EXPONENTIAL BOUNDS FOR THE DISTRIBUTION OF THE NORM OF SUBGAUSSIAN RANDOM VECTORS

RITA GIULIANO ANTONINI

0. INTRODUCTION

Let X be a real random variable, subgaussian in the sense of [1]. It is shown in [1] that

$$P(|X| > t) \leq 2 \exp \left(- \frac{t^2}{2\tau^2(X)} \right) \quad (0.1)$$

where $\tau(X)$ is the gaussian standard of X.

Two classes of subgaussian Banach space-valued random vectors are defined in the paper [2]; for both of them it is proved that $E[e^{\varepsilon \|X\|^2}] < \infty$ for some ε. This yields

$$P(\|X\| > t) = P(e^{\varepsilon \|X\|^2} > e^{\varepsilon t^2}) \leq E[e^{\varepsilon \|X\|^2}] \exp(-\varepsilon t^2) = k \exp(-\varepsilon t^2). \quad (0.2)$$

Bounds of the type of (0.1) or (0.2) are what we call exponential bounds. In this paper we derive an exponential bound for the distribution of $\|X\|$, where X is a subgaussian \mathbb{R}^n-valued random vector, and we identify the numbers k and ε of (0.2).

Our bound will appear as a generalization of (0.1); it can be used for estimating the tail distribution of $\|X\|$ in various contexts (e.g. in the study of the asymptotic behaviour of subgaussian processes).

1. THE MAIN RESULT

Let X be a random vector taking its values in \mathbb{R}^n, subgaussian in the sense of [3], i.e. we assume that there exists a symmetric positive definite $n \times n$ matrix R such that

$$E[e^{<x,X>}] \leq \exp \left(\frac{1}{2} \left< Rx, x \right> \right) \quad (1.1)$$

for all $x \in \mathbb{R}^n$ (we shall say also that X is subgaussian with respect to R).

In what follows, the term “vector” will always mean “column vector”. We shall adopt the following conventions.

Let k be an integer, with $0 \leq k \leq n$, and denote by I the set

$$I = \begin{cases} \{i_1, \ldots, i_k\} & \text{for } k \geq 1, \\ \emptyset & \text{for } k = 0 \end{cases} \quad (1.2)$$

1This paper is partially supported by GNAFA, CNR and MURST.
where i_1, \ldots, i_k are integers such that $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Consider the $n \times n$ matrix $M_I = \{m_{ij}^{(I)}\}$ with

$$m_{ij}^{(I)} = \begin{cases} 1 & \text{for } i = j \notin I \\ -1 & \text{for } i = j \in I \\ 0 & \text{elsewhere.} \end{cases}$$

Clearly $M_{\emptyset} = Id$, while in the other cases the action of M_I on any vector $\tilde{x} = (x_1, \ldots, x_n)^T$ is to change the sign of x_{i_1}, \ldots, x_{i_k}. When there will be no risk of confusion (i.e. when I is fixed) we shall denote by $\tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_n)^T$ the vector $M_I \tilde{x}$.

Let now $R = \{r_{ij}\}$ be any $n \times n$ matrix. We shall denote by R_I the matrix $M_I R M_I$. Let $\xi^{(n)}$ be the vector in \mathbb{R}^n whose components are all 1. We shall say that R has property P iff for every I, the vector $R_I^{-1} \xi^{(n)}$ has all strictly positive components and the same happens for each of the diagonal submatrices of R (obviously, for each submatrix, I is a subset of the set of its indexes; moreover, the vector with all components 1 and M_I have the suitable order, i.e. the same as the submatrix).

The main result of this paper is the following

Proposition 1.3. Let $X = (X_1, \ldots, X_n)^T$ be subgaussian with respect to R and assume that R has property P; then, for every $t > 0$, we have

$$P(\|X\| > t) \leq \frac{3^n + (-1)^{n-1}}{2} \exp \left(-\frac{t^2}{2n} \alpha \right)$$

(1.4)

where α is a number, depending only on R, that will be identified in the course of the proof.

We shall use the following

Lemma 1.5. Assume that X is subgaussian with respect to R. Let $\xi^{(n)}$ be the vector in \mathbb{R}^n whose components are all 1, and assume that, for every I, the vector $R_I^{-1} \xi^{(n)}$ has all strictly positive components. Then, for every $t > 0$, we have

$$P(\|X_1\| > t, \ldots, \|X_n\| > t) \leq 2^n \exp \left(-\frac{t^2}{2} \beta \right)$$

(1.6)

where

$$\beta = \min_I < R_I^{-1} \xi^{(n)}, \xi^{(n)} > .$$

For the proof of (1.5), we need another

Lemma 1.7. Assume that X and R are as in (1.5), and put $\tilde{X} = (\tilde{X}_1, \ldots, \tilde{X}_n)^T = M_I X$.

Fix $u = (u_1, \ldots, u_n)^T$ with $u_i \geq 0$ for every $i = 1, \ldots, n$, and assume that $R_I^{-1} u$ is a vector with all positive components. Then

$$P(\tilde{X}_1 > u_1, \ldots, \tilde{X}_n > u_n) \leq \exp \left(-\frac{1}{2} < R_I^{-1} u, u > \right).$$
Proof of (1.7). For every \(\lambda = (\lambda_1, \ldots, \lambda_n) \) with \(\lambda_i > 0 \) for every \(i = 1, \ldots, n \) we have

\[
P(\hat{X}_1 > u_1, \ldots, \hat{X}_n > u_n) = P(e^{\lambda\hat{X}_1} > e^{\lambda_1 u_1}, \ldots, e^{\lambda_n \hat{X}_n} > e^{\lambda_n u_n}) \leq \]
\[
E[e^{<\lambda, X>}] \exp(-<\lambda, u>) = E[e^{<\lambda, M\xi>}] \exp(-<\lambda, u>) = \]
\[
E[e^{<M\lambda, X>}] \exp(-<\lambda, u>) \leq \exp \left(\frac{1}{2} <RM\lambda, \lambda> - <\lambda, u> \right) = \]
\[
= \exp \left(\frac{1}{2} <RM\lambda, \lambda> - <\lambda, u> \right) = \exp \left(\frac{1}{2} <R\lambda, \lambda> - <\lambda, u> \right). \]

By minimizing in \(\lambda \), we find that the minimum of the last quantity is attained in \(\lambda = R^{-1}u \), and is equal to

\[
\exp \left(\frac{1}{2} <R^{-1}u, u> - <R^{-1}u, u> \right) = \exp \left(-\frac{1}{2} <R^{-1}u, u> \right). \]

\(\square \)

Remark 1.8. The above lemma is proved in [4] in the particular case \(I = \emptyset \).

Proof of (1.5). By writing

\[
\{|X_i| > t\} = \{X_i > t\} \cup \{-X_i > t\},
\]
it is easy to see that the probability in (1.6) can be split into sum of \(2^n \) terms; each of them is of the form

\[
P(M_i X \in (t, +\infty)), \tag{1.9}
\]
where \(I \) is a suitable set of indexes, of the type considered at the beginning of this section.

Suppose now \(I \) fixed, so that (1.9) can be written in the more understandable form

\[
P(\hat{X}_1 > t, \ldots, \hat{X}_n > t) \tag{1.10}
\]
and let \(t \) be the vector in \(\mathbb{R}^n \) with all components equal to \(t \).

Then \(t = t \xi^{(n)} \), and, by lemma (1.7), (1.10) is not greater than

\[
\exp \left(-\frac{1}{2} <R^{-1}t, t> \right) = \exp \left(-\frac{t^2}{2} <R^{-1} \xi^{(n)}, \xi^{(n)}> \right) \leq \exp \left(-\frac{t^2}{2} \beta \right). \]

\(\square \)

We are now in a position to prove (1.3).

Let \(C_t \) be the closed ball in \(\mathbb{R}^n \) centered at the origin and having radius \(t \), and \(Q_t \) the cube

\[
Q_t = \left\{ (x_1, \ldots, x_n) : |x_i| \leq \frac{t}{\sqrt{n}} \text{ for every } i = 1, \ldots, n \right\}.
\]
Then $Q_t \subset C_t$, so that

$$P(\|X\| > t) = P(X \in C^C_t) \leq P(X \in Q^C_t) \leq P \left(\bigcup_{i=1}^{n} \left\{ |X_i| > \frac{t}{\sqrt{n}} \right\} \right). \quad (1.11)$$

By the inclusion-exclusion formula, the last probability in (1.11) is not greater than

$$\sum_{i=1}^{n} P \left(|X_i| > \frac{t}{\sqrt{n}} \right) + \sum_{1 \leq i < j < k \leq n} P \left(|X_i| > \frac{t}{\sqrt{n}}, |X_j| > \frac{t}{\sqrt{n}}, |X_k| > \frac{t}{\sqrt{n}} \right) + \ldots \quad (1.12)$$

In order to make our reasoning as easy as possible, we focus our attention, for a moment, on the term

$$P \left(|X_1| > \frac{t}{\sqrt{n}}, |X_2| > \frac{t}{\sqrt{n}}, |X_3| > \frac{t}{\sqrt{n}} \right).$$

It is easy to see that the 3-dimensional vector (X_1, X_2, X_3) is subgaussian with respect to the 3×3 submatrix of R obtained by cancelling all rows and columns in it, except the ones having indexes 1, 2, 3. Hence we can apply lemma (1.5) to the vector (X_1, X_2, X_3), and we get

$$P \left(|X_1| > \frac{t}{\sqrt{n}}, |X_2| > \frac{t}{\sqrt{n}}, |X_3| > \frac{t}{\sqrt{n}} \right) \leq 2^3 \exp \left(-\frac{t^2}{2 \sqrt{n} \beta_{1,2,3}} \right),$$

where $\beta_{1,2,3}$ is defined as β of lemma (1.5).

The above argument applies to every vector of the form (X_i, X_j, X_k), so that we can write

$$\sum_{1 \leq i < j < k \leq n} P \left(|X_i| > \frac{t}{\sqrt{n}}, |X_j| > \frac{t}{\sqrt{n}}, |X_k| > \frac{t}{\sqrt{n}} \right) \leq \sum_{1 \leq i < j < k \leq n} 2^3 \exp \left(-\frac{t^2}{2 \sqrt{n} \beta_{i,j,k}} \right) \leq \binom{n}{3} 2^3 \exp \left(-\frac{t^2}{2 \sqrt{n} \beta_3} \right),$$

where

$$\beta_3 = \min_{i,j,k} \beta_{i,j,k}.$$

One can reason the same way for each sum appearing in (1.12), and obtains that (1.12) is not greater than

$$\sum_{k=0}^{[n-1]/2} \binom{n}{2k+1} 2^{2k+1} \exp \left(-\frac{t^2}{2 \sqrt{n} \beta_{2k+1}} \right).$$

Put

$$\alpha = \min_k \beta_{2k+1}.$$

Then the above sum is majorized by

$$\left(\sum_{k=0}^{[n-1]/2} \binom{n}{2k+1} 2^{2k+1} \right) \exp \left(-\frac{t^2}{2 \sqrt{n} \alpha} \right) = \frac{3^n + (-1)^{n-1}}{2} \exp \left(-\frac{t^2}{2 \sqrt{n} \alpha} \right),$$

where the last equality is easily proved by induction on n. \qed
REFERENCES

R. Giuliano Antonini
Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti 2
56100 Pisa
ITALY