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THE EXISTENCE OF A STRAIGHT LINE OF PIECEWISE RIEMANNIAN 2-MANIFOLDS

KAZUHIRO KAWAMURA, FUMIKO OHTSUKA'

Abstract. In this paper, we study properties of piecewise Riemannian 2-manifolds which are
combinatorial 2-manifolds such that each 2-simplex is a geodesic triangle of some Riemannian
2-manifold. We will introduce the total excess e(X) of a piecewise Riemannian 2-manifold
X and prove the following generalizations of results of Cohn-Vossen and the second author
obtained for Riemannian 2-manifolds.

Let X be a piecewise Riemannian 2-manifold without boundary having one end.

Theorem A. If X admits total excess and contains a straight line, then e(X) < 2n(x(X) — 1),
where xX(X) is the Euler characteristic of X.

Theorem B. If X admits total excess e(X) which is smaller than 2mi(x(X) — 1), then X contains
a straight line.

It should be noted that X may or may not contain a straight line when e(X) = 27t(x(X) — 1).

1. INTRODUCTION

For a 2-dimensional Riemannian manifold M, the total curvature C(M) 1s defined as the
integral of the Gaussian curvature over M. The Gauss-Bonnet Theorem states that if M is
compact, then C(M) = 2mtx(M), where x(M) 1s the Euler characteristic of M, and hence C(M)
1$ a topological invariant. For a noncompact surface M, C(M) is no longer a topological
invariant and reflects a certain “asymptotic property” of Gaussian curvature of M. The
geometry of the total curvature has been studied by many authors, and several attempts have
been made to generalize the concept of total curvature for some classes of metric spaces
which need not have Riemannian metrics (see [2],[8],[9] and [10] for example). In particular,
Machigashira and the second author in [10] defined the total excess for length spaces which
are topological 2-manifolds with discrete topological singularities. So it would be a natural
attempt to find metric or polyhedral analogues of those results concerning total curvature on
Riemannian 2-manifolds.

In this paper, we will consider a piecewise Riemannian 2-manifold which is a topological
2-manifold with a triangulation such that each 2-simplex is a geodesic triangle in some
Riemannian 2-manifold. As an analogue of total curvature, we will introduce the total excess
in the sense of [10] and generalize some results. It 1s essential in our argument that the set of
vertices “‘with nonzero angle excess”, defined in Section 2, forms a countable discrete set.

The paper is organized as follows. Sections 2 and 3 are preliminary sections. Some basic
definitions and fundamental results are reviewed in Section 2. Also two auxiliary lemmas,
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which are piecewise Riemannian analogues of results on Riemannian manifolds (see [7], [12]
and [13]), are proved 1n Section 3 for later use. In Section 4, we study the problem of the
existence of a straight line and prove Theorems A and B, which are piecewise Riemannian
analogues of those of [7] and [12].

Basically most of our proofs proceed similarly to those of Riemannian 2-manifolds, but
several nontrivial modifications are necessary in our context. The authors hope that the
technique developed in this paper will find applications to further investigations on this
subject.

2. PRELIMINARIES

We begin with reviewing relevant basic terminologies. For a metric space (X, d), a curve
« : I — X 1s called a geodesic if it 1s locally distance minimizing, that is, for each point
t € I, there exists a neighborhood U of t such that d(x(sy), x(s2)) = |s| — s»| for any points
51,52 € U. In what follows we assume that o 1s parametrized as being proportional to arc
length. If the above equality holds for any points 5,52 € I, then we call « a minimizing
geodesic. In particular, a minimizing geodesic defined on [0, o¢) is called a ray and that on
(—oc, oc) astraight line. We sometimes identify a geodesic with their images. For a geodesic
segment « : |a,b] — X on a compact interval [a, b], let

& = &| (a,b): (a,b) = X,

namely the set of all interior points of «. As usual, the points «x(a) and x(b) are called the
end points of «.

Let X be a topological 2-manifold with a triangulation such that each 2-simplex is a geodesic
triangle in some Riemannian 2-manifold. We introduce a natural metric d on X as follows:

for any pair of points x,y € X,
d(x,y) := inf{ l(c) | ¢ is a piecewise smooth curve from x to y},

where [(c) 1s the length of c.

Definition 2.1. We call such a space (X, d) a piecewise Riemannian 2-manifold.

A piecewise Riemannian 2-manifold X is said to be piecewise flat if each 2-simplex is
isometric to a 2-simplex in the Euclidean plane R?.

For a point p on a piecewise Riemannian 2-manifold X, we denote by R, the set of all
minimizing geodesics emanating from p. For «, 3 € R, we define the angle at p as follows.
For an arbitrarily constant k, let Z,(ax(s)pf(¢)) be the angle at the point corresponding to p
of the triangle in M(k) which corresponds to the triangle A(x(s)p3(7)), where M(k) is the
2-dimensional space form of constant sectional curvature k. Then the limit

Zp(ex, B) := lim Zi((s)pB(©))

exists, which 1s independent of the choice of £&. We call it the angle at p subtended by « and
3. It is easily seen that the angle Z, is a pseudo-metric on R, and induces an equivalence
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relation ~ defined as follows: « ~ {3 if and only if Z,(e, 3) = 0. The completion of the

metric space (R, /. ,Z,) 1s denoted by (¥, £, ) and is called the space of directions at p.
For a subset Y of X, let

’Ry. {xeR,| x(0,e]) C Y forsome € >0}.

The space of directions with respect to Y, denoted by ¥ +_; , 1s the completion of the metric
space ’RP o

If p is in the interior of X, then £, is homeomorphic to S', the unit circle in the Euclidean
plane R?. Furthermore, if p is not a vertex of the triangulation of X, then ¥, 18 1sometric to
S'.

For a piecewise Riemannian 2-manifold X and a interior pointp € X, let k(p) = 2n—L(E),),
where L 1s the one-dimensional Hausdorff measure on 2,. k(p) is called the angle excess at
the point p in this paper. It is clear that, if p is not a vertex, then k(p) = (. Note that, when X
1s piecewise flat, k(p) is called the curvature at p in [8]. However, we would like to avoid the
use of the terminology “‘curvature” here to prevent a possible confusion with the Gaussian
curvature at a point in the interior of a 2-simplex.

For a Riemannian manifold without boundary, each geodesic is locally extended in a unique
way, but this does not hold for a piecewise Riemannian manifold. Suppose that a piecewise
Riemannian 2-manifold X has a minimizing geodesic o« with an end point p. If k&(p) > 0, then
it 15 easily seen that « cannot be extended beyond p. On the other hand, if k(p) <0, there are
infinitely many minimizing geodesic-extensions beyond p. In this sense, a point with nonzero
angle excess is “singular”. We define the positive singular set Sing™ (X) and the negative
singular set Sing— (X) of X respectively by

Sing*(X) := {p € )?'J k(p) 2 0},

where }? 1s the interior points of X, and the union of these two sets is called the singular set
and denoted by Sing(X), that is, Sing(X) = Si11g+(X) USing™ (X). Clearly, Sing(X) is a subset
of the vertices of the triangulation of X. It is also clear that there is no positive singular point
on the interior of any minimizing geodesic.

Now we define the total excess of X as follows. Let C(A) be the total curvature of the
Riemannian 2-manifold A with boundary, and e,.,(X) := Zﬂﬂ_mpm C(A) provided the sum
Is absolutely convergent, e, (X) 1= Z;:eSingm k(p) if the sum converges absolutely. Then
the roral excess e(X) of X 1s defined by

e(X) = €ree(X) + €yine(X),

when the sum of the right hand side makes sense.
In other words, for a 2-simplex A of X with the Gaussian curvature G, let Ci(x_’i} =
Jo G+dA, where Gy = max{G,0} and G- = min{G,0}, and e7,(X) := 3" 1 oex C

reg

(A). We also define that ef'f,m(X} L= Z;seSing:m k(p), respectwely Under these notations,
(X) + e% (X) provided the

rey sing

we may describe e(X) as the sum of two quantities eE(X) = eF
sum makes sense:
e(X) = eT(X)+ e (X).
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We illustrate typical cases. If M i1s a Riemannian 2-manifold triangulated by geodesic
triangles, then ey, (M) = 0 and e(M) = C(M), and 1t M is a piecewise flat PL 2-manifold,
then ¢,,,(M) = 0 and e(M) = Z;;eSing{Mzu k(p), the total curvature of M in [8].

Remark. Any piecewise Riemannian 2-manifold is a good surface in the sense of [10], and
the above definition coincides with the one given in [10].

The above remark implies that the following theorems hold. They play the fundamental
role 1n our argument.

A curve ¢ : [a,b] — X 1s called a broken geodesic 1f there i1s a subdivision «
Xo < ...<x, = b such that c| [x;_;,x;] 1S a geodesic segment. The point ¢(x;)(1 = 0,... ,n)
1s called a vertex of the broken geodesic c.

Theorem 2.1 (The generalized Gauss-Bonnet Theorem [10, Theorem 3.1]) Let X be a piece-
wise Riemannian 2-manifold without boundary and Y a compact domain of X such that 9 Y
consists of simple closed broken geodesics without self-intersection. Then

e(Y) = 2mx(Y) = »  6%(p),

peody

where 8" (p) = 1 — L(X)).

Remark. For a Riemannian 2-manifold X and its compact domain Y, the nontrivial contri-
bution to the sum of the above equality 1s made only at the vertices of the broken geodesics.
However, 1n our setting, a geodesic may pass through points of negative singularity and those
singular points may contribute to the sum. Nevertheless, if p € 9 Y \ Sing(X) is not a vertex
of 9 Y, the boundary of Y, then 6" (p) = 0. Since there are only finitely many singular points
on @ Y, the second term of the right side of the above equality makes sense.

In what follows, for brevity, >, ¢ f(p) is often denoted by > ¢ f for a functionf : § — R

defined on a set S. For example, E;:ea » 07 (p) is abbreviated to Doy 0.

The following is an estimate of total excess for non-compact case.

A noncompact topological 2-manifold is said to be finitely connected if 1t is homeomorphic
to a compact 2-manifold with finitely many points removed. If not, it is said to be infinitely
connected.

Theorem 2.2 (Generalizations of the theorems of Cohn-Vossen and Huber [10, Theorem 4.1])
Let X be a piecewise Riemannian 2-manifold without boundary which admits total excess.

(1) If X is finitely connected, then e(X) < 27ty (X).
(2) If X 1s infinitely connected, then e¢(X) = — .

Remark Theorem 4.1 in [10] requires the hypothesis e(;, ,(X) > —~c, but the above theorem
1s valid without this assumption in our setting. See Remark after Theorem 4.1 in [10].

The above theorem implies that a piecewise Riemannian 2-manifold admits a total curvature
if and only if e™(X) < ~. Therefore we have the following;

Proposition 2.3 Let M be a compact orientable piecewise flat 2-manifold without boundary
and let M be the universal covering space of M with the induced triagulation and the induced
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metric. If M is non-compact, then M admits total excess if and only if k(p) < O for any vertex
p. Further, e(M) is finite if and only if M is a flat torus.

Proof. Let 7t : M — M be the covering map. If there exists a vertex p € M such that k(p) > 0,
then each point p € 71~ '(p) has the positive angle excess and hence e”m(X) = . The first
assertion follows from this and the above comment. Similarly, if k(p) < O for a point p of M,
then eq,”{;(ﬁ;") — —o¢. Thus if E‘([‘:Q() 1s finite, then k(p) = O for any vertex p, and similarly we
have e, g(M) 0. The generalized Gauss-Bonnet Theorem 2.7 implies that such a surface is
homeomorphic to a flat torus.

3. AUXILIARY LEMMAS

The following 1s an analogue of a lemma due to Cohn-Vossen |7] for Riemannian 2-
manifolds. The proof of the Riemannian case depends on the first variation formula which is
not available in our setting, and hence we need some modification of the proof.

In what follows, for a curve « : [a,b] — X, we define the inverse o~ : [a,b] — X of
by o= '(t) := a(a + b — 1).

Lemma 3.1 Let X be a piecewise Riemannian 2-manifold without boundary. Fix a ray
vy : [0,x) — X and p € X arbitrarily. For any r 2 0, let o, denote a minimizing geodesic
segment from p to y(f). Then for any € > 0, there exists a sequence {t;{ with ; — ~ such
that

Lyap(op (v 10,57 ) < e

Proof. Let f(7) be a distance from p to y(¢), namely f(z) := d(p,y(#)). The triangle inequality
implies that f 1s Lipschitz continuous with the Lipschitz constant 1, so is differentiable almost
everywhere. First we prove that

ess-limsupf'(r) = 1. (%)
[— >
In fact, suppose that & := ess-limsup,_, . f'(f) < 1. Then, forn := (1 — «) /2 >0, there
exists a positive number #,, such that f'(s) < o + 1 for almost all s > t,. Then

[im m Iim — { / F'(s)ds +f(0)}

t—>  f f—2> T

< 11m — / £ (s)ds + / (o +mn)ds + f(0)

=x+n<l.

Similarly, if &« > 1, then lim,_ . f(t) /1t > 1.
On the other hand, we have t — f(0) < f(r) £ t+ f(0), and hence f(t) /t tends to 1 as
t — . This contradicts the above and completes the proof of ().

Now suppose that one cannot choose a sequence as in the conclusion. Then there exist two
constants 6 >0 and 1y > 0 such that for any 7 > 1,

(1) = Lya(o7 ' (v] 0,7 >2
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We may assume that 0 < 7t, and we put € := 1 — sin((7t — ) / 2) > 0. By the above property
(), there exists a large number #; >y such that

| — e <f'(1)

for almost all # > ¢,. Then for any # >, and s > 0, we have

45 TE b
f(t+s)—f(1) = / f'(u)du > / (1 —e)du = (1 — ¢€)s,

which 1mplies
SE>f(t)+ s —f(t+5).

Choose a large t > t; > 1y as follows: y(7) 1s not a singular point and there exists a neighbor-
hood U of y(¢) such that each of the two components of U \ vy is contained in a 2-simplex
respectively. Such a choice 1s possible since the set of all points on y without such neighbor-
hood has measure zero. Let g, := o,(f(¢) — s), a point on ¢,. Then three points ¢, y(¢) and
v(t+s) lie in a 2-simplex for sufficiently small s. Estimating d(qg,, y(f+ s)) by the Riemannian
metric on the 2-simplex containing these points, we have

"—/’r{r](ﬁrl Y| (t,t + s]) 5
5 Fo(s7).

d(gs,y(t + 5)) = 2ssIn

Since ZT(”(E‘F,—I VY (1.1 + 5] = =) <7t—2d, we have d(gy, Y(t+5)) < 2s sin((1t—0) / 2)
if s 1s sufficiently small. Now we derive a contradiction as follows:

0 < dp,qs) +dgs, vt +5) —d(p,y(t + 5))

{:.f(f) — 5 + 2.‘? ‘alI'} n 2 _f(f + S)
= (f(t) + s — f(t+5)) — 2s(]1 — sin T 6)
<se — 2se = —se <0,

This completes the proof.
Next we investigate a measure of rays, which plays an important role in proving Theorems
A and B.
Let X be a piecewise Riemannian 2-manifold without boundary having one end. For a
point p € X, let R, be the set of all points on rays emanating from p:

R, = U{y([0,2¢))| v is a ray with y(0) = p}.

[t is easily seen that R, is a closed subset of X and each component of X \ R, is bounded by
rays.

LLemma 3.2 Assume that X has finite total excess. Fix a point p € X, and let D be a component
of X \ R, and yo and vy, be the rays such that 9 D = vy U vy,. If X'\ D is homeomorphic to
the closed half-plane, then

e(D) = 2m(x(X) — D+ LEDH - Y 6,
oD\ {1}
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where Bﬁ(x) = 7T — L(E?).

Proof. The basic scheme of the proof is similar to those for the Riemannian manifolds (cf.
[11], [12, Lemma 3.1.1] and [13]).
First note that D is finitely connected with x(X) = x(D). Since D has one end, two

geodesics yg and y; define the same end of D. Hence for any >0, there exists a curve
b, : 10, 1] — D such that

bi(0) = vo(5), b(1) = v,(t) and d(p,b,([0,1])) 2 1.

Since there 1s no ray in D emanating from p, one can see that for any € > 0, there exists a
number f. > 0 such that

éﬁ(“h?ﬂ){e/z or Z;J(“E&Y]){E/zt

for any 1t > t., any x;, € b,([0, 1]) and any geodesic &, from p to x;. Notice that, for ¢t > 1., the
set

i = {5 c [0,1]

there exists a geodesic « from p to b,(f;)}
such that Z,(x,y;) <€ /2

1sopen in [0, 1] for i = 0, 1, and the union of these sets 1s [0, 1]. The connectedness of [0, 1]
implies that there is a point x, € b,([0, 1]) and some geodesics «, and 3, from p to x, on D
such that

Zy(0,v0)<€/2 and Z,(B,,v1)<e/2. (1)

Here note that if o(r) = 7yo(r) for some r>0, then o([0,r]) = vo([0,r]). Similarly if
B;(t) = v, (r) for some ¢ > 0, then B,([0, ¢]) = v, ([0, ¢]).

Then, for a decreasing sequence €; — 0, we can choose an increasing sequence f; := f, —
~ and a pointx; € b, ([0, 1]) and geodesics «; and [3; from p to x;; satisfying the condition (1)
for €;. Note that &; — y¢ and [3; — vy, by the definition of D. In fact, since «; is contained
in D, the ray «.. converging (a subsequence of) «; 1s so. This implies that o 18 yy.

Let D; be the compact set bounded by the union «; U [3;. By taking a subsequence if
necessary, we may also assume that {D;} is monotone increasing and U;D; D D. Therefore
by Theorem 2.1, we have

e(D) = lim e(Dj)

J—x

. D, D, ,
- j!_tn;{Q?T(X(Dj) — D)+ L(Z)") + (L) — Z gP }

L

oviUf3;

2 2n(x(D) — 1) + L(Ef) — lim { Z 8””}.

j—x

rli'jUf';;
We compare the last term of the above with ) D\ {p) 0P

Let 7o := sup{r € [0,>)| &;(z) = yo(z) for some j}. We divide our argument into two
cases concerning f.
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Case 1. 1y = oc.
Let {#;] i € N} be a monotone divergent sequence. Then for any f;, there is a number j(i)

such that o (#;) = vo(t;). Note here that o) (0,1;,] = Yol [0, 7;]» by the choice of ;.

On the other hand, since e(X) is finite, it 1s clear that for any € > 0, there exists a compact
set K such that | e(X \ K)| < €. This implies, for example, that lim;_. .. OLiin =
where My - = d({),.l'ﬂ”),

From these facts, we have

lim § 9P = lim § - 0P + lim § P
| = C [— D | —

i ((0.4;]) i .mijiy))

lim ) 67

Yol (0.1;])

Z QP

Yo\ {r}

CYiii)

|

Case 2. 1, 1s finite.
: : D; _ L
First we show that lim;_, Zﬂj{(mmj” 0% = 0, where m; := d(p, x;).

For any 7 > 1, there exists a tubular neighborhood N, of vy, ([0, 7]) such that
NI M Smg(X) C Yﬂ([oa IJ)}

because Sing(X) is a discrete set and y(([0, ¢]) is a compact set. Recall that the sequence { o}
converges to yo. Then for any ¢, there 1s a number j(7) such that ;([0, ¢]) C N, for any j > j(1).
Since N, has singular points only on 7y, there 1s no singular point on «;(zy, f] for any j > j(¢),
that is, 3°, (.1 0” = 0 for any j > j(¢). Furthermore, together with a finiteness of e(X), we

M D _
can conclude that lim;—.o 3~ (.m0 = 0.

Now we claim that 0°(y(7)) = O for any 7 > 1.

Suppose that 8°(y(r)) < 0 for some t>1y. Then there exists a point x € D such that
L(ET ) > 70, where E is a subset of D bounded by vy,, (‘Yo [0, r'l)_l and S(yo(?)), where vy, 1s
a geodesic segment from yo(f) to x and S(yo(t)) 1s a geodesic sphere centered at yo(f) with a
radius d(yo(?),x). As U;D; D D, there 1s a sufficiently large jo such that x € D;,. However,
this implies that ;, ([0, ¢]) = yo([0, 1]), since Nj,, \ {p} has no positive singular point. This
contradicts the choice of 1.

Therefore we have

D, _ D, D;
im S @=im| S0 3 e

axj((0.m;j)) a;i((0.10]) cvi((tg.m;))

Z e!)

Yol((0.19])

— Z ef)i

Yo\{P}

The same 1s valid for 3; and 'y, and we have

e(D) 2 21e(x(X) — 1) + L(ZP) — > ev
o D\{p}
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Next we will prove the reverse inequality.
From Lemma 3.1, for a decreasing sequence {¢;} tending to 0, we obtain a divergent
sequences {m;} and {»;} such that

— | — |

{ T!J — er”(mj}("}/{j!f Y {TJ ){ EJ'!
—1 — 1

Wy = Z'rl{u,;-}(Tj v Y1 ) < €j,

where 0; and T; are geodesic segments from x; to yo(m;) and 'y (n;) respectively, and yg; 1=

Yol [0, m;] ] and yy; == vy [0, n;) . We may assume that o;, T;,y¢; and y); have no common

points except their end points. Let E; be the compact domain bounded by v¢;, 0j, T; and 7y ;.
Then, from Theorem 2.1, we can estimate e(D) as follows:

e(D)

= lim ¢(E;)
j—x

— llm {ZWX(E) — (71 — L("—"Fj)) — (11 — T]!) — (11 — W; )

j—x
— (= (2 r))_ Z e.-‘_'. _ Z E‘Ef}

s

'}“n;U'Tl; ” T,
=27(x(D) — 1) + L(Z)) — Z S Jim_{(zn L(S7)) — Z 9;;_,}
op\ip} 02
S2n(x(D) - D+ LE) - ) 6P,
oD\ {p}

The last inequality comes from the finiteness of e(X). This completes the proof.

4. PROOFS OF MAIN THEOREMS

In this section, we prove Theorems A and B. If a piecewise Riemannian 2-manifold has at
least two ends, then 1t always contains a straight line. Hence in the sequel, we confine our
consideration to piecewise Riemannian 2-manifolds without boundary having one end. First
we prove the following

Theorem A. Let X be a piecewise Riemannian 2-manifold without boundary having one end.
If X admits total excess and contains a straight line, then e(X) £ 27(x(X) — 1).

Proof. The proof is a straightforward modification of that of Riemannian case via Lemma
3.2.

To prove this it 1s sufficient to consider the case that e(X) 1s finite. Therefore, from Theorem
2.2, we assume that X 1s finitely connected and has the finite total excess. Fix a small number
e >0 arbitrarily. Then there exists an increasing sequence {K;} of compact domain of X
bounded by simple closed broken geodesics without self-intersection satisfying the following
three conditions:

(1) UX,K =X,
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(2) X\ K; is homeomorphic to S' x R for any j,
(3) |e(X \ K;)| < € for any j.

Lety : R — X be a straight line in X. We may assume that K; Ny # (). By the condition
(2) above, the straight line y separates X \ K; into two components A; and B;. For any j, we
take a large f; such that the points y(#;) and y(—¢;) are on the “opposite sides” with respect to
K; N y. Furthermore from Lemma 3.1, we can take #; satisfying that

Loy—i)(Pj, @) < e and Zy (P7', 07 1) <,

where P; and Q; are curves in A; and in B, respectively, from y(—t;) to y(z;) of minimal
length.

Let D; be a compact domain bounded by P; and Q;. It 1s easily seen that, for any point
x € aD; \ {y(£t)}, we have L(Efwf) > 7, that is, 85\2(x) < 0, since P; and Q; have
minimal lengths. Hence 02(x) = k(x) — 8°\Pi(x) 2 k(x). Since e(X) is finite, for any
sufficiently lali*gej, we have Zaﬂj\{ﬂ:{:g)} k>—¢.

Then applying Theorem 2.1, we obtain

e(D)) = 2mx(D)) — 0P (y(;) — OV (y(—p) — Y oP
a D\ {~(x1)}
S 2n(x(D;) — 1) + 2¢ — Z oDl
O D\ {v(£1)}
S 2n(x(Dj) — 1) + 2e — Z k(v)
d D\ {v(£1)}
< 2n(x(Dj) — 1) + 3e.

This implies that e(X) S 2(7tx(X) — 1) 4+ 3€. Since € is arbitrary, the conclusion follows.
In the rest of this section, we study the converse of the above result.

Theorem B. Let X be a finitely connected piecewise Riemannian 2-manifold without boundary
having one end. If X admits total excess e(X) which is smaller than 27t(x(X) — 1), then X
contains a straight line.

Proof. It is sufficient to show that there exists a compact set K in X through which there is a
ray y emanating from any point p € X \ K.

Indeed, let us suppose that there exists such compact set K. Then for a divergent sequence
{pj} on X'\ K, there is a ray y; from p; such that y; N K # (). Since K is compact, we can
choose a subsequence of {y;} which converges to a straight line vy.

We divide our argument into the following two cases.

Case 1. e (X) 1s finite.

Lete := {2n(x(X)—1)—e(X)} /2 > 0. There exists acompact domain K bounded by finite
number of simple closed broken geodesics without self-intersection satisfying the following
two conditions:

(1) e7(K)<e™ (X) + ¢,
(2) X \ K is homeomorphic to S' x R.
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We will show that K is the required set. Suppose that there exists a point p € X \ K from
which there 1s no ray through K. Let E be the closure of the component of X \ R, containing
K and « and [3 be rays from p such that 9 E C o U f3.

[t £1s bounded, then there are two non-negative numbers s, 5> such that 9 £ = «([s,52])U

B([s1,s2]). Let 8; = £, (x([s1,52]), B([51,52])), where p; = «(s;) and i = 1,2. Then

e(E) = 2mtx(X) — (m— 8)) — (1 — 85) — > oF
a(ls) . DUAs s D\{p1 2}

2 2n(x(X) — 1.

[f £ is unbounded, then there is a non-negative number s such that 9 £ = «([s,>)) U

B([s,oc)). Note that there 1s no ray emanating from pg := «(s) on E except « and 3. Hence
by Lemma 3.2,

e(E) = 2m(x(X) — 1) + L(EE) — Z of
o\ {po}
2 21(x(X) — 1),

where the above inequality follows from the fact that (£ ) 2 0 and 8°(¢) £ 0 for any
q€ 3D\ {po}.

On the other hand, since eT(E) < eT(X) and e (E) £ e~ (K) < e~ (X) + €, we have that
e(E)<e(X)+ € <2m(x(X) — 1), which is a contradiction.

Case 2. e (X) = —x.

Since X admits total excess, we have e¢™(X) < . Take sufficiently large R > ¢ (X) and
choose a compact set K bounded by finitely many simpie closed broken geodesics without
self-intersection satisfying the following two conditions:

(1) e7(K) <2n(x(X) — 1) — R,
(2) X\ K is homeomorphic to §' x R.

We will prove that K 1s the desired compact set in this case. As in Case | we suppose that
there exists a point p € X \ K from which there is no ray through K. Then taking a closed
domain E and tworays « and {3 in the same way as in Case 1, we have that e(E) 2 27(x(X)—1)
similarly. On the other hand, we have

e(E) = et (E)+ e (E) £ eT(X) + e (K)

<et(X)+2m(x(X)—1)—R
< 21(x(X) — ).

This 1s a contradiction, and we complete the proof of the theorem.

Remark The Euclidean plane R? is a trivial example with straight lines such that ¢(R?) =
27t(x(R?) — 1) = 0. On the other hand, the second author constructed in [11] a Riemannian
2-manifold M which is homeomorphic to R* and satisfies C(M) = e(M) = 0 and does not
contain a straight line. This indicates that the hypothesis e(X) < 27t(x(X) — 1) above cannot
be replaced by e(X) S 2m(x(X) — 1) to conclude the existence of a straight line. The idea

used in that construction can be applied to construct a piecewise flat example, but we omit
the detail here.
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