A WEIERSTRASS TYPE REPRESENTATION FOR SURFACES IN HYPERBOLIC SPACE WITH MEAN CURVATURE ONE

CÉLIA CONTIN GÓES, M. ELISA, E.L. GALVÃO

Abstract. The subject of this paper is to give a Weierstrass type representation for mean curvature one surfaces in the hyperbolic space. This representation depends on the hyperbolic Gauss map. Some known examples are described and a new one, associated to the minimal Bonnet surface is constructed with this representation.

INTRODUCTION

A Weierstrass type formula for surfaces of prescribed mean curvature in \(\mathbb{R}^3 \) was given by Kenmotsu ([K]) in 1979. In 1987, R. Bryant ([B]) studied the surfaces of mean curvature one in hyperbolic space as local projections of null curves in the space of the \(2 \times 2 \) Hermitian symmetric matrices with its Cartan-Killing metric. Recently, Umehara and Yamada ([UY-1], [UY-2], [RUY]) produced an explicit tool to construct examples of these surfaces. They described the null curves in terms of a meromorphic function \(g \) and a holomorphic 1-form \(\omega \) obtained as solutions of two ordinary differential equations.

The subject of this paper is to describe the surfaces in \(\mathbb{H}^3 \) with mean curvature one in a very similar manner as the minimal surfaces in \(\mathbb{R}^3 \). It is already well known that these surfaces have a hyperbolic holomorphic Gauss map ([B]); in our work, the function \(h \) describes the holomorphic Gauss map. Its properties will give us a Weierstrass type representation.

From the main theorem we have the immersion \(X : U \subset \mathbb{C} \rightarrow \mathbb{H}^3 \) as

\[
X(z) = \left(\frac{\phi_1(z) + \phi_2(z)}{2}, \Re \phi_3(z), \Im \phi_3(z), \frac{\phi_1(z) - \phi_2(z)}{2} \right)
\]

where \(\phi_j, j = 1, 2, 3 \) are solutions of the system:

\[
\begin{align*}
\phi_1 \phi_2 &= 1 + |\phi_3|^2 \\
\frac{\partial \phi_1}{\partial \bar{z}} &= h \frac{\partial \phi_3}{\partial \bar{z}} \\
\frac{\partial \phi_2}{\partial \bar{z}} &= \frac{1}{h} \frac{\partial \phi_3}{\partial \bar{z}}
\end{align*}
\]

whose integrability condition is that of

\[
\Im \{ \bar{h} \Delta \phi_3 \} = 0.
\]
We also have a local integral representation:

\[X = \left(\Re \int_{x_0}^{x_1} \left(\frac{h}{z} \frac{d \Phi_3}{d z} + \frac{1}{h} \frac{d \Phi_3}{d z} \right) dz, \Re e \Phi_3, \Im m \Phi_3, \Re \int_{x_0}^{x_1} \left(\frac{h}{z} \frac{d \Phi_3}{d z} - \frac{1}{h} \frac{d \Phi_3}{d z} \right) dz \right) \]

In the last part of the paper we exhibit local solutions of this system for all functions \(h \).

The hyperbolic Gauss map.

We consider the Lorentz space \(\mathbb{L}^4 = \{ x = (x_0, x_1, x_2, x_3) \in \mathbb{R}^4 \} \) with the inner product

\[\langle x, y \rangle = -x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3. \]

The Minkovskiy model for the hyperbolic space is the submanifold

\[\mathbb{H}^3 = \{ x \in \mathbb{L}^4 \mid \langle x, x \rangle = -1, \ x_0 > 0 \}. \]

In \(\mathbb{H}^3 \) we will consider the induced orientation from \(\mathbb{L}^4 \) for which the vectors \(v_1, v_2, v_3 \) in \(T_p \mathbb{H}^3 \) form a positive oriented basis iff \(\{ p, v_1, v_2, v_3 \} \) forms a positive oriented basis of \(\mathbb{L}^4 \).

Let \(X : M \rightarrow \mathbb{H}^3 \) be an isometric immersion of an orientable Riemann surface \(M \) in the hyperbolic space and \(N(p) \) the oriented unitary normal vector at \(p \in M \). In local isothermical coordinates \(z = u + iv \) we have \(||X_u|| = ||X_v|| = \lambda, \langle X_u, X_v \rangle = 0 \), and \(N \) is such that \(\{ X(p), \frac{1}{\lambda} X_u, \frac{1}{\lambda} X_v, N(p) \} \) is a positive basis of \(T_p \mathbb{L}^4 \).

We will consider the map

\[\Phi : \mathbb{H}^3 \rightarrow D \]

\[(x_0, x_1, x_2, x_3) \rightarrow \left(\frac{x_1}{x_0}, \frac{x_2}{x_0}, \frac{x_3}{x_0} \right) \]

and the vector \(\Phi_*(N(p)) \) where

\[D = \{ (x_0, x_1, x_2, x_3) \mid x_0 = 1, x_1^2 + x_2^2 + x_3^2 < 1 \}. \]

This map is the natural isometry between \(\mathbb{H}^3 \) and the Klein model for the hyperbolic space given by unitary disc with the appropriated metric.

The boundary of \(D \) can be identified with the Riemann two sphere \(S^2 \).

Definition. The hyperbolic Gauss map of an immersion \(X : M \rightarrow \mathbb{H}^3 \) is

\[n : M \rightarrow \partial D \]

given by

\[n(p) = \Phi(X(p)) + t \Phi_*(N(p)) \]

where \(t > 0 \) and \(n(p) \in \partial D \).

It follows immediately:
Lemma 1. \(n = \frac{1}{x_0 + N_0} (X + N) \).

Proof. For \(X(p) = (x_0, x_1, x_2, x_3) \) and \(N = (N_0, N_1, N_2, N_3) \)

\[
\Phi_*(N) = -\frac{N_0}{x_0^2} X + \frac{1}{x_0} N.
\]

As \(n(p) = \Phi(X(p)) + t\Phi_*(N(p)) \) is in the cone \(-x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0 \) we have

\[
\langle n, n \rangle = -\frac{(x_0 - tN_0)^2}{x_0^4} + \frac{t^2}{x_0^2} = 0.
\]

The solution \(t \) with \(t > 0 \) is \(t = x_0 / (x_0 + N_0) \).

\[\square\]

Remarks. 1. Since the vector \(X + N \) is also in the cone there exists \(\psi : U \rightarrow \mathbb{R} \),

\[
\psi(p) = -\frac{1}{\langle n, X \rangle} = x_0 + N_0 = -\langle X + N, e_0 \rangle, \ e_0 = (1, 0, 0, 0)
\]

such that

\[
\psi(p) n(p) = X(p) + N(p), \ \forall p \in U
\]

and

\[
N = -\frac{1}{\langle n, X \rangle} n - X.
\]

2. The coefficients of the second fundamental form for the immersion \(X \) can be calculated as

\[
h_{ij} = -\langle \nabla_{e_i} N, e_j \rangle, \ i, j = 1, 2
\]

with \(e_1 = \frac{1}{\lambda} X_u \) and \(e_2 = \frac{1}{\lambda} X_v \). We have

\[
N_u = -h_{11} X_u - h_{12} X_v,
\]

\[
N_v = -h_{12} X_u - h_{22} X_v.
\]

The mean curvature in the choosen normal direction and the gaussian curvature have, respectively, the expressions

\[
H = \frac{1}{2} (h_{11} + h_{22}) \quad \text{and} \quad K = h_{11} h_{22} - h_{12}^2 - 1.
\]

3. In isothermical parameters

\[
\langle X_{zz}, N \rangle = \frac{1}{2} \lambda^2 H
\]
where
\[\frac{1}{2} \lambda^2 = \langle X_z, X_{\bar{z}} \rangle. \]

The mean curvature \(H \) is equal to one if and only if
\[\langle X_{\bar{z}}, n \rangle = \langle X_z, X_{\bar{z}} \rangle \]
or
\[\langle X_{\bar{z}}, -\frac{1}{\langle n, X \rangle} n - X \rangle = \langle X_z, X_{\bar{z}} \rangle. \]

We will have \(H = 1 \) if and only if
\[\langle X_z, n_{\bar{z}} \rangle = 0. \]

4. Taking \(z = u + iv \) isothermal parameters in \(U \subset \mathbb{C} \) we have the diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{n} & \partial D \approx S^2 \\
\downarrow & & \downarrow \\
U \subset \mathbb{C} & \xrightarrow{h} & \mathbb{C}
\end{array}
\]

with \(\Pi \) the stereographic projection; then
\[
n(z) = \left(1, \frac{2 \Re h}{|h|^2 + 1}, \frac{2 \Im h}{|h|^2 + 1}, \frac{|h|^2 - 1}{|h|^2 + 1} \right),
\]
and \(n \) is holomorphic if and only if \(h \) is holomorphic.

This hyperbolic Gauss map behaves as the classical Gauss map for minimal surfaces in an euclidean space, that is, we have the following theorem ([B]):

Theorem 1. Let \(n : M \rightarrow \partial D \) be the hyperbolic Gauss map of a surface \(X : M \rightarrow \mathbb{H}^3 \), \(n \) non constant. The map \(n : M \rightarrow \partial D \) is conformal iff the immersion \(X \) either has mean curvature \(H \) constant and equal to one (in which case \(n \) preserves the orientation) or \(X \) is totally umbilic (in which case \(n \) reverses the orientation).

Proof. From \(n = \frac{1}{x_0 + N_0} (X + N) \) we have
\[
n_u = \left(\frac{1}{x_0 + N_0} \right)_u (X + N) + \frac{1}{x_0 + N_0} (X_u + N_u) =
\]
\[= \left(\frac{1}{x_0 + N_0} \right)_u (X + N) + \frac{1}{x_0 + N_0} [(- h_{11}) X_u - h_{12} X_v] \]
and
\[
n_v = \left(\frac{1}{x_0 + N_0} \right)_v (X + N) + \frac{1}{x_0 + N_0} (X_v + N_v) =
\]
\[
= \left(\frac{1}{x_0 + N_0} \right) (X + N) + \frac{1}{x_0 + N_0} [-h_{12}X_u + (1 - h_{22})X_v].
\]

Consequently,

\[
||n_u||^2 = \frac{\lambda^2}{(x_0 + N_0)^2} [(1 - h_{11})^2 + h_{12}^2]
\]

\[
||n_v||^2 = \frac{\lambda^2}{(x_0 + N_0)^2} [(1 - h_{22})^2 + h_{12}^2]
\]

\[
<n_u, n_v> = \frac{\lambda^2}{(x_0 + N_0)^2} (h_{12})(2 - h_{11} - h_{22})
\]

and for \(H = 1\) or for umbilic immersions we will have \(||n_u||^2 = ||n_v||^2 \geq 0\) and \(<n_u, n_v> = 0.\)

We also observe that \(||n_u|| = ||n_v|| = 0\) if and only if the immersion is umbilical and \(H = 1;\) in this case we have a horosphere and the hyperbolic Gauss map \(n\) is constant.

Considering the complex differentiation

\[
n_{\bar{z}} = \left(\frac{1}{x_0 + N_0} \right) (X + N) + \frac{1}{x_0 + N_0} (X_{\bar{z}} + N_{\bar{z}})
\]

it follows that

(1) \[
<n_{\bar{z}}, n_{\bar{z}}> = \frac{\lambda^2}{2(x_0 + N_0)^2} (H - 1)[(h_{11} - h_{22}) + 2i h_{12}],
\]

from

\[
n(z) = (1, \frac{2Re h}{|h|^2 + 1}, \frac{2Im h}{|h|^2 + 1}, \frac{|h|^2 - 1}{|h|^2 + 1})
\]

we have

\[
n_{\bar{z}} = \left(\frac{1}{|h|^2 + 1} \right) \tilde{n} + \frac{1}{|h|^2 + 1} \tilde{n}_{\bar{z}}
\]

where

\[
\tilde{n} = (|h|^2 + 1, h + \bar{h}, -i (h - \bar{h}), |h|^2 - 1)
\]

and

\[
\tilde{n}_{\bar{z}} = h_{\bar{z}} (\bar{h}, 1, -i, \bar{h}) + \bar{h}_{\bar{z}} (h, 1, i, h).
\]

With these calculations we conclude that

(2) \[
<n_{\bar{z}}, n_{\bar{z}}> = \frac{4h_{\bar{z}} \bar{n}_{\bar{z}}}{(|h|^2 + 1)^2}
\]

From (1) and (2)

\[
\frac{4h_{\bar{z}} \bar{n}_{\bar{z}}}{(|h|^2 + 1)^2} = \frac{\lambda^2}{2(x_0 + N_0)^2} (H - 1)[(h_{11} - h_{22}) + 2i h_{12}]
\]
and the hyperbolic Gauss map is conformal iff either $H = 1$ or the immersion is umbilical. In both cases the induced metric is given by

$$<dn,dn> = <n_z dz + n_{\bar{z}} d\bar{z}, n_z dz + n_{\bar{z}} d\bar{z}> = 2 <n_z,n_{\bar{z}}> |dz|^2$$

or

$$<dn,dn> = \frac{\lambda^2}{(x_0 + N_0)^2} [(2H - 1) - K] |dz|^2.$$

When $H = 1$ we have

$$<dn,dn> = \frac{\lambda^2}{(x_0 + N_0)^2} (-K) |dz|^2,$$

if the immersed surface is different from a horosphere $2H(H - 1) - K > 0$ and $-K > 0$.

Finally we compare the orientations of $X : M \rightarrow \mathbb{H}^3 \subset \mathbb{L}^4$ and $n : M \rightarrow \partial D \subset \mathbb{L}^4$, when the immersion X is distinct from the horosphere.

The stereographic projection $\Pi : \partial D \approx S^2 \rightarrow \{1\} \times \mathbb{R}^3 \subset \mathbb{L}^4$ induces a positive orientation in S^2 in which the normal vector is the internal one.

Let $\{X(p), \frac{1}{\lambda} X_u, \frac{1}{\lambda} X_v, N\}$ and $\{e_0, n_u, n_v, e_0 - n\}$, $e_0 = (1,0,0,0)$ be orthogonal frames adapted to $X(M)$ and $n(M)$, respectively.

These frames are related by the matrix

$$\begin{pmatrix}
 x_0 & \left(\frac{1}{x_0 + N_0}\right)_u & \left(\frac{1}{x_0 + N_0}\right)_v & x_0 - \frac{1}{x_0 + N_0} \\
 \frac{1}{\lambda} <X_u,e_0> & \frac{\lambda(1 - h_{11})}{x_0 + N_0} & -\frac{\lambda h_{12}}{x_0 + N_0} & \frac{1}{\lambda} <X_u,e_0> \\
 \frac{1}{\lambda} <X_v,e_0> & -\frac{\lambda h_{12}}{x_0 + N_0} & \frac{\lambda(1 - h_{22})}{x_0 + N_0} & \frac{1}{\lambda} <X_v,e_0> \\
 -N_0 & \left(\frac{1}{x_0 + N_0}\right)_u & \left(\frac{1}{x_0 + N_0}\right)_v & -N_0 - \frac{1}{x_0 + N_0}
\end{pmatrix}$$

whose determinant is

$$\begin{vmatrix}
 x_0 & \left(\frac{1}{x_0 + N_0}\right)_u & \left(\frac{1}{x_0 + N_0}\right)_v & x_0 - \frac{1}{x_0 + N_0} \\
 \frac{1}{\lambda} <X_u,e_0> & \frac{\lambda(1 - h_{11})}{x_0 + N_0} & -\frac{\lambda h_{12}}{x_0 + N_0} & 0 \\
 \frac{1}{\lambda} <X_v,e_0> & -\frac{\lambda h_{12}}{x_0 + N_0} & \frac{\lambda(1 - h_{22})}{x_0 + N_0} & 0 \\
 -(x_0 + N_0) & 0 & 0 & 0
\end{vmatrix} = -\frac{\lambda^2}{(x_0 + N_0)^2} [(1 - h_{11})(1 - h_{22}) - h_{12}^2] = \frac{\lambda^2}{(x_0 + N_0)^2} [-K + 2(H - 1)].$$

It is easy to see that the determinant is positive if $H = 1$ in which case n preserves the orientation (that is, n is holomorphic); in the umbilic case the determinant is negative, n reverses the orientation and is antiholomorphic.
Remark. We observe that

\[
\langle n_z, n_{\bar{z}} \rangle = \frac{2}{(1 + |h|^2)^2} \left[|h_z|^2 + |h_{\bar{z}}|^2 \right].
\]

When \(H = 1 \)

\[
\langle d n, d n \rangle = 2 \langle n_z, n_{\bar{z}} \rangle |d z|^2 = \frac{4|h_z|^2}{(|h|^2 + 1)^2} |d z|^2 = -K \frac{\lambda^2}{(x_0 + N_0)^2} |d z|^2,
\]

and

\[
-K = \frac{4|h_z|^2}{(|h|^2 + 1)^2} \left(\frac{\lambda^2}{(x_0 + N_0)^2} \right)^{-1}.
\]

A Representation Theorem.

Working with a holomorphic hyperbolic Gauss map, that is, with surfaces with constant mean curvature equal to one, we have a local representation theorem similar to the Weierstrass representation for minimal surfaces in the euclidean space.

Theorem 2. Let \(X : M \to H^3 \) be a non-umbilic immersion in \(H^3 \) with mean curvature one and

\[
n(z) = \left(1, \frac{2 \text{Re} h}{1 + |h|^2}, \frac{2 \text{Im} h}{1 + |h|^2}, \frac{|h|^2 - 1}{|h|^2 + 1} \right)
\]

its hyperbolic Gauss map. Denoting \(X(z) = (x_0(z), x_1(z), x_2(z), x_3(z)) \), the real functions \(\phi_1(z) = x_0(z) + x_3(z) \) and \(\phi_2(z) = x_0(z) - x_3(z) \) and the complex function \(\phi_3(z) = x_1(z) + i x_2(z) \) satisfy

\[
\begin{cases}
\phi_1 \phi_2 = 1 + |\phi_3|^2 \\
\frac{\partial \phi_1}{\partial z} = h \frac{\partial \phi_3}{\partial z} \\
\frac{\partial \phi_2}{\partial z} = \frac{1}{h} \frac{\partial \phi_3}{\partial z}
\end{cases}
\]

\((\ast)\)

Conversely, given a holomorphic non-constant function \(h : U \subset \mathbb{C} \to \mathbb{C} \), two real functions \(\phi_1 \) and \(\phi_2 \) (\(\phi_2 > 0 \)) and a complex function \(\phi_3 \) satisfying \((\ast)\) in the simply connected domain \(U \), then

\[
X(z) = \left(\frac{\phi_1(z) + \phi_2(z)}{2}, \text{Re} \phi_3(z), \text{Im} \phi_3(z), \frac{\phi_1(z) - \phi_2(z)}{2} \right)
\]
defines a conformal immersion in \(H^3 \) with constant mean curvature one and hyperbolic Gauss map \(n \) given by \(h \) as above.
Proof. First of all we observe that

\[X(z) = (x_0, x_1, x_2, x_3) \in \mathbb{H}^3 \iff -x_0^2 + x_1^2 + x_2^2 + x_3^2 = -1 \iff \Phi_1 \Phi_2 = 1 + |\Phi_3|^2, \]

from the first equivalence it also follows that if \(\Phi_2 = x_0 - x_3 \) then \(\Phi_2 > 0 \).

Given \(\Phi_1, \Phi_2, \Phi_3 \) as above we have

\[
X(z) = \left(\frac{\Phi_1(z) + \Phi_2(z)}{2}, \Re \Phi_3(z), \Im \Phi_3(z), \frac{\Phi_1(z) - \Phi_2(z)}{2} \right)
\]

and \(<X_z, n> = 0 \) if and only if

\[
\frac{1}{2} \left(1 - \frac{|h|^2 - 1}{|h|^2 + 1} \right) \frac{\partial \Phi_1}{\partial z} + \frac{1}{2} \left(1 + \frac{|h|^2 - 1}{|h|^2 + 1} \right) \frac{\partial \Phi_2}{\partial z} + \frac{1}{1 + |h|^2} \left(\Re h \left(\frac{\partial \Phi_3}{\partial z} + \frac{\partial \Phi_3}{\partial \overline{z}} \right) + i \Im h \left(\frac{\partial \Phi_3}{\partial z} - \frac{\partial \Phi_3}{\partial \overline{z}} \right) \right) = 0
\]

or

\[
\frac{\partial \Phi_1}{\partial z} + |h|^2 \frac{\partial \Phi_2}{\partial z} - h \frac{\partial \Phi_3}{\partial z} - \overline{h} \frac{\partial \Phi_3}{\partial \overline{z}} = 0
\]

(4)

The assumption on the mean curvature gives us

\[H = 1 \iff <X_z, n_z> = <X_z, \overline{n_z}> = 0 \]

where

\[n(z) = \left(\frac{2 \Re h}{1 + |h|^2}, \frac{2 \Im h}{1 + |h|^2}, \frac{|h|^2 - 1}{1 + |h|^2} \right) \]

and

\[\overline{n} = (1 + |h|^2, h + \overline{h}, -i(h - \overline{h}), |h|^2 - 1) \]

We have in this case \(h \) holomorphic and therefore

\[\overline{n_z} = (h \overline{h_z}, \overline{h_z}, i \overline{h_z}, h \overline{h_z}), \]

as \(h \) is nonconstant \((h_z \neq 0) \) it follows

\[H = 1 \iff <X_z, n_z> = 0 \iff
\]

\[-h \left(\frac{\partial \Phi_1}{\partial z} + \frac{\partial \Phi_2}{\partial z} \right) + \left(\frac{\partial \Phi_3}{\partial z} + \frac{\partial \Phi_3}{\partial \overline{z}} \right) + h \left(\frac{\partial \Phi_1}{\partial z} - \frac{\partial \Phi_2}{\partial \overline{z}} \right) = 0 \iff
\]

(5)

\[\frac{\partial \Phi_3}{\partial z} = h \frac{\partial \Phi_2}{\partial z}. \]
Returning with this last equation in (4), finally we have

$$\frac{\partial \Phi_1}{\partial z} = h \frac{\partial \Phi_3}{\partial z}. $$

Let $p \in M$ be a zero of h with order 1; we have from (5) that p is a zero of $\frac{\partial \Phi_3}{\partial z}$ whose order is greater or equal to 1 and we can write

$$\frac{\partial \Phi_2}{\partial z} = \frac{1}{h} \frac{\partial \Phi_3}{\partial z}. $$

Let now be

$$X(z) = \left(\frac{\phi_1(z) + \phi_2(z)}{2}, \Re \phi_3(z), \Im \phi_3(z), \frac{\phi_1(z) - \phi_2(z)}{2} \right)$$

with ϕ_1, ϕ_2, ϕ_3 verifying (*). It is easy to see that

$$X_z = \frac{1}{2} \left[\frac{\partial \Phi_3}{\partial z} \left(\frac{1}{h}, 1, -i, -\frac{1}{h} \right) + \frac{\partial \Phi_3}{\partial z} (h, 1, i, h) \right] \tag{6}$$

From the fact that $\langle X_z, X_z \rangle = 0$ it follows that we have isothermical parameters.

Let now consider

$$\hat{n}(z) = \left(1, \frac{2 \Re h}{1 + |h|^2}, \frac{2 \Im h}{1 + |h|^2}, \frac{|h|^2 - 1}{|h|^2 + 1} \right)$$

with h the holomorphic function from (*). The vector

$$\hat{N} = -\frac{1}{\langle \hat{n}, X \rangle} \hat{n} - X$$

has norm equal to one, verifies $\langle X_z, \hat{N} \rangle = 0$, $\langle X, \hat{N} \rangle = 0$ and

$$-\frac{1}{\langle \hat{n}, X \rangle} \hat{n} = X + \hat{N}$$

therefore \hat{N} is exactly the normal vector N and \hat{n} the hyperbolic Gauss map n of the immersion X. With some calculations we obtain

$$\langle n_\xi, X_\xi \rangle = \frac{h_\xi}{(1 + |h|^2)} \left[\frac{\partial \Phi_3}{\partial z} - \frac{\partial \phi_3 h}{\partial z \ h} \right].$$

From the fact that h is holomorphic it follows that $\langle n_\xi, X_\xi \rangle = 0$ which implies $H = 1$; h non-constant gives us a non-umbilic immersion.
Remarks.
1. The compatibility condition for the two partial differential equations in (\(*\)) is the same and writes

\((7) \quad \Im m \{ \overline{h} \Delta \phi_3 \} = 0. \)

This follows from the fact that each differential equation of (\(*\)) is as

\[\frac{\partial \Phi}{\partial z} = F(z) \]

or as

\[\begin{align*}
\frac{\partial \Phi}{\partial u} &= 2F_1(u, v) \\
\frac{\partial \Phi}{\partial v} &= -2F_2(u, v)
\end{align*} \]

with \(z = u + iv, F(z) = F_1(u, v) + iF_2(u, v), \partial / \partial z = \frac{1}{2} (\partial / \partial u - i \partial / \partial v). \)

The integrability condition for this system is:

\[\frac{\partial F_1}{\partial v} = -\frac{\partial F_2}{\partial u} \iff \Im m \{ \frac{\partial F}{\partial z} \} = 0 \]

Returning to the system (\(*\)), each equation will have its integrability condition respectively given by:

\[\Im m \{ h \frac{\partial^2 \Phi_3}{\partial z \partial z} \} = 0 \]

and

\[\Im m \{ \frac{1}{|h|^2} \frac{\partial^2 \Phi_3}{\partial z \partial z} \} = -\frac{1}{|h|^2} \Im m \{ h \frac{\partial^2 \Phi_3}{\partial z \partial z} \} = 0 \]

Consequently, the two compatibility conditions are verified if and only if, locally,

\[\Im m \{ \overline{h} \Delta \phi_3 \} = 0 \]

2. Choosing \(h \) and \(\phi_3 \) such as to verify (7) we will have \(\phi_1 \) and \(\phi_2 \) given locally by

\[\phi_1 = 2 \Re e \int_{z_0}^{z} h \frac{\partial \Phi_3}{\partial z} \, dz \]

and

\[\phi_2 = 2 \Re e \int_{z_0}^{z} \frac{1}{h} \frac{\partial \Phi_3}{\partial z} \, dz. \]

3. An integral formula can be written from (6):

(1) \(X = \left(\Re e \int_{z_0}^{z} \left(h \frac{\partial \Phi_3}{\partial z} + \frac{1}{h} \frac{\partial \Phi_3}{\partial z} \right) \, dz, \Re e \phi_3, \Im m \phi_3, \Re e \int_{z_0}^{z} \left(h \frac{\partial \Phi_3}{\partial z} - \frac{1}{h} \frac{\partial \Phi_3}{\partial z} \right) \, dz \right). \)
4. The metric \(ds^2 = \lambda^2 |dz|^2 \) is such that \(\lambda^2 = 2 < X, \bar{X} > \), from (6) we have

\[
\lambda^2 = \left| \frac{\partial \Phi_3}{\partial z} \right|^2 + \left| \frac{\partial \Phi_3}{\partial \bar{z}} \right|^2 - 2 \Re \left(\frac{\bar{h}}{h} \frac{\partial \Phi_3}{\partial z} \frac{\partial \Phi_3}{\partial \bar{z}} \right)
\]

and from this last expression we can conclude that \(p \) is a regular point if the derivatives \(\frac{\partial \Phi_3}{\partial z} \) and \(\frac{\partial \Phi_3}{\partial \bar{z}} \) do not vanish simultaneously at \(p \).

We also can write:

\[
\lambda^2 = \left| \frac{\partial}{\partial \bar{z}} \left(\Phi_3 - \bar{h}\Phi_2 \right) \right|^2 = \left| \frac{\partial}{\partial \bar{z}} \left(\Phi_3 - h\Phi_2 \right) \right|^2
\]

5. From Lemma 1 we have:

\[
- \frac{1}{< n, X >} = x_0 + N_0 = - < X + N, e_0 >,
\]

some calculations give us:

\[1 + |\Phi_3 - h\Phi_2|^2 = \Phi_2(\Phi_1 + |h|^2 \Phi_2 - \bar{h}\Phi_3 - h\Phi_3)\]

and

\[< n, X > = \frac{1}{|h|^2 + 1} (-\Phi_1 - |h|^2 \Phi_2 + \bar{h}\Phi_3 + h\Phi_3) = - \frac{1 + |\Phi_3 - h\Phi_2|^2}{\Phi_2 (|h|^2 + 1)}\]

The total curvature is

\[c = \int_M K dA\]

and from (3) it follows that

\[K = - \frac{4|h|^2}{(|h|^2 + 1)^2} \left(\frac{\lambda^2}{(x_0 + N_0)^2} \right)^{-1}.\]

In local coordinates

\[
c = - \int \frac{4|h|^2}{(\Phi_1 + |h|^2 \Phi_2 - \bar{h}\Phi_3 - h\Phi_3)^2} \frac{i}{2} dz \wedge \overline{dz} = \]

\[\int \frac{4|h|^2 \Phi_2^2}{(1 + |\Phi_3 - h\Phi_2|^2)^2} \frac{i}{2} dz \wedge \overline{dz} = \int \frac{4 |\frac{\partial}{\partial \bar{z}}(\Phi_3 - h\Phi_2)|^2}{(1 + |\Phi_3 - h\Phi_2|^2)^2} \frac{i}{2} dz \wedge \overline{dz}\]

6. Given the immersion \(X: U \subset \mathbb{C} \rightarrow \mathbb{H}^3 \) in isothermal coordinates, calling \(F = \lambda^2 / 2 \), the gaussian curvature can also be calculated as

\[K = - \frac{\partial \overline{\partial} \log F}{F}.\]
If we denote
\[\psi = \frac{1}{2} \left((h_{11} - h_{22}) - 2i h_{12} \right) = \frac{2}{\lambda^2} < X_{zz}, N > \]
the Gauss equation can be written as
\[|\psi|^2 = -K - \frac{4}{\lambda^2} < X_{zz}, X_{zz} > = -K + H^2 - 1. \]

By using (*) we get
\[|\psi|^2 = \frac{4|h_2|^2 \phi_2}{\lambda^2 (1 + |\phi_3 - h \phi_2|^2)^2} = -K \]
that means, we have the Gauss’ equation verified.

We will call the Hopf’s form ([H]) the quadratic form
\[\Psi = \psi \lambda^2 dz^2. \]

As in ([H]) the Codazzi equations can be written in a complex form and we have
\[\frac{\partial (\lambda^2 \psi)}{\partial \bar{z}} = \lambda^2 \frac{\partial H}{\partial z} \]
With some calculations we can show that (*) implies that \(\lambda^2 \psi \) is holomorphic (Proposition 2 in [B]) and the Codazzi equations are also verified.

Examples.

To exhibit some examples we need to get two real functions \(\phi_1 \) and \(\phi_2, \phi_2 > 0 \) and a complex function \(\phi_3 \), solutions of the the system:

\[
\begin{cases}
\phi_1 \phi_2 = 1 + |\phi_3|^2 \\
\frac{\partial \phi_1}{\partial z} = h \frac{\partial \phi_3}{\partial z} \\
\frac{\partial \phi_2}{\partial z} = \frac{1}{h} \frac{\partial \phi_3}{\partial z}
\end{cases}
\]

(∗)

To find solutions, we begin with some important remarks.

1. First of all we will analyse the solutions that correspond to \(\phi_3 \) holomorphic (or antiholomorphic); we will have that \(\phi_1 \) (resp. \(\phi_2 \)) is constant. As \(\phi_1 \phi_2 = 1 + |\phi_3|^2 \) the constant cannot be zero; it is easy to see that \(\phi_1 \) (resp. \(\phi_2 \)) constant implies that the surface is umbilical and \(x_0 + x_3 \) (resp. \(x_0 - x_3 \)) is constant; in this case the functions \(x_1 \) and \(x_2 \) will be harmonical conjugates.

2. Given the function \(h \) we can search solutions as
\[\phi_3 = h(z)F(|z|^2), \]
with F a one real variable differentiable function.

Since

$$
\overline{h} \Delta \phi_3 = z\overline{h}h_z F'(|z|^2) + |h|^2 F'(|z|^2) + |z|^2 |h|^2 F''(|z|^2)
$$

the compatibility condition is

$$
\Im \{ \overline{h} \Delta \phi_3 \} = 0 \iff \Im \{ z\overline{h}h' \} = 0.
$$

The last condition is satisfied by all the functions $h(z) = z^\alpha$, for real α.

3. If $\phi_3 = h(z)F(|z|^2)$ then metric (6) will be

$$
\lambda^2 = |h_z|^2 F^2(|z|^2).
$$

Example 1. We have an immersion with constant mean curvature one

$$
X : \mathbb{C} - \{0\} \longrightarrow \mathbb{H}^3
$$

solving (\ast) with $h(z) = z$, $F_\alpha(t) = t^\alpha$ and

$$
\phi_3(z) = h(z) \left[AF_\alpha(|z|^2) + BF_{\beta}(|z|^2) \right].
$$

Now, the integrability condition is satisfied (remark 2) and the solutions ϕ_1 and ϕ_2 are:

$$
\phi_1(z) = \frac{\alpha}{\alpha + 1} A |z|^{2\alpha + 2} + \frac{\beta}{\beta + 1} B |z|^{2\beta + 2}
$$

and

$$
\phi_2(z) = \frac{\alpha + 1}{\alpha} A |z|^{2\alpha} + \frac{\beta + 1}{\beta} B |z|^{2\beta}
$$

with α and β both distinct from zero and -1.

The condition $\phi_1 \phi_2 = 1 + |\phi_3|^2$ is verified under the restrictions:

$$
\alpha + \beta = -1
$$

and

$$
AB \left(\frac{2\alpha + 1}{\alpha(\alpha + 1)} \right)^2 = 1
$$

therefore

$$
2\alpha + 1 \neq 0.
$$
In this case the solutions of (*) are:

\[
\begin{align*}
\Phi_1(z) &= \frac{\alpha}{\alpha + 1} A |z|^{2\alpha + 2} + \frac{\alpha + 1}{\alpha} B |z|^{-2\alpha} \\
\Phi_2(z) &= \frac{\alpha + 1}{\alpha} A |z|^{2\alpha} + \frac{\alpha}{\alpha + 1} B |z|^{-2\alpha - 2} \\
\Phi_3 &= z[A |z|^{2\alpha} + B |z|^{-2\alpha - 2}]
\end{align*}
\]

(12)

Writing \(z = re^{i\theta} \):

\[
\begin{align*}
\Phi_1(r, \theta) &= \frac{\alpha}{\alpha + 1} A r^{2\alpha + 2} + \frac{\alpha + 1}{\alpha} B r^{-2\alpha} = f_1(r) \\
\Phi_2(r, \theta) &= \frac{\alpha + 1}{\alpha} A r^{2\alpha} + \frac{\alpha}{\alpha + 1} B r^{-2\alpha - 2} = f_2(r) \\
\Phi_3(r, \theta) &= r(\cos \theta + i \sin \theta)(A r^{2\alpha} + B r^{-2\alpha - 2}) = f_3(r) e^{i\theta}
\end{align*}
\]

Now it is easy to see that all these surfaces are rotational surfaces generated by the curve

\[
C(r) = (c_0(r), c_1(r), 0, c_3(r)) = \left(\frac{f_1(r) + f_2(r)}{2}, f_3(r), 0, \frac{f_1(r) - f_2(r)}{2} \right),
\]

\(C(r) \subset H^3 P^3 \), with \(P^3 = [e_0, e_1, e_3] \). We have a spherical rotation and

\[
X(r, \theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \left[\begin{array}{c} c_0 \\ c_1 \\ c_3 \end{array} \right] = \begin{bmatrix} c_0 \\ c_1 \cos \theta \\ c_1 \sin \theta \\ c_3 \end{bmatrix}
\]

Using (9) and (11) we can have the total curvature

\[
c = \int_{C \setminus \{0\}} \frac{4\alpha^2(\alpha + 1)^2 |z|^{4\alpha + 2}}{(A|z|^{4\alpha + 2} + B)^2} \frac{i}{2} dz \overline{dz} = -4(2\alpha + 1)\pi
\]
As in (10) we have

\[ds^2 = (A|z|^{2\alpha} + B|z|^{-2\alpha-2})^2|dz|^2 \]

and the surface is complete.

The minimal catenoid in the euclidean space has a Weierstrass representation given by

\[g(z) = \mu z \quad \eta = f(z) dz = \nu z^{-2} dz. \]

The \(k \)-recovering of a minimal catenoid has Weierstrass data

\[g(z) = \mu z^k \quad \eta = f(z) dz = \nu z^{-k-1} dz \]

and its induced metric is given by

\[ds^2 = \frac{1}{4}[\nu|z|^{-k-1} + \nu\mu^2|z|^{k-1}]^2|dz|^2. \]

Given a rotational hyperbolic mean curvature one surface (consequently, given \(A \), \(B \) and \(\alpha \)), there exists a minimal catenoid isometric to this surface.

Choosing \(\mu \) and \(\nu \) such that \(A = \nu \mu^2 / 2 \), \(B = \nu / 2 \) the hyperbolic rotational surface is isometric to the \(k = (2\alpha + 1) \)-recovering of the minimal catenoid.

Conversely, it is easy to see that a \(k \)-recovering of a minimal catenoid is isometric to one immersion in the family of rotational surfaces exhibited above. This immersion is such that \(A = \nu \mu^2 / 2 \), \(B = \nu / 2 \),

\[\left(\frac{2\alpha + 1}{\alpha(\alpha + 1)} \right)^2 = \frac{4}{\nu^2 \mu^2} \]

and \(k = 2\alpha + 1 \).

The rotational hyperbolic mean curvature one surfaces are called "the catenoid cousins".

Example 2. The system \((\ast)\) also admits solutions as

\[\phi_3(z) = F(z) \overline{G(z)} \]

with \(F \) and \(G \) holomorphic functions. In this case if

\[(13) \quad F'(z) = h(z)G'(z) \]

the integrability condition (7) is verified.

The two last equations in \((\ast)\) can be integrated and the solutions are

\[\phi_1(z) = |F(z)|^2 \]

and

\[\phi_2(z) = |G(z)|^2. \]
We will modify these solutions to have the first equation satisfied; in this way, we will take F_1, G_1, F_2, G_2 as in (13), A and B real constants such that

\[
\begin{align*}
\phi_1 &= A |F_1|^2 + B |F_2|^2 \\
\phi_2 &= A |G_1|^2 + B |G_2|^2 \\
\phi_3 &= A F_1 \bar{G}_1 + B F_2 \bar{G}_2
\end{align*}
\]

with

(14) \[AB(\bar{F}_1 \bar{G}_2 - \bar{F}_2 \bar{G}_1)(F_1 G_2 - F_2 G_1) = 1. \]

The surfaces called "Enneper Cousins" are corresponding to

\[
h(z) = \tanh \lambda z,
\]
\[
G_1'(z) = \cosh \lambda z
\]
\[
G_2'(z) = z \cosh \lambda z,
\]

consequently, by (13) and (14),

\[
F_1(z) = \frac{1}{\lambda} \cosh \lambda z
\]
\[
F_2(z) = \frac{1}{\lambda} \left(z \cosh \lambda z - \frac{1}{\lambda} \sinh \lambda z \right)
\]
\[
G_1(z) = \frac{1}{\lambda} \sinh \lambda z
\]
\[
G_2(z) = \frac{1}{\lambda} \left(z \sinh \lambda z - \frac{1}{\lambda} \cosh \lambda z \right)
\]

and

\[
AB = |\lambda|^6, \quad \lambda \in \mathbb{C}.
\]

The total curvature can be calculated by (9), observing that

\[
\Phi_1 + |h|^2 \Phi_2 - \bar{h} \Phi_3 - h \bar{\Phi}_3 = A |F_1 - h G_1|^2 + B |F_2 - h G_2|^2 = \frac{(A + B |z|^2)}{|\lambda|^2 |\cosh z|^2}
\]

and

\[
K = -\int \frac{4|\lambda|^6}{A^2 \left(1 + \frac{B}{A} |z|^2\right)^2} \frac{i}{2} dz \wedge \bar{dz} = -\int \frac{4}{(1 + |w|^2)^2} \frac{i}{2} dw \wedge \bar{dw} = -4\pi.
\]
It is also easy to see that the metric

$$ds^2 = \left(\frac{A}{\lambda} + \frac{B}{\lambda} |z|^{2} \right)^2 |dz|^2$$

is complete.

The classical Enneper surface is given by the Weierstrass data

$$g(z) = \mu z \quad f(z)dz = \nu dz$$

and has the metric:

$$ds^2 = \frac{1}{4} [\nu + \nu \mu^2 |z|^2]^2 |dz|^2.$$

The corresponding isometric Enneper cousin will be given by λ, A and B such that $\lambda^2 = \nu \mu / 2$, $A = \lambda \nu / 2$ and $B = \lambda \nu \mu^2 / 2$.

Example 3. By taking

$$h(z) = \tanh \left(\frac{\sqrt{5}}{2} z \right) = \frac{\sinh(\alpha_1 z) + \sinh(\alpha_2 z)}{\cosh(\alpha_1 z) + \cosh(\alpha_2 z)},$$

with $\alpha_1 = \frac{\sqrt{5} - 1}{2}$ and $\alpha_2 = \frac{\sqrt{5} + 1}{2}$ and

$$\phi_3 = AF_1 \overline{G}_1 + BF_2 \overline{G}_2,$$

we can obtain the “Bonnet Cousins” ([GN]) corresponding to the solutions:

$$F_1(z) = \frac{1}{\alpha_1} \cosh(\alpha_1 z) + \frac{1}{\alpha_2} \cosh(\alpha_2 z)$$

$$G_1(z) = \frac{1}{\alpha_1} \sinh(\alpha_1 z) + \frac{1}{\alpha_2} \sinh(\alpha_2 z)$$

$$F_2(z) = \frac{1}{\alpha_1} \sinh(\alpha_1 z) - \frac{1}{\alpha_2} \sinh(\alpha_2 z)$$

$$G_2(z) = \frac{1}{\alpha_1} \cosh(\alpha_1 z) - \frac{1}{\alpha_2} \cosh(\alpha_2 z),$$

$$AB = \frac{1}{(\alpha_2^2 - \alpha_1^2)^2} = \frac{1}{(\alpha_1 + \alpha_2)^2}.$$

The metric in this case is given by

$$ds^2 = 4 \left[A(\alpha_1 + \alpha_2) |\cosh z / 2|^2 + B(\alpha_1 + \alpha_2) |\sinh z / 2|^2 \right]^2 |dz|^2 =$$
\[
= 4 \left[A (\alpha_1 + \alpha_2) \left| \cosh z / 2 \right|^2 + \frac{1}{A(\alpha_1 + \alpha_2)} \left| \sinh z / 2 \right|^2 \right]^2 |dz|^2
\]

and the surface is regular, complete and isometric to a homothety of the classical Bonnet minimal surface given by the Weierstrass data

\[g(z) = -i \alpha \tanh \left(\frac{z}{2} \right) \quad \text{and} \quad f(z)dz = \frac{2i}{\alpha} \cosh^2 \left(\frac{z}{2} \right) dz, \quad z \in \mathbb{C}, \quad \alpha = \sqrt{\frac{1+a}{1-a}}, \quad 0 < a < 1\]

and metric

\[
ds^2 = \frac{1}{4} \left[\frac{1}{|\cosh \frac{z}{2}|^2 + \alpha |\sinh \frac{z}{2}|^2} \right]^2 |dz|^2.
\]

To get new examples we have to find solutions of

\[\Im \{ \bar{h} \Delta \phi_3 \} = 0\]

and a linear combination of this solutions in order to have

\[\phi_1 \phi_2 = 1 + |\phi_3|^2\]

that is, in order to have the corresponding immersion in \(\mathbb{L}^4 \) contained in \(\mathbb{H}^3 \).

The classification of these immersions depends on the description of all the solutions of this problem.
REFERENCES

Celia C. Góes (goes@ime.usp.br)
M. Elisa E.L. Galvão (elisa@ime.usp.br)
INSTITUTO DE MATEMÁTICA E ESTÁTICA
UNIVERSIDADE DE SÃO PAULO
Rua do Matão 1010
Cidade Universitária
Caixa Postal 66281 - Ag. Cidade de São Paulo
CEP 05889-970
SÃO PAULO - BRASIL