¥@ -n) =0 (20)
z.r" . x}).f — N:},.

Here Nj is exactly the third component of the vector N with respect to the basis {e;,e2,¢e3}.
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The initial conditions for the solution {x(v), y(v),z(v)} are given by
x(0) = au
yv(0) = bu 21)

]
72(0) = cu + iabul

and r )
xX'(0) =
\/ a’z + b?
1 , —d
N = be, — aer) = { ¥V (0) = = - (22
N7 bz( | 2) J2 4+ b )
—a’u
EI(O) = 3 3
L \/ a- -+ b-
Therefore we get N3 = 0 and the general point P of S has coordinates given by
( (. v) by
x(u,v) = au+
Va2 + b2
| av
P(H} 1.;) —— }-'(n'.«fj. V) = bu — \/{!2 T bz (23)
I a’uv abv’

Z(u,v) = cu+ Eabu: —

Va2 + b2 2(a* + b*)

It 1s easy to see that the first condition in Proposition 1 is fulfilled. As a consequence of
(23) we get

P, = ae; + bey + (¢ — v\/ﬂ2 + b?)es,

P N | (b ) (29
o= = €) — den).
Va2 + b? | i

A vector A/ normal to S at P is given by

N = (ac — HU\/HE + b?)e; + (be — .JE:W\/{::2 + b2)es — (a° + b*)es.

With respect to the Levi-Civita connection V on H; one has Vp P, = 0 (obviously) and

(bc — bvv/a? + b)e; — (ac — avv/a? + b)e,
]

2Va? + b
— (bc — 1_’:5“.3\/.:12 + b?)ey — (aj -+ bz)é’g} .

VF“ Pu

1

Ve P, - {(—ar: + avv/a? + b)e, (25)

It follows that the components of the second fundamental form of S, are

huu — hrr — 01

24+ b ¢, . :
= — \/; fJ: {(c“ —a* — b* = 2w \/f£3 + b2 + v (a” + f?h))} -
V)

(26)
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so that, by (18), one has 2 = 0 along the curve o(u) corresponding to v = 0 if and only if the
torsion of o(x) vanishes.
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