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A WEIERSTRASS TYPE REPRESENTATION FOR SURFACES IN HYPERBOLIC SPACE
WITH MEAN CURVATURE ONE

CELIA CONTIN GOES. M. ELISA. E.L. GALVAO

Abstract. The subject of this paper is to give a Weierstrass type representation for mearn
curvature one surfaces in the hyperbolic space. This representation depends on the hyperbolic
Gauss map. Some known examples are described and a new one, associated to the minimal
Bonnet surface is constructed with this representation.

INTRODUCTION

A Weierstrass type formula for surfaces of prescribed mean curvature in R* was given by
Kenmotsu ([K]) in 1979. In 1987, R. Bryant ([B]) studied the surfaces of mean curvature one
in hyperbolic space as local projections of null curves in the space of the 2 x 2 Hermitian
symmetric matrices with its Cartan-Killing metric. Recently, Umehara and Yamada ([UY-1],
[UY-2], [RUY]) produced an explicit tool to construct examples of these surfaces. They
described the null curves 1n terms of a meromorphic function g and a holomorphic 1-form w
obtained as solutions of two ordinary differential equations.

The subject of this paper is to describe the surfaces in H? with mean curvature one in a very
similar manner as the minimal surfaces in R®. It is already well known that these surfaces
have a hyperbolic holomorphic Gauss map ([B]); in our work, the function /1 describes the
holomorphic Gauss map. Its properties will give us a Weierstrass type representation.

From the main theorem we have the immersion X : U C C — H° as

X(z) = ( $1(z) + ‘ibz(z)} Re ba(2), Im ba(2). $1(z) — 432(?:))

2 2

where §;,j = 1,2, 3 are solutions of the system:

(b2 =1+ b
a¢1_;a$3

\ _ T
02 02
0P  10ds

. 02 h 0Z

whose integrability condition 1s that of

Im{ hAd; | = 0.
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We also have a local integral representation:

: by 1 : by 1
X = (?R{’. [ | (h aad? | Eaad?) dz, Reds, Smps, !‘-Rc*' /' | (h aad? — Haaq?) d:)

[n the last part of the paper we exhibit local solutions of this system tor all functions 4.

The hyperbolic Gauss map.
We consider the Lorentz space I {x = (xg,X1,X2,x3) € [@.4} with the inner product
<X,y > = —XpYo + X1Y] T X2)2 T X3)3.
The Minkovsky model for the hyperbolic space i1s the submanifold
H = {xe L |<x,x>=—1, x>0}

In H? we will consider the induced orientation from £* for which the vectors vy, v, v3 in
TF,H3 form a positive oriented basis iff {p,v;, v, v3} forms a positive oriented basis of }e

Let X : M — H? be an isometric immersion of an orientable Riemann surface M in the
hyperbolic space and N(p) the oriented unitary normal vector at p € M. In local 1sothermical
coordinates z = u + iv we have ||X,|| = [IX\|| = A, <X, X, > = 0, and N is such that
[ X(p), %XH, l}(,,, N(p)} is a positive basis of TFL4.

A
We will consider the map

d:-H — D

X1 X2 X3
(XU&XI'-IE!XB) — (1! y y )
X0 Xo  XQ

and the vector ®,(N(p)) where
D = {(x0,x1,Xx2,%3) | xo = 1, x? + x3 +,r%f:: 1},
This map is the natural isometry between H” and the Klein model for the hyperbolic space
given by unitary disc with the appropriated metric.
The boundary of D can be identified with the Riemann two sphere S~.

Definition. The hyperbolic Gauss map of an immersion X : M — H? is
n.:M— oD

given by
n(p) = ®(X(p)) + 12 (N(p))

where t >0 and n(p) € 9 D.

[t follows immediately:
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I
Lemmal. n= (X + N).

X0 + Ny

Proof. For X(p‘) = (xp,X1,X2,X3) and N = (Ng,N,N>,N3)

N ]
b, (N)= ——X + —N.
.1’['] X0)

As n(p) = ®(X(p)) + tP.(N(p)) is in the cone —x3 + x* + x5 + x3 = 0 we have

-

(xo — tNo)® 1

<nn>= - Xg | ﬁ:(].
The solution t with t >01s t = xg /(xo + No).
Remarks. 1. Since the vector X + N is also in the cone there exists 1\ : U — R,
1
Y(p) = TR =xo+Nyg=—-—<X+N,ep>, ¢ =(1,0,0,0)
such that
bp)n(p) =Xp)+ Np), Vpe U
and |
V= “_<n‘,X}H - X

2. The coefficients of the second fundamental form for the immersion X can be calculated as
hj=—<V,N,e;j>, i,j=1,2

| |
with e; = XX,, and e; = XXF. We have

|

Nu _hIIXu — ITIEXV\\

N, = —hp;pX, — hanX,.

The mean curvature in the choosen normal direction and the gaussian curvature have, respe-
ctively, the expressions

I
H = —5(}1” + h») and K = hy hy» — h:f'z — 1.

3. In isothermical parameters

|
<X:. N> = 57\211
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where

I
5?\ = < X., Xz>.

The mean curvature H 1s equal to one if and only if

<Xz N>= <X, Xz>

or

l
<Xz, — n—X>=<X., X=>.
=< X > Vs
We will have H = 1 if and only 1f

4. Taking z = u + iv isothermical parameters in U C C we have the diagram:
n

M . 0D =~ §?
I1
V " l
UcCC C

with TT the stereographic projection; then

n(z) = (1 2Reh  23mh  |h|* - 1)
TP AU R AR+ )

and n 1s holomorphic if and only if £ i1s holomorphic.

This hyperbolic Gauss map behaves as the classical Gauss map for minimal surfaces in an
euclidean space, that is, we have the following theorem ( [B] ):

Theorem 1. Let n : M — 9 D be the hyperbolic Gauss map of a surface X : M — H?,
n non constant. The map n : M — 0 D 1s conformal iff the immersion X either has mean
curvature H constant and equal to one ( in which case n preserves the orientation ) or X is
totally umbilic ( in which case n reverses the orientation ).

]
Proof. From n = (X + N) we have
xo + No

] ]
n, = (X + M | (Xu + NH) —
(ID ‘|'NU)” xo + No

| l
= X+ N) A | — h)X, — hppX,
(I{} +ND)”( ) Xo +N[][( ]l) ! 12 ]
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I ]
= X+ N)A —~h» X, 1 — h»)X,].
(X{)+ND>1.( + N) I{}+N{}[ 112X, + ( 22)X, ]

Consequently,
}\2
2 2, 32
n,ll° = 1l —hy )"+ h
2 ’ 2
A? = | — hyp)? + h?
”‘;‘}I H (Xo ‘l‘N[])Z [( 22) + T12]
;)\2
™ +Nn)3( 12)( ¥
and for H = 1 or for umbilic immersions we will have ||n,||* = ||n,||* > Oand <n,,n, > = 0.
We also observe that ||n,|| = ||n,|| = O if and only if the immersion is umbilical and

H = 1; 1n this case we have a horosphere and the hyperbolic Gauss map » 1S constant.
Considering the complex differentiation

| ]
Hz = X+ N)A X=+ Nz
) (Xﬂ +Nﬂ)3( : Xo + Nn( =+ D)

1t follows that

I A
1 <n=n=> = — H— D[(hy =} 2ihp),
(1) nz, ns 2()q}JrM:I)E( W(hy — hao) + 21 hy2]
from ,
2Reh 29mh  |h|” — 1
nz) =, 75— 75 ,l I., )
h|> + 17 |h|>+ 1" |h]? + 1
we have
1 S S
H= = I H=
: A1+ 1) - > 4+1 -
where
n=(|hl*+1,h+h,—i(h—h),|hl* = 1)
and

i

n: = h=(h,1,—i,h) + h=(h,1,i,h).

With these calculations we conclude that

4h= h=
2 \ = = — -
(2) < nz,nz > TP T 12

From (1) and (2)

4h; h: 1 N
(|h]? + 1) 2 (xp + No)?

(H — DI(hy — hn) +2ih)5]
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and the hyperbolic Gauss map is conformal itf

In both cases the induced metric is given by

either H = 1 or the immersion is umbilical.

-

<dn,dn>=<n.dz+n=dzZ,n.dz 4+ n=dz > = 2 <n-.,n=>|dz
or
A? | ,
<dn,dn> = ~-[2H(H — 1) — K]|dz|".
(X0 0)°
When H = | we have ]
< dn,dn > = (—K)|dz|?,
(xo + Np)?

if the immersed surface is different from a horosphere 2 H(H — 1) — K >0 and —K > 0.
Finally we compare the orientations of X : M — H?> Cc E*andn: M — 3D C L°,
when the immersion X 1s distinct from the horosphere.

The stereographic projection IT : 9D = §

N {1} x R3® c L% induces a positive

orientation in S in which the normal vector is the internal one.

l 1
Let '{X(}U’)} XXH& EXF:IN

adaptated to X(M) and n(M), respectively.
These frames are related by the matrix

} and {eg,n,,n,,eq — n}, eg = (1,0,0,0) be orthogonal frames

- ] I l -
X Xy =
! (Jﬁ:} + N{})“ (I{} + N[}>1. ’ x0 + Ny
| A1 — hyy) —Aha l
— < X, ey > — < X,,ep >
A °0 Xg + Ny xo + Ny A ’
| —Ahyy A1 — hy) ]
—<X,,ey> —<X,,e0>
A U X0 + Ny Xo + N[} A 0
- ’ xo+No/J, \xXo+No/, " X0+ No -
whose determinant 1s
() —
X0+ No/, xo+No/, xo + No
A1 — hyy) —Ahy>
1 <X, e0> 0
A ’ xo + N xo + Ny —
—Ah Al — hr)
1 12 22
Y <X1.~,E ::)" O
A ! xo + No xo + No
—(xp + Nop) 0 0 0
2 )
— — 1 — by (1 = hyn) — k3] = —K+2(H - 1)].

It 1s easy to see that the determinant 1s positive if 4 = 1 in which case n preserves the
orientation (that 1s, n 1s holomorphic); in the umbilic case the determinant 1s negative, n

reverses the orientation and is antiholomorphic.
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Remark. We observe that

2

<Nz > = (1 + ‘h‘ﬁ)l [ I':":lrE + UTEIE ]
When H = 1
4|}1_|3 2 ?\2 2
<dn,dn >=2<n.n=>|dz]* = - dzl- = =K - dz|”
oz > |2 (|h|? + 1)? | (xo -+ No)-
and
2 4 — |
41h-1- A~
(3) _K = ,!“-[ : ( ) |
(|| + 1) \ (xo + No)-

A Representation Theorem.

Working with a holomorphic hyperbolic Gauss map, that is, with surfaces with constant
mean curvature equal to one, we have a local representation theorem similar to the Weierstrass
representation for minimal surfaces in the euclidean space.

Theorem 2. Let X : M — H? be a non-umbilic immersion in H> with mean curvature one

anc | .
a | 2Reh  23mh  |h|7 -1
n(z) = {1, . TS
L+ |2 1+ |A)> " |A)> + 1
its hyperbolic Gauss map. Denoting X(z) = (xo(2),x1(2),x2(2),x3(2)), the real functions

$1(2) = x0(2) + x3(2) and $-(2) = xo(2) — x3(2) and the complex function G3(z) = x1(2) + 1
X> (2) satisfy

[CDICIDE =1 + |3/’

a¢l_ha¢3
() ! 9z 9z
l RO . l 0 $3
02 h 0z
Conversely, given a holomorphic non-constant function h . U C C — ©C, two real functions

by and &y ( d> >0 ) and a complex function s satisfying (x) in the simply connected domain

U, then
< 2(2 (2) = Palz
X(E):(wwq:_() $1(2) = 2 ))

5 , Re d3(2), Im Ps(2), >

defines a conformal immersion in H° with constant mean curvature one and hyperbolic Gauss
map n given by h as above.
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Proof. First of all we observe that

X(2) = (xo,x1,%2,03) EH’ &= —xj+x{+x5+x3=—1 & P> =1+ ||,

from the first equivalence it also follows that if ¢» = xy — x3 then ¢, > 0.
Given &, ¢>, P3 as above we have

G1(2) + 2(2) b1(z) — (bz(f.))

X(z) = ( 5 , Re d3(2), Im P3(2), >

and < X.,n> = 01f and only 1f

1(_1_““'2—1)6@ li(_l l hl?l)wz
2 h2+1/) 9z = 2 AP +1) 2z

| [?Reh (6¢'3 | a¢3) +iSmh (66?3 — a(b_3

[ + |A]? 02 02 Z 02
or
) a¢limﬁa$z_ha¢3_ga¢3:0

02 02 07 02

The assumption on the mean curvature gives us
H=1 < <X, ,n=> = *iX:,ﬁ}j> = (

where

2Reh  23mh  |h|* — 1
”(Z) — 11 3 2} 2
| + A2 1+ |h|? |A]* + ]

and
n=(+ > h+h—ith—h),h* - 1).

We have in this case 7 holomorphic and therefore

as h is nonconstant (i, # 0) it follows

H=1 < <X.,n:>=0 <<

L (adn : aibz)Jr(aCb} : acb3) ) (aclal _adJ:) 0 e
02 02 02 02 0 02

&=l

()
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Returning with this last equation in (4), finally we have

0P d b,

= h .
02 02

0 ®3

l:’

¥

Let p € M be a zero of h with order 1; we have from (5) that p is a zero of whose order

1s greater or equal to 1 and we can write

0¢2 1 03
0z h dz
Let now be
X(2) = ( D+ 0 54,01, Smaps), 2 ¢z(:))

with &, &>, ¢35 verifying (x). It 1s easy to see that

| Ejd33 l . I a(b’g .
R Zl—i—=14 S(ho1.i ]

From the fact that < X., X. > = 0 1t follows that we have 1sothermical parameters.

L.et now consider 1
. 2Reh 23mh  |h|~ — 1

”(E) = | 1, 7 3 ) 7
L + || 1+ |h]? 7 |A]> + 1

with & the holomorphic function from (*). The vector

I —~
1— X

N=—— J
<n,X>

has norm equal to one, verifies < X., N> =0, < X,N > = 0 and

| ~
— n=X+N
<n,X>

therefore N is exactly the normal vector N and 7 the hyperbolic Gauss map » of the immersion
X. With some calculations we obtain

<Nz, X;> =

h‘;‘ [6&51 0 Pz E}

A+ 1r2) | 9z 0z h

From the fact that 4 is holomorphic it follows that < n=, X. > = 0 which implies H = 1; h
non-constant gives us a non-umbilic immersion.
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Remarks.
1. The compatibility condition for the two partial differential equations in () is the same
and writes

(7) Sm{h Adpz} = 0.

This follows from the fact that each differential equation of () 1s as

0P
= F(z
02 )
Or as

?g$222Fﬂmv)
ou
0 ¢ = —2 F>(u,v)
ov

withz=u+iv, FQ) = Fi(u,v) +iF>(u,v),0/0z=5 @/ 0u—1id/0v).

The integrability condition for this system is:

P | =

0 F) 0 F> . (0r
= = = Im{

~1 =0
oV o u 02

Returning to the system (), each equation will have its integrability condition respectively
given by:

Imih ai(b?i I =0
0202
and
Sm =1 = — Smih =L =)
HHF aza:} UE { azag}

Consequently, the two compatibility conditions are verified if and only if, locally,

Smi{h Ad3} =0

2. Choosing h and ¢35 such as to verify (7) we will have ¢, and ¢, given locally by

b, =2§R€/ AL dz
Jzg 02
and 1 8
R AR OR

= 2 Re - ~ dz.

0P ﬂ[ Y dz

R |

3. An integral formula can be written from (6):

Z N i 5y N
)y X= (Eﬁ’é’/ (ha¢3 + —a¢3) dz,?}?ed)gjﬁ*md)g,?ﬁe/ (had)?’ — la¢3) d.?:) .

0z 1 0z 0z h 0z

au[]
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4. The metric ds> = A°|dz|? is such that A*> = 2 < X, X= >, from (6) we have

— 9 5 — B
- - /
3) 2 la«m : |a¢i;.; _mg(? J b3 adi:a)
02 07 h 0z 02
‘ : . C g L 0 Pz
and from this last expression we can conclude that p is a regular point if the derivatives -
and % do not vanish simultaneously at p.
We also can write:
s o~ - I ] :
A= |— (b3 — hda)| = |= (b3 — hb)
02 02
S. From Lemma 1 we have:
1
— =x0+ No=—< X+ N,ey >,
“hXS Xo + No + IV, €
some calculations give us:
L+ b3 — hda|? = ol + [P d2 — hps — hibs)
and | |
1 2 =+ — I + (b3 — h(l)z 2
X>= —Py — |h|" Py +/ / = —
<n, e (=1 = |7 b2 + 13 + hips) o2 (hE T+ 1)
The total curvature 1s ‘
¢ = / K dA
J M
and from (3) 1t follows that
4R ( A2 )"
(AP \ o+ N )
In local coordinates
4|h.|? A
(9) c.*:—/ - li‘“'_ — ?idzf\dz:
J (P14 |2 d2 — hds — hds)? 2
4|h.|? 2 4|2 (3 — )|’
1= @5 ] - * o 3 — 1)) :
— |3 jjidzf\dzz_ gz "3 _},}id:/’\dz
J (I +|d3 — hda|?)” 2 J (4|3 — hdaf?) 2
6. Given the immersion X : U C € — H? in isothermal coordinates, calling F = A* / 2, the

gaussian curvature can also be calculated as

d0logF
3 :

K= -
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If we denote

] 2
1|3 — 5[(;1]] —h»)—2ihp] = ﬁ ‘{X:::N}

the Gauss equation can be written as

4 :
|¢F:—K-ﬁ@ﬂgﬂg>:—K+Hﬂd.

By using (x) we get
— 4"&:‘2‘1}2
A2(1 + b3 — hda|?)?

that means, we have the Gauss’ equation verified.
We will call the Hopt’'s form ([H]) the quadratic form

= —K

i

Y = A d.
As in ([H]) the Codazzi equations can be written in a complex form and we have

OAY) _ 120H
02 017

With some calculations we can show that (x) implies that A*1 is holomorphic (Proposition 2
in [B]) and the Codazzi equations are also verified.

Examples.

To exhibit some examples we need to get two real functions &, and &>, ¢->» >0 and a
complex function ¢3, solutions of the the system:

[(|3’1¢>2=l-l-\‘i1')3|2

a¢l_ha$3
() < _8_:?_ 02

202 _ 100

. 02 h 072

To find solutions, we begin with some important remarks.

1. First of all we will analyse the solutions that correspond to ¢3 holomorphic (or antiholo-
morphic); we will have that &, (resp. &) is constant. As ¢y d> = 1 + |3/* the constant
cannot be zero; 1t 1s easy to see that @; (resp. ¢, ) constant implies that the surface is umbilical
and xy + x3 (resp. xg — x3) 1s constant; in this case the functions x; and x» will be harmonical
conjugates.

2. Given the function & we can search solutions as

b3 = h(2)F(|Z]%),
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with F a one real variable differentiable function.
Since

h Aby = zhh, F'(|2]*) + [hPF'(]2*) + [2]* |h]* F"(|2]*)

the compatibility condition is

Im{h A3} =0 < Sm{zhh'} =0.

The last condition 1s satisfied by all the functions A(z) = z, for real «.

3. If 3 = h(z)F(|z|?) then metric (6) will be

(10) N = [h.2 F(J2).

Example 1. We have an immersion with constant mean curvature one
X:C-{0} — H’
solving (x) with h(z) = z, Fo(t) = t* and

$3(2) = h(z) [AF.(|z]*) + BFs(|z[H) 1.

Now, the integrability condition is satisfied (remark 2) and the solutions ¢ and ¢ are:

X 2y 3 2342
% APet2 B [-|20+2
and
x + 1 + 1
bo0) = E2 A fzpe 4 B L gy
x 3

with o and 3 both distinct from zero and —1.
The condition &, ¢ = 1 + |d3|* is verified under the restrictions:

x+ 3 =—1
and
(11) A3(2“+1) — 1
x (o4 1)
therefore

200+ 1 # 0.

55
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In this case the solutions of (*) are:

[ $1(2) = chMA F{aa a: 1 Blz| 7
(12) ba(2) = G{THAIE > 4 ..:: - Bl
b3 = z[Alz]** + B ")
Writing 7 = re'? :
b1(r,0) = ajlmﬂ*‘*” | ”‘: LB = (1)
b2 (r, 0) = “: L AP + (xi - Br 2 = fi(r)

$3(r,0) = r(cos 9 + isin® )(A P Br—zﬂ'—i) = £() o

\

Now 1t 1s easy to see that all these surfaces are rotational surfaces generated by the curve

C(r) = (co(r), c1(r), 0, c3(r)) = (f () ;“f 20 ¢ 1,0, ;f 2(")) ,

C(r) C H*P?, with P? = [eg, e;, e3]. We have a spherical rotation and

1 - .
| 0 0 0 Co Co
0O cos® —sin0 O Cl ¢y cos 0
X(r,0) = =
0 sin8 cos® O 0 ¢, sin 6
0 0 0 1 C3 C3

Using (9) and (11) we can have the total curvature

40(2(&_'_ ])ZIZ‘LIH: i

c= —dzdz = —4Q2u0+ D)m
./:-{m AR 1 B 2 et




A Weierstrass tyvpe representation for surfaces in hyperbolic space with mean curvature one 57

As 1n (10) we have

and the surface 1s complete.
The minimal catenoid 1n the euclidean space has a Weierstrass representation given by
g(z) = uz i Zf(E)d::v:;_Edz.
The k-recovering of a minimal catenoid has Weierstrass data
g)=n  n=f@Qdi=v " dz

and 1ts induced metric 1s given by

~Kk—1] 4+ ,‘JHE Elk—]]ﬁ |{f;'|2.

—
B

Is* = —
ds 4[’»*

Given a rotational hyerbolic mean curvature one surface (consequently, given A, B and ),
there exists a minimal catenoid 1sometric to this surface.

Choosing p and v such that A = v > /2, B = v /2 the hyperbolic rotational surface is
1Isometric to the k = (2« + 1)-recovering of the minimal catenoid.

Conversely, 1t 1s easy to see that a k-recovering of a minimal catenoid is isometric to one
immersion in the family of rotational surfaces exhibited above. This immersion is such that

A=vu>/2,B=~v/2,
241\ 4
x(x+ 1)) 22
and k =2« + 1.

The rotational hyperbolic mean curvature one surfaces are called “the catenoid cousins™.

Example 2. The system () also admits solutions as

$3(2) = F(z) G(2)
with F and G holomorphic functions. In this case if
(13) F'(2) = h(z)G'(z)

the integrability condition (7) is verified.
The two last equations in (x) can be integrated and the solutions are

$1(z) = |F(z))?

and
g

b2(2) = |G(2)
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We will modify these solutions to have the first equation satisfied; in this way, we will take
F\,G,, F>,G> as in (13), A and B real constants such that

¢’l — AlF] |2 am Bng‘E
by = A|G,|* + B|G,|*

by =AF, G, +BF,G>
with

(14) AB(F\G, — F2G\)(F 1G> — F2Gy) = 1.

The surfaces called “Enneper Cousins™ are corresponding to
h(z) = tanh Az,

1(2) = cosh Az

G5(z) = zcoshAz,

consequently, by (13) and (14),
|

Fi(2) = X cosh Az

I I
F(z) = X (zcmh Az — iﬁ;fnh Az)

l
Gi(z) = X.Tfﬂh Az

] l
G-(2) = X (zsinh AZ — ii‘ﬂ.’ih ?\:5)

and
AB = [A°, A e C.

The total curvature can be calculated by (9), observing that

h + A 4+ Blz|?
b1 + [P b2 — s — hps = A|Fy — hGy|* + BIFy — hGal® = | D)

~ |A|cosh z|?

and

| 4|A° ' — | = ' —
K:—/ ‘ idz/\dzz—/ jidwf\dwz—ﬁl'ﬂ:.
* A? . ( "2
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It is also easy to see that the metric

2

, A B -
dr:[—+ihﬂ da]?

1s complete.
The classical Enneper surface is given by the Weierstrass data

2(z) = uz f(z)dz = vdz

and has the metric:

2

dz

:'rl M 1242
ds? = 2 [v + e’y
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The corresponding isometric Enneper cousin will be given by A, A and B such that \* = v / 2,

A=MAv/2and B = Avu?/2.

Example 3. By taking

h(z) = tand V5 sinh(xz) + sinh(x2)
7) = tanh | — ,
¢ < cosh(01z) + cosh(x2)

2

V5 —1 \/§+la

with o = and o, =

d
> &

R =AF161 -+ BFEEE,

we can obtain the “Bonnet Cousins” ([GN]) corresponding to the solutions:

] I
Fi(z) = —cosh(xz) + —cosh(x>2)

X X2

] |
G (z) = —sinh(x)z) + —sinh(x2)

X 0.6)
Fr(2) = —sinh(oz2) — —sinh(x22)
X1 X2
Gy(z) = —cosh(xz) — —cosh(xn2),
X1 [#.6g)
| ]

(0F — P (o + o)

The metric in this case is given by

ds* = 4 [A () + o) |coshz/2|* + By + &2)|sinhz /2 \Ef dz]* =
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4

dz|*

— 4 {A () + o) | coshz /2> m”-|i+wﬂ | sinhz /2 ‘2]

and the surface is regular, complete and isometric to a homothety of the classical Bonnet
minimal surface given by the Weierstrass data

2

21 5 [ l
) andf(:)dzzécmh“( )d:}::E(C, Oiz\/ +”,O<’:u<::l

2(z) = —i tanh (
| —a

2| &4
b

and metric

2

o 3
R

| 1 . SN
ds® = 2 [Ekﬂsh §|‘ + o |sinh ; ‘] dz|”.

To get new examples we have to find solutions of
Sm{hAdp;} =0
and a linear combination of this solutions in order to have

b1y =1+ |¢?;[2

that is, in order to have the corresponding immersion in L* contained in H?.
The classification of these immersions depends on the description of all the solutions of
this problem.
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