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SUPPORT FUNCTIONAL AND DUAL CONE WITH APPLICATION

J.CEL

Dedicated to Professor Dr. Wilhelm Stoll on the occasion of his 75th birthday

Abstract. The theory of the Minkowski support functional and the dual cone is developed in
general linear spaces. Properties of the support functional are then used to establish certain
theorems of combinatorial geometry which hold in infinite dimensions.

1. INTRODUCTION AND NOTATION

We start with some basic terminology. K will always denote the field of real or complex
numbers. For a linear space E over K, E* will denote the algebraic dual of E. If Fis a
topological linear space over K, then E' is its topological dual. By a flat in E we mean a
translate of a linear subspace of E. For a subset § of E, $ will denote its algebraic hull, 1.c.
the set of all points y € E for which a nondegenerate half-open real line segment [x,y) C §.
Following [8] and some earlier works, for a convex subset S of £ and a point «7 in S, we denote
by S¥ the union of all closed real halflines emanating from w in S and call the characteristic
cone of § at u. The reader 1s referred to [11], [15] and | I7] tor other definitions and concepts
used below.

The purpose of this paper is to provide the reader with a detailed list of properties of the
Minkowski support functional and the dual cone. The theory is developed in general linear
spaces over K (cf. [1], [12], [17] for a finite-dimensional case and [2,Chap.I1.Exc.56.9],[5]
for some extensions), and then its sample is used to establish three theorems of combinatorial
ceometry valid in infinite dimensions. Further such applications, including the infinite-
dimensional extension of Valentine’s proof of Horn’s generalization of Helly’s theorem [16],
[ 17] are expected.

2. DEFINITION AND PROPERTIES

In the present section we develop the theory of the support functional and the dual cone

in full generality. The basic definition and some of the properties are known in the finite-
dimensional setting [1,54], [12], [17,V].

Definition 2.1. Let S be a nonempty subset of a linear space E over I< and F a linear subspace
of E*. Define the support functional of S on F by

hs(u) = supyes(Re(u, x)) < x (1)
for u € F, and the dual cone of S by

C(S) = {(z,u) € K x F: Rez > hs(u)} (2)
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Moreover, let C(D) =K X F.

Proposition 2.2. The domain of definition Dom(hg) of the support functional hs given by (1)
is a convex possibly degenerate cone in F with apex at o. The functional hg is sublinear in
Dom(/g).

Proof. Of course o € Dom(hs). If u € Dom(hg) and A is a real nonnegative number,
then hg(Au) = supyes(Re(Au,x)) = A supyes(Re{u,x)) = Ahg(u) < x, i.e. Au € Dom(hys),
hs 1s positively homogeneous in Dom(/s) and Dom(hg) is a cone at o, If u,v € Dom(hg)
and «, [3 are real nonnegative numbers, then hs (au + Bv) = sup,es (Re{oxu + Bv,x)) =
supyes(xRe(u,x) + PRe(v,x)) < o supyes(Re(u,x)) + B supyes(Re(v,x)) = ohg(u) + 3
hs(v) < oc,i.e. au + v € Dom(hg) which means, taking « + 3 = 1, that Dom(hy) is convex
and hg 1s subadditive, as desired. Observe finally that Dom(/ig) = {o}.

Proposition 2.3. Let S, 7,5.,(x € A) be subsets of a linear space E over K. The following
assertions are true:

(a) if S C T, then C(T) C C(S),

(b) C(Uﬁe.ﬁfl Sa) = nﬁEA C(Sa),

(¢) for every x in E, C({x}) is a real algebraically closed halfspace in K x F,

(d) CS) =K x Fifandonlyif S = 9,

(e) C(E) = {(z,0) € K x F: Rez > 0},

(/) C(S) is an algebraically closed convex cone in I X F at (0, o),

(2) C(S) = C(convS) = C(§9),

(h) hs = heonvs = hga,

(i) for every xo in E and u in F, hgy,,(u) = hs(u) + Re{u,xy) and Dom(hsy, ) =
Dom(hy),

() if § is a flat in E of finite codimension n(0 < n < dimkE) and hg is defined on E™,

then {Reu : u € Dom(hs)} is an n-dimensional linear subspace of E*.

Proof. We will successively justify the assertions.

It § = @, then (a) holds by definition, so that let § and 7 be nonempty. For (z,u) €
C(T), Rez > hy(u)= supyer(Re{u,x)) > sup,es(Re(u,x)) = hg(u), i.e. (z,u) € C(S) and (a) is
established.

Let us prove that ﬂﬂ ca CSa) C c\J, cA S« ). Suppose, without loss of generality, that
no S, 1s empty. Select (z,u) € C(S,) forall x € A. If Rez< SUP, ¢| J Sﬂ(Re*(u,,r)),

o e A

then for some point y € |J, c 48, i.e. y € S,, for some index xy € A, we have
Rez < Re(u,y) < SUPes,, (Re{u,x)), whence (z,u) € C(S,,), a contradiction. Consequently,
(z,u) € C(qu.;.\ S«~) implying the desired inclusion. Since, by (a), the reverse inclusion is
immediate, (b) 1s established too.

Now observe that C({x}) = {(z,u) € KX F : Re(z— (u,x)) > 0} and v = Re(z — (u,y)) is
a real-valued linear functional on K x F, so that C({x}) is a real algebraically closed halfspace
in < x F (cf. [11,816.3]) which establishes (c).

Let in turn C(S) =K x F. If § # @, say x € §, then, by (a), C(S) C C({x}), a contradiction
since, by (¢), C({x}) is a halfspace in K x F. On the other hand, C(&) = K x F by definition,
and (d) 1s proved.

Let us consider (e). It follows from (b) that C(E) = ﬂ.rEE C{{x}) = ﬂ_rgﬁ{(z&,u) €
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X x F: Re(z — (u,x)) > 0}. The inclusion {(z,0) € K x F: Rez > 0} C C(E) is therefore
clear. Conversely, let (z,u) € C(E), so that in particular Rez > Re{u,o) = 0. If u were
nonzero, then Re(u,xo) >0 for some point xo € E, xo # o. But (z,u) € C({xg}), so that
Rez > Re(u,xp) > 0. Then however taking x; = 2xgRez /{u,xo), we have Re(z — (u,x)) =
—Rez <0, a contradiction with (z,u) € C({x,}). Hence, u = o and (e) is justified.

For § # @, by assertions (b) and (c), C(S) is the intersection of a nonempty family of
algebraically closed halfspaces in [K x F containing (0, o) on their boundaries, so that it is a
convex cone at (0, o). Take a point g € C(S)* ~ C(S). By assumption, [p,g) C C(S) for some
point p € C(S), p # q. Any algebraically closed halfspace determining C(S) contains [p, ¢),
so that also [p, g], whence g € C(S), a contradiction. Hence, C(S)* C C(S). Since the reverse
inclusion is obvious, C(S) is algebraically closed, as desired.

We prove (g). First, we aim to show that C(S) = C(S%). Suppose for nontriviality that
S # § # @ and select any point x € § ~ §. Then there is a point w, € S such that
[wy,x) C S and, by (b), C(§%) = ﬂ_TES{, C({x}) = (Nes CHxP N ﬂl_esuwﬂ. C({x}) = ﬂ_\_EH
C({x}) n ﬂ.tES“wSmrE[u'_P,tI C({r}). Now observe that ﬂrew-]..ﬂ C({t}) C OIEIH'..J‘} C({t}).
To prove the reverse inclusion fix (z,u) € ﬂ,El“,‘_ﬂ C({t}), i.e. forall 0<A < 1 we have
Rez > Re{u,Aw, + (1 — A)x) = ARe{ut,w,) + (1 — MRe{u,x). The continuity of the right-
hand side with respect to A implies that the last inequality holds for all 0 < A < I, whence
(z,1) € (e, C{1}), as desired. Consequently, C(S“) =(,cs CHXP N Ncgoms Nicpm v
C({t}) = Nyes C({x}) = C(S) and we are done. The inclusion C(convS) C C(S) is obvious by
(a). Now let S # @ and (z,u) € C(S5), i.e. Rez > Re{u,x) forall x € S. Select any point /i €
convS. By Carathéodory’s theorem [17,Th.1.21], 7 = >~°_, aux; forsome v; € S, S0 o =
l and o; > OG = 1,...,n), so that Re(u,h) = >, oRe{u,x;) < Rez Yo, = Rez
implying (z,u) € C(convS). In consequence, C(S) = C(convS) and (g) is proved.

The inequalities s <hg and hg < heonvs are immediate since S € S“ and S C convS.
Suppose for example that hg(u) <hg(u) for some u € F. Then there is z € K such that
hs(u) < Rez < hg(u), 1.6. (z,u) € C(S) ~ C(SY), a contradiction, because C(S) = C(5%)
by (g). Hence, hg = hge, as desired. The proof of hg = heones proceeds analogously. (h) is
therefore established.

Observe that hgyy (1) = Supyesty,(Re{u,x)) = supy_y,es(Re(u,x — xg)) + Re(u,xo) =
hs(u) + Re(u, xo) and hgy (1), hg(u) are simultaneously finite or not, whence Dom(higy,)
=Dom(/s) which ends the proof of (i).

By (1), we may assume that S is a subspace of E. It is immediate that « € Dom(hg) if and

only if Reu vanishes on S, i.e. Reu € S+. By [11,89.3.(7)], dimS+ = n and the argument is
finished.

Proposition 2.4. Let S and T be nonempty subsets of a linear space E over K and F a linear
subspace of E™. If E is endowed with the weak topology generated by F, then the following
assertions are true:

(a) C(S) = C(clS),

(D) hs = hes,

(c) if Sis compact, then for each u in F there exists x,, in S such that hs(u) = Re(u, x,,),
(d) if E' = F and F separates points in E, then hg =hy if and only if C(S) = C(T) if

and only if cl convS = clconvT.
If Fis endowed with the weak topology generated by E, then the following assertions are
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true:
(e) for every x in E, C({x}) is a real closed halfspace in K x F,
(f) C(S) is a closed convex cone in K x F at (0, 0),
(2) hs is lower semicontinuous on Dom(hg),
(h) if S is bounded and finite dimensional, then hgs is continuous on F.

If each of spaces E,F is endowed with the weak topology generated by the other and
E' = F, then the following assertions are true:

(i) if hg is continuous on F, then § is bounded and finite dimensional,

() hg is strongly continuous on F if and only if S is bounded.

Proof. We justify first the assertions (a)-(d).

The inclusion C(clS) C C(S) follows from Proposition 2.3(a). Now suppose that S 1s
nonempty and nonclosed, and fix (z,u) € C(S) =ﬂr€5 C({x}). Hence, Rez > Re(u,x) for
all x € §. Pick out an arbitrary point xy € clS ~ §S. Since u is continuous on E, easily,
Rez > Re(u,xp), whence (z,u) € m,tEclS C({x}) = C(clS) implying C(S) C C(clS). This
establishes (a).

The proot of the equality hg = hq s proceeds as the proot of its algebraic analogue hg =/hg.
in Proposition 2.3(h) and 1s therefore omitted.

Since § 1s compact and u 1s continuous, by the maximum value theorem, there exists a
point x,, in § such that Ag(u) = sup,es(Re(u,x)) = Re{u,x,) which establishes (c).

By assumption, F separates points in E, so that £ 1s a locally convex topological linear
space. Let first ig =h7. Then, by the definition of the dual cone, C(S) = C(T). If clconvS #
clconvT, then there 1s a point y such that, say, y € clconvS ~ clconv’. By the separation
theorem [11,§20.7.(1)], there is a closed real hyperplane in E separating y and ¢l conv7 strictly,
i.e. for some v € E' = F we have Re(v,y) > supreciconvr(Re{v,x)) = hejconvr(v). But by
(b) above and Proposition 2.3(h), Agconvr = hr, S0 that Re(v,y) > hy(v) implying hg(v) =
Bt convs(V) = SUP.eciconvs(Re(v, 2)) > Re(v,y) > hr(v), a contradiction. Hence, also clconvS
= clconvT. Conversely, let C(S) = C(T). It hg # hr, then, e.g. hg(u) < hy(u) for some
u € F. Then take any z € K such that hg(u) < Rez < hy(u), 1.e. (z,u) € C(§) ~ C(T) = 2,
a contradiction. Consequently, hg =hy. Finally, if clconvS$ = clconvT, then again by (b) and
Proposition 2.3(h), hg =h¢ convs = Aclconvr = A7 and the proot of (d) 1s finished.

For fixed x in E, (z,u) — Re(z — {u,x)) is a real-valued continuous linear functional on
K x F,sothat C ({x})={(z,u) € K x F: Re(z — (u,x)) > 0} is a real closed halfspace and
(e) 1s proved.

It follows from (e) and Proposition 2.3(b) that , for S # @, C(S) is the intersection of a
nonempty family of closed halfspaces in K x F with (0, o) on their boundaries which proves
().

Select up € Dom(hg) and a real number v < hg(ug)= sup,es(Re(ug, x)). Hence, there exists
xo € § for which Re(ug,xo) >y, so that Re{u, xy) >y for all u in a neighbourhood U of u in
F, implying hg(u) >y for all u € UN Dom(hg) which means that /g 1s lower semicontinuous
on Dom(hg), as required in (g).

Let § be bounded and finite dimensional. The continuous linear image of S 1s bounded
[11,515.6.(5)], so that Dom(hg) = F. Pick out an arbitrary linear functional uy € F and a
number € > 0. By assumption, S C conv{xy,...,x, }, where x; are affinely independent points
in £. Take aneighbourhood U = (\_,{u € F : [{u—up,x;)| < €} of upin F. Then forany u €
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U we have by virtue of Proposition 2.2 and Proposition 2.3(h), hg(u) <hgs(ug)+ hs(u — up) <
hs(tto) + heonyiy, ...y (0 = ttg) = hg(ug) + hyy oy — up)= hs(up) + max<j<,,(Reu —
g, Xj)) < hs(itp) + €. On the other hand, /15 is lower semicontinuous on F, by (g), so that there
1s a neighbourhood W of ug in F such that hg(u) > hg(uy) — € for all u € W. Hence, |hg(u)—
he(ug)| < e forue UNW,ie. ug € UNW C h="(( hg(ug) — €, hs(ug) + €)) which means
that /i5 1s continuous at i, as claimed 1n (h).

To prove (i) suppose that hg is continuous on F. We follow the idea of [5.Th.6], where
the real case has been considered. Fix a number p > 0. Then there exists a neighbourhood
V = ﬂ;’:] {v e F:|{v,x;)|] <v} of o € Ffor some points x; € E, so that ig(V) C (—p, p).
Now let K = /2 conv{=%xy,...,xx,, £iv,,...,xiv,}. By Proposition 2.3(h), we have
hg(V) :\,/ih{i_r] _____ ty, tivy i) (V) :\/i11]3}(15;{_;,,(\:?@(1*,.1}) | Im(v,x;)|) forevery v € F.
If hg(v) <+, then [(v,x;)| <V forj=1,... n implying hs(v) < u. Hence, h,s < h,x on F.
The rest of the argument proceeds as in (d). Suppose that vS ¢ puK and let y € vS§ ~ pk.
By the separation theorem [11,520.7.(1)], there is a closed real hyperplane in E separating y
and uK strictly, i.e. for some v € E' = F we have Re(v,v) > sup.c, x(Re(v,x)) = h,x(v)
implying h,,s(v) > h,k(v), a contradiction. Consequently, v§ C pK which means that S 1s
bounded and finite dimensional. The proof of (1) 1s finished.

Let us establish (3). Assume first that sg 1s strongly continuous on F. The argument
1s analogous to the one given 1n (1). Fix a number pw>0. Then there exists a strong
neighbourhood V = {v € F : sup.ep|(v,x)| <v} of o € F for some bounded subset B of
E such that hg(V) C (—u, ). Put K =/2 conv(£B U +iB). Again, we have hig(v) = V2
hapu+is(V) =V2 supep(|Re(v,x)|, |[Im{v,x)|) for every v € F. If hx(v) <~v, then |{v,x)| <~
forall x € B, 1.e. hg(v) < u. Arguing as in the preceding assertion, we conclude that v§ C uk
which means that S 1s bounded. Conversely, suppose that S 1s bounded. Then Dom(/ig) =F.
Select any point iy € F and a number € > 0. In the strong topology on F, U = {u € F :
supyes|{u — ug,x)| < e} is a neighbourhood of uy. For any u € U, we have on one hand
hs(ut) < supyes(Rel(ug,x)) +supyes(Re{u — up,x)) < hs(ug) + €. On the other hand, hg(u) =
supyes(Re (g, x) + Re{u — up,x)) > supyes(Re(ug,x) — €) = hs(up) — €. Consequently, |
hs(u)— hs(ug)| < eforue U, ie. uy € UC h;l(( he(ug) — €, hg(uy) + €)) which means that
hg 1s strongly continuous at ug. The proof of (j) 1s finished (ct. [5,Th.7], [13], [14,Cor.7E]).

We now include for completeness the simplified version of the bipolar theorem which will
be used in the subsequent proposition. The proof of the general case when E' # F is not so
obvious (cf. [10] for the real case).

Lemma 2.5. Let S be a nonempty subset of a linear space E over I& and F a linear subspace
of E* separating points in E. Endow E with the weak topology generated by F and let E' = F,
Then
clconvS = m (v € E:Re(u,y) < supes(Re(ut, x))}
nHeF

Proof. Since F separates points in E, the weak topology generated by F'i1s Hausdorff, 1.c.
E is a locally convex topological linear space over [K. Each u € F is continuous, so that
H,=1{y € E: Re(u,y) <sup.es(Re{u,x))} is a closed real halfspace in E containing S which
implies convS C (1,,cr Hy. To justify the reverse inclusion, select a point z ¢ clconvS. By
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the separation theorem [11, §20.7.(1)], there is a closed real hyperplane in £ separating z and
clconvS strictly. But E = F, so that there exists v € F for which Re(v,z) > sup,es(Re(v, x)).
This means however that z ¢ H,, i.e. also z ¢ [, H, implying [, H, C clconvs, as
desired.

Proposition 2.6. Let { S, } nc.4 be a family of nonempty subsets of a locally convex topological
linear space L over K at least one member of which is bounded. Endow F = L' with the weak
topology generated by L. Then

(a) if (1.ecaclconvs, # 3, then C([, - 4 clconvS,, ) = clconv({, . 4 C(S.)),
and the following assertions are equivalent:
(D) Naea clconvs, # 2,
(¢) cl CDnv(UﬁeA C(S,)) # (K, L),
(d) all dual cones C(S.) have a common closed real hyperplane of support not

containing I< x {o}.

Proof. By virtue of [11,§20.2.(1)], (L', L) is a dual pair over K. Endow L with the weak
topology T(L') generated by L'. Then, by [11,520.2.(3)], (L', L[Z(L")]) is also a dual pair
.compatible with (L', L). Besides, by [11,§20.7.(6)], the closures of convex sets respectively
to L and L[T(L")] coincide, so that from now on we can assume that L and L’ are locally
convex topological linear spaces with weak topologies generated by each other.

We prove (a). Suppose first that ﬂ”,eA clconvS,, # @. By Proposition 2.3(a),
C(clconvs,,) C C(nrrEA clconvS,) for each « € A. But C(clconvS,,) = C(S.,), by Pro-
position 2.4(d), so that Un_eA C(S,) C C(ﬂﬂ_eA clconvs, ). Consequently, clconv (UHEA
C(S,)) C C(ﬂﬁeﬁ clconvS, ) since, by Proposition 2.3(g), the right-hand side 1s a closed
convex set in K x L’. To prove the reverse inclusion, select (z,u) € C(ﬂ”Eﬂ clconvS,)
and suppose that (z,u) ¢ CICG“V(UWEA C(S.,)). By the separation theorem, there exists a
closed real hyperplane b in K x L' strictly separating (z, u) and cl CUHV(U”_EA C(S,)). Let
ho be a translate of h through (0, 0). Then (z,u) € ho and by bounds cl C”‘W(UneA C(S.)).
Since at least one set, say S,,, 1s bounded, so that, by Mackey’s theorem [11,520.11.(7)],
also weakly bounded, Dom(hs, ) = L' [10,515.6.(5)], by cannot contain K x {o}, i.e. be
vertical. Since L"” = L, b is determined by the equation /(y,v) = Rey — Re(v,xy) = 0 for
(vy,v) € K x L' and fixed xo € L. Suppose that /(z, u) < 0, otherwise we could replace / by -/.

Hence, Rez < Re{u, xp). Since (z,u) € C(f']”_E_;fl clconvsS, ), we have Rez > :’fﬂ ol eonvs. (D)
{ o

o= A

= supﬁ_enﬁw el convS. (Re{u, x)). Consequently, xo & ﬂ”_eA clconvS,. Each C(S,,) is separa-

ted by ho from (z, u), so that I(y,v) > O forall (y,v) € C(S,). This means that Rey > Re(v, xp)
whenever Rey >sup,es,(Re(v,x)) implying the inequality Re(v,xp) <sup,es.(Re{v,x)) for
all v € L'. By Lemma 2.5, xo € clconvS, forall x € A, ie. xo € [],c4 clconvs,, a
contradiction. In consequence, C((,¢ 4 clconvS,) C clconv (|J, 4 C(S,)) and the proof
of (a) 1s finished.

It remains to establish the required equivalences. If (1 .4 clconvS, # @, then, by
Proposition 2.3(d), C{ﬂ”(\_:_ﬁ.,l clconvS,) # (K, L"), so that, by (a), cl C(}HV(U”EA C(S,.)) #
(K, L") and the implication (b)=> (c¢) is proved. If clcmnv(bweﬂ C(S,)) # (K, L"), then the
separation theorem implies the existence of a closed real hyperplane in K x L' bounding
the closed convex cone clcmnv(UﬁeA C(S,)). Easily (ct. [11,517.5.(6)]), its translate
through (0, o) supports this cone, so that also each C(S,). Since Dom(hg, ) is equal to L' for
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some member S,,,. the translated hyperplane cannot contain [ x {o} which establishes the
implication (¢)=> (d). To finish the argument, suppose that there exists a closed real hyperplane
b through (0, 0) in K x L’ supporting all cones C(S,,) and not containing K x {o}. Since
L" = L, by is determined by the equation /(y,v) = Rey — Re(v, xo) = 0 for some fixed xo € L
and (y,v) € K x L'. Since all C(S,,) lie above hgy, we have sup,ecs. (Re(v,x)) > Re(v,xq)
forall v € L'. By Lemma 2.5, xg € [),c 4 clconvS,, # @. Hence, the implication (d)=-(b)
holds too which completes the argument.

3. APPLICATIONS

In [17,V] and [16] Valentine applied the dual cone in order to prove certain theorems of
combinatorial geometry in RY. From a geometric point of view, the dual cone enables one to
obtain some theorems with ease since the dual situation may become intuitively simpler. Here,
we are concerned only with those combinatorial results which hold in infinite-dimensional
setting and analyse them by using exclusively the support functional. Its application always
reduces the problem to finite dimensional, 1.e. usually to standard theorems of combinatorial

geometry. Anintroductory lemmais needed for an analogue of de Santis theorem |17, Th.6.23],
[16,Th.13].

Lemma 3.1 Ler S be a convex subset of a real linear space E and M(S) the maximal flat
contained in S. If o € M(S) and codimM(S) < x, then

MS)= () {yeE:(uy) =0} (3)

n€Dom(/f1¢)

'

Proof. Denote ¢ =codimM(S) < x, 0 < ¢ < dimkE, and consider g 1n £7. It ¢ = 0, then
S = M(S) = E, so that Dom(/i5) consists of a zero functional and we are done. If ¢ = 1, then
by Proposition 2.3()), Dom(hs) 1s a one-dimensional subspace of E*. Since every member of
Dom(hs) 1s bounded on S, 1.e. zero on M(S), we have M(S) C ﬂﬁeummh,f}{-" € E:(u,y) =0j.
Since for ¢ = | the zero set of any nonzero linear functional in Dom(/g) coincides with M(S),
the reverse inclusion holds and we are done. Assume in the sequel that ¢ > 2 and let & be
the c-dimensional linear subspace of E complementary to M(S) with the corresponding linear
projection 7t of E onto &. By construction, 7t(S) 1s a convex subset of & not containing any
straight line. Let (S)® be the characteristic cone of 7t(S) at o. It may be degenerate, 1.€.
n(S)® = {o} and does not contain any straight line. An easy argument reveals that cl7t(S), the
closure of 7t(S) if ® is treated as Euclidean space R, does not contain any straight line either.
By [11,525.4.(2)], there 1s a hyperplane £, in & having with cl7t(S) only the apex o 1n common.
Easily, other ¢ — 1 such hyperplanes 9, ..., 9. through o may be found with {o} = ﬂ;:I 9;.
Then however M(S) + H;(j = 1,...,¢) is a hyperplane in E and M(S) = ﬂ;':I(M(S) + 9).
Each hyperplane M(S)+ 5); bounds the characteristic cone S® of S at o, so that, by the extension
theorem [11,59.2.(17)], there is a linear functional i; on E vanishing on M(S) + $; and taking
nonpositive values on S®. Hence, it is bounded from above on S, i.e. u; € Dom(hg). Moreover,
Nucpomho 1y € E 1 {u,y) =0} SN2 {y € E: (u;,y) = 0} = M(S). The reverse inclusion
1S obvious, so that the required equality holds.
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Theorem 3.2. A nonempty finite family F of convex sets in a real linear space E contains a
common flat of codimension ¢, where ¢ < dimE Is a nonnegative integer, if and only if every
subfamily of ¢ + 1 or fewer members of F contains a common flat of codimension c.

Proof. We establish the sufficiency of the condition. Let F consist of at least ¢ + 2 members
and W be the collection of all (¢4 1)-element subsets of F. Consider all supporting functionals
in E*. By assumption, for every F' € W, (], 5 contains a flat of codimension ¢ in E, so
that, by Proposition 2.3(j), the convex cones D, =Dom(h,)(s € F) at o are all contained in a
c-dimensional linear subspace of E*. Hence | J, . Ds contains at most ¢ linearly independent
nonzero elements, so that easily Use.?-' D; 1s also contained in a ¢ -dimensional linear subspace
G of E*.

By Lemma 3.1, every s € JF contains a translate of the linear subspace [, {x € E :
(u,x) = 0}, so that, since D, C G, also a translate of (,.{x € E: (u,x) = 0} = G+. Of
course, codimG* = ¢. Now let M be a c-dimensional linear subspace of E complementary to
G+ with a corresponding linear projection o of E onto M. By initial assumption, every ¢ + |
of the convex sets o(s)(s € F) have a point in common. Then, by Helly’s theorem, there is a
point p € ﬂﬁef o(s), so that p + G+ is a flat of codimension ¢ in E contained in all members

of F.

The following theorem was proved inductively in [4,Lemma 2.1] and used there to derive
some Krasnosel skii-type characterizations for cones.

Theorem 3.3. A nonempty family G of flats in a linear space E over K has a nonempty
intersection of codimension at most ¢, where 0 < g = maxyeg{codimg} < c< o, if and
only if every subfamily of ¢ — g + 2 or fewer members of G has a nonempty intersection of
codimension at most c.

Proof. We establish the sufficiency of the condition. For nontriviality, let G contain at least
¢ — g+ 3 members. Consider all supporting functionals below in £* and let I/ be the collection
of all (¢ — g + 2)-element subsets of . For every G € U, ﬂgEG g 1s a flat of codimension
< cIn E, so that, by Proposition 2.3(j), the linear subspaces D; = Dom(/,)(g € G) are all
contained in a linear subspace of E* of dimension < ¢ and dimD, = codimg.

We claim that UHEQ D, 1s contained in a linear subspace H of E* of dimension < c.

Suppose not, 1.e. dingEg Dy >c. Construct inductively a subcollection {Dy,,..., Dy, |
of {D, : g € G} as follows. Let g; be a flat for which codimg, = ¢ < ¢. Given a
subcollection {Dgu oo Dy, } such that dimU}i=1 Dy < ¢, we add Dy, if exists, such that

Dy, ., Laff(lJ;—, D) and dimu;’:]l Dg, < c. This process always stops with some number
k of selected subspaces. Adding a new member increases the dimension of the union of
subspaces at leastby 1,sothat g+ (k—1) < ¢,1.e. kK < c¢c— g+ 1 and, since dingEg Dy >c,
we can always add a new subspace Dy, ., to increase the dimension of the union beyond ¢, a
contradiction with the assumption that every collection of ¢ — g + 2 members is contained in
a subspace of dimension < c.

Now let g’ be a linear subspace of E parallel to g. D, consists of all functionals vanishing

on g’, so that g° C ﬂugﬂn {x € E: (u,x) = 0} and the reverse inclusion follows from
the extension theorem [11,§9.2.(1")]. Since D, C H, F = ﬂgeH{x € E: (u,x) =0} C

g" for every g € G and, by [11,69.2.(7a)], codimF = dimH < c¢. Besides, codimF >
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maxgeg{codimg} = g. Now let M be a linear subspace of E complementary to F with
a corresponding linear projection o of E onto M. Of course, m = dimM = codimF and
g < m < c¢. By assumption, every ¢ — g + 2 > m — g + 2 of flats o(g)(g € &) have a point
in common. Moreover, F and o(g) are complementary in g, so that 0 < mingeg{dimo(g)} =
mingeg{codimF-codimg} = m — g. By a variant of Helly’s theorem for finite-dimensional
flats [3,Lemma 1] there 1s a point p € ﬂEEg o(g) and p + F 1s a flat of codimension at most ¢
contained 1n all members of §.

The last result of this section in R? is due to Kotodziejczyk [9,Th.1].

Theorem 3.4. A nonempty finite family F of convex sets in a real linear space E contains a
common half-flat of codimension c, where ¢ < dimkE is a nonnegative integer, if and only if

every subfamily of 2¢ + 2 or fewer members of F contains a common half-flat of codimension
C.

Proof. Again, we are concerned with the sufficiency of the condition. Without loss of
generality, we can assume that all half-flats are algebraically closed and that § contains at
least 2¢ + 3 members. If ¢ = dimE — 1, 1.e. we deal with halflines in a finite-dimensional
linear space, then the conclusion follows from Katchalski’s theorem [6,Th.C]. Hence, let ¢ <
dim£E — 1 1n the sequel. Since 2¢ + 2 > ¢ + 2, by Theorem 3.2, F contains a common flat $
of codimension ¢ + 1. Suppose, with no loss of generality, that o € $ and let 9 be a (¢ + 1)-
dimensional linear subspace of E complementary to $ with a corresponding linear projection
o of E onto 9. Pick out a subfamily of 2¢ 4+ 2 members of F. Since it contains a common
half-flat & of codimension ¢ as well as the flat 5, 1t 1s immediate that it contains conv($H U &),
so that also a half-flat of codimension ¢ whose relative algebraic boundary 1s a flat parallel
to . Thus, by 1nitial assumption, every 2¢ + 2 of convex sets o(S)(S € F) in 91 contain a
common halfline. Again, by Katchalski’s theorem, there is a halfline A in 9) common to al
sets o(S)S € F). Then however A + $ 1s a half-flat of codimension ¢ in E common to al
members of § and the proof is complete.

4. REMARK

One of primary goals of this paper was to prepare the reader for the proof of an important
generalization of Helly’s theorem due to Horn. It states in the simplest form that if every
n members of a family of compact convex sets in RY (1 < n < d + 1) have a nonempty
intersection, then every (d — n)-dimensional flat in RY (dim@ = —1 by definition) is contained
in a (d — n + I)-dimensional flat which intersects all members of the tamily. Variants of this
result including its converse have been established in R by the method of the so-called n-sets
in [7,Th.II] and by the method of the dual cone in [16,Th.12], [17,Th.6.2]. The approach of [7]
can be generalized to real locally convex topological linear spaces but the question remains
whether the alternative approach based on the dual cone can also be extended to infinite
dimensions. The detailed analysis of the finite-dimensional case reveals that the situation is

very delicate. In a possible proof surely the Proposition 2.6 will interfere as it is in its proof
in RY.
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