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A CHARACTERIZATION OF A CERTAIN REAL HYPERSURFACE OF THE COM-
PLEX PROJECTIVE SPACE

TAKAHITO KIKUKAWA

Abstract. Let M be a geodesic hypersphere or a tube of radius r over a totally geodesic
CPf (1 <k<n—2,0<r<mn/2) inacomplex projective space CP"(4). We characterize M
by using specific properties of the tensor field T of type (1,2) defined by

TxY = 0(Y)0AX —1(X)0AY — g(6AX,¥)E

1 Introduction

Let M = CP"(4) be an n-dimensional complex projective space with Fubini-Study metric g of
constant holomorphic sectional curvature 4 , and let M be a connected real hypersurface of M.
For real hypersurfaces in M it is well-known that there exists no locally symmetric Rieman-
nian spaces. But homogeneous real hypersurfaces of M exist and are classified by R.Takagi
[9] by means of six model spaces of type (A),(A2),(B),(C),(D) and (E£). Some characteri-
zations of these model spaces are investigated by R.Takagi, [10] T.E.Cecil and P.J.Ryan [3].
Particularly, M.Kimura [4] proved the following:

Theorem 1 ([4]) Let M be a connected real hypersurface of M. Then M has constant princi-
pal curvatures and the structure vector & is principal with principal curvature o. = 2 cot(2r)
if and only if M is locally congruent to one of the following spaces:

(Ay) a geodesic hypersphere (that is, a tube of radius r over a hyperplane CP"', where
O0<r<mn/2);

(A>) a tube of radius r over a totally geodesic CP* (1 <k <n—2), where 0 < r < m/2;

(B) a tube of radius r over a complex quardric Q"' where 0 < r < w/4;

=

(C) a tube of radius r over CP' x CP"2 , where 0 < r < nt/4and n (> 35) is odd;

(D) a tube of radius r over a complex Grassmann Gy 5(c), where 0 < r < /4 and n = 9;

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where 0 < r < /4
and n = 15.

In the following we call real hypersurfaces of type (A;) and type (A>) “real hypersurfaces
of type (A)” without distinguishing.

W.Ambrose and [.M.Singer[ 1] gave a characterization of homogeneous Riemannian man-
ifolds:
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Theorem 2 ([1]) A connected, complete and simply connected Riemannian manifold M is
homogeneous if and only if there exists a tensor field T of tvpe(1,2) on M such that

(1) g(IxY, Z2)+g(Y,TxZ) =0
(2) (VxR)(Y,Z) = [Ty, R(Y,Z)] — R(Tx Y. Z) — R(Y, Ty Z)
(3) (VxT)y = Tx.Ty| —Try

for X, Y. Z € y(M). Here V denotes the Levi Civita connection, R is the Riemannian curvatire
tensor of M and y (M) is the Lie algebra of all C”vector fields over M.

It T satisfies in addition
(4) TxX =0,

then M 1s the naturally reductive homogeneous space [11].

In this case, we call T a naturally reductive homogeneous structure on M.

The examples of naturally reductive homogeneous real hypersurfaces of the complex
space form M, (¢) are given at first by J.Berndt and L.Vanhecke [2]. They proved that n-
umbilical real hypersurfaces of M, (c) are naturally reductive homogeneous spaces. Further,
S.Nagai [7] generalized their resuit:

Theorem 3 (I71) Let M be a real hypersurface satisfyving the commuiativity condition AQ =
OA in a non-flat complex space form M, (c). Then

TxY =n(Y)0AX —1(X)0AY — g(0AX,Y)E (1.1)
defines a naturally reductive homogeneous structure on M.

Here (6,&, 1. ¢) denotes the almost contact metric structure of M naturally induced from
the complex structure of M, (c), and A is the shape operator of M in M, (¢). When M, (¢) is
the complex projective space M, the real hypersurface satisfying A¢ = QA is of type(A) (see
Theorem 4 in §2).

We put V=V — 7', where 7 is the tensor field of type(1,2) defined by (1.1). Then, the
conditions (1),(2), and (3) in Theorem 2 are equivalent to Vg = 0,VR =0, and VT = 0,
respectively. Moreover, in the paper [7], it 1s shown that a real hypersurface of type(A) in M
satisfies VA = 0 and 'V¢ 0. From these facts we know that the real hypersurface of type(A)

in M satisfies V¢ =0,VR = 0,VT = 0,VA = 0 and Vo = 0. In this paper, we investigate the
converse problem of the above result and prove the following:

Main Theorem Let M be a connected real hypersurface of M and V a connection defined
by V :=V —T. Then the following statements are equivalent:

(1) M is locally congruent to the real hypersurface of type (A),
(2) Ve=0:

(3) VR=0:
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(4) VI =0 :
(5) Vo=0:
(6) VA=0;

The author would like to express his sincere gratitude to Professors M.Okumura, S.Nagai,
M.Kimura for their valuable suggestions and comments.

2  Preliminaries

Let M := CP"(4) be an n-dimensional complex projective space of constant holomorphic
sectional curvature 4 and let g and J be 1ts Fubini-Study metric and complex structure, re-
spectively. Further, let M be a connected real hypersurface of M. We denote the induced
Riemannian metric on M by the same letter g and a local unit normal vector field along M in
Mbyv.

The Gauss and Weingarten formulas are:

VyY = VyY+4g(AX.Y)v, (2.1)
V}(V = —AX. (2.2)

Here V and V denote the Levi-Civita connection on M and M, respectively, and A is the shape
operator of M in M.
Let R and R be the curvature tensors of M and M. The first structure equation becomes

R(X.Y)Z=R(X.,Y)Z—g(AY.Z)AX + g(AX . Z2)AY + g((VxA)Y — (VyA)X.Z)v.
Next, let (¢.&,1n,2) be tiic almost contact metric structure naturally defined on M, that is,

= —Jv, N(X)=g(X,E), JX =0X+n(X)V.

These structure tensors satisfy the following equations:

0°X = -X+n(X)§, M) =1, 0¢=0, Nnod=0. (2.3)
From (2.1) , (2.2) and VJ = 0 we get
(Vx0)Y = m(Y)AX —g(AX.Y)E, (2.4)
V€& = 0AX. (2.5)
Using (2.5), we obtain
(VxM)Y = g(0AX.Y). (2.6)
In our case the Gauss and {Codazzi equations become:
RIX.Y)Z = gV, Z)X —g(X,2)Y 4+ g(0Y,Z)0X — g(6X,Z)oY
—-28(0X,Y)0Z + g(AY,Z)AX — g(AX,Z)AY, (2.7)

(VyA)Y — (VyA)X

N(X)0Y —n(¥)0X —2g(0X . Y)E. (2.8)
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Let C""! be the complex (n + | )-space and zg.Zzp,.-..,2, the natural coordinate system.
S +1(r) is the sphere of radius  in C"*! defined by

ST = {(20,215--y20) | 2030+ 2121+ + 2070 = 17}

The Riemannian metric tensor on $2"*! (r) is induced from the following metric (, ) on C"*! :

where 2 = (20,21,...,20), W = (Wo,w1,...,wy) € C"F1.
Then we can consider the Hopft fibration

st = 521 S CP,.

The product of two spheres S*7* ! (cost) x S ! (sint) can be embedded in C"! := CP*! x
C?*! where n = p+ g+ 1. Then we may regard $>”*!(cost) x $¢*!(sint) as a submanifold
in $*"*1. Pushing down this submanifold to M according to the following diagram, we get a
homogeneous real hypersurface in M:

SP1(cost) x $%4+! (sint) - ST

M - M

This 1s a tube of radius ¢ over the totally geodesic CP,, that is, a real hypersurface of type(A)

[3].

Now we recall the following:

Lemma 4 ([6]) IfE is a principal curvature vector, then the corresponding principal curva-
fure O, is constant.

Lemma 5 ([6]) Assume that € is a principal curvature vector with corresponding principal
curvature 0. If AX = AX for X orthogonal to &, then we have

oA+ 2
AdX = X.
¢ 2A — ccq)
Theorem 6 ([8]) Let M be a real hypersurface of M. Then the following statements are

equivalent:

(1) M is locally congruent to the homogeneous real hypersurface of type(A);

(2) Ad = 0A.

Theorem 7 ([S]) Let M be a real hypersurface of M. Then the shape operator satisfies
g((VxA)Y,Z) = 0 for X,Y.Z orthogonal to & and & is a principal curvature vector if and
only if M is locally congruent to one of the homogeneous hypersurfaces of type(A) or of
type(B).



A Characterization of a certain Real Hypersurface of the Complex Projective Space 285

3 Proof of Theorem

Our purposes are to prove (2) = (1), (3) = (1), (4) = (1), (5) = (1), and (6) = (1).
First, we prove (2) = (1).

gt

From (1.1) and Vg = 0 we have

M(X)g((0A —A9)Y,Z) =0

for X,Y,Z € TM. Since this implies A¢ = QA, the result follows from Theorem 4.
Next, we prove (5) = (1).
From (1.1), (2.3), (2.4) and V¢ = 0 we have

—

0= (Vx0)Y =n(X)0(Ad — 6A)Y
for X,Y € TM. Putting X =Y =&, we get
AG = n(AZ)C.
So, & is principal. Putting X = & and applying ¢ yields
0= (Ad — dA)Y.

Since this implies Adp = QA, (5) = (1) follows again from Theorem 4.
Now we turn to the proof of (3) = (1).
From the definition of VR and VR = (0 we have

0= (VwR)(X,Y)Z~Tw(R(X,Y)Z) +R(TwX,Y)Z + R(X.TwY)Z +R(X,Y)TwZ

for W, X,Y,Z € TM. Calculating the inner product of the right-hand members of the above
equation and Z, we have

¢(Tw(R(X,Y)Z),Z) + g(R(X,Y)Z, Ty Z) = 0.
From (2.7) we have

gV, 2)g(TwX,Z)—g(X,Z)g(TwY,Z) + g(0Y,Z)g(Tw (¢X), Z)
—g(0X,Z)g(Tw (0Y),Z) —2g(0X,Y ) g(Tw(9Z),Z) + g(AY,Z)g(Tw (AX),Z)
—8(AX,Z)g(Tx(AY ), Z) +g(Y,Z)g(X,TwZ) — g(X,Z)g(Y,Tw Z)

+0(AY,Z)2(AX, TwZ) — 9(AX , Z)g(AY, Ty Z) = 0. (3.1)

Next, we prove that § is principal. Putting W = Z = £ in (3.1) we get

—N(Y)g(dAE, X) +M(X)g(9AS,Y) —M(AY)g(0AE,AX) +n(AX)g(dAG,AY) =0. (3.2)

Putting Y = & in (3.2) we have

PAS +1M(AS)APAS = 0.
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If N(AE) = 0, then A = 0 and this shows that  is principal. Further, if n(AE) # 0 we have

|
N(AG)

Putting Y = 0AZ in (3.2) and taking account of (3.3), we have

DAL, (3.3)

APAE = —

) P

If g(0AC, 0AE) = 0, then dAE = 0 and hence, < is principal. If (X ) —N(AX)/N(AE) =0, we

have

M(X) -

NASM(X) —n(AX) = g(X,n(AE)E —AC) =0
and ¢ is again principal.
From Lemma 1, if A = o&, o. is constant. )
By a straightforward calculation, taking account of (2.7) and A = ag, we get for (V:R)
(X, ¢)S and R(\?é}(,i)ﬁ the following calculations:
(VER(X,E)E) = VX —g(VeX,E)E+aVe(AX) - 0g(V:(AX).E)E,
R(V:X,E)E = VeX—g(VeX E)E+0AVeX —0g(AVeX E)E. (3.4)
From (1.1),(2.8) and A = o we get
Ve(AX) —AVeX = (V:A)X — T:AX + AT X
=  OQAX — 2A0AX + OX + A°X. (3.5)
From (3.4) and (3.5), we have
0= (VeR)(X.8)E = (Ve)(R(X.E)E) ~ R(VeX,E)E — R(X, VeE)E ~ R(X,E)V:E
= oOX + 0DAX — 240AX + OA°X). (3.6)

Since o 1s constani, we have only to consider the two cases, namely o. = 0 or o # 0.
Case I: =0
Putting Y = W = £ in (3.1), we get

N(Z)g({Ad—9A)Z,X) = 0.
Putting Z = 7' + & where Z’ is an arbitrary vector orthogonal to &, we have
2((Ad—0A)Z',X) = 0.

Hence Ad = @A for any vector orthogonal to ¢ and thus, A® = GA. Theorem 4 then implies
that M 1s of type (A).

Case 2: a0 # 0

(3.6) 1s equivalent to

OX + adpAX — 2A0AX + 0A°X = 0. (3.7)
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We define Vy by
Vi = {X eTM|X LEAX =AX}.

Choosing X € V5 1n (3.7) and taking account of Lemma 2, we have
2r+0) (A —or—1)=0.

Following the same procedure for X € V.o 1n (3.7) and taking again account of Lemma 2,
A

we have

(doh — o +4) (A —ah—1) = 0.

From this, it follows that A is constant. If A> — oA — 1 # 0, then 2A4-¢. = 0 and 40A — 0> + 4 =
0. This yields 2> — oA — I = 0 which gives a contradition.

So, A* — ok — 1 =0 and hence A = ?{“J’% This implies AQ = ¢A and thus, M is of type
(A).

Next, we consider (4) = (1).

From the definition of VT and (Vy7)yZ = 0 we have

(VxTWwzZ=TxTyZ -TyIxZ—-Tr.vyZ. (3.8)

From T:C = 0, putting X =Y = Z = ¢, we have
0=(Vel)eg = —Tyzb—TVek
= +&(0AE, 9AZ)C.

Hence 0AE = 0, that is, A = of where o is constant (Lemma 1),
Choosing X, Y orthogonal to ¢ then we have

From this and for X, ¥, Z orthogonal to &, the right-hand of (3.8) becomes
TX TyZ — T}: sz - TIAyZ = *g({bA}IZN)AX + g({i}AX,Z)q}AY — g((f)AX, Y}IBAZ (39)

From (2.6) and for the same choice of vectors X, Y, Z, the left-hand of (3.8) becomes

(VxTWZ = Vx(IyZ)—Ty,yZ—TyVxZ
= —g(0(VxA)Y.Z)E — g(0AY. Z)0AX — g(AX,Y )OAZ + g(DAX ,Z)QAY.
(3.10)

From (3.9) and (3.10) and for X, Y, Z orthogonal to &, we have
g((VxA)Y,0Z)C = 0.

It then follows from Theorem 5 that M is of type (A) or type (B).
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Putting X =Y = ¢ in (3.8) and since the right-hand of (3.8) vanishes, we have

0=(Vel)eZ = Ve(TeZ)—TyeZ—T;VeZ
= —¢(VeA)Z

AZ + OADAZ + Z — (o + 1)M(Z)E.

|

Choosing Z € V; and taking account of Lemma 2, we then have

{:::(?\.2 —oA—1)=0.
If 0. # 0, then A = £2_and hence A¢ = §A, or equivalentiy, M is type (A). Next, let o0 = 0.
From Theorem 1 it follows that there exists no real hypersurface of type(B) with oo = 0. That

is, M 1s of type (A).
Finally, we prove (6) = (1). In the following we define U and o by U = ¢AE and o =

N(AS). ) )
From the definition of VA and VA = 0 we have

(VxA)Y = mn(AY)0AX —M(X)0A%Y — g(0AX,AY)E
—N(Y)AGAX + 1 (X)AGAY + g(DAX,Y )AE, (3.11)

Putting X =& and Y = X in (3.11), we have
(VeA)X =n(AX)U — 9A%X — g(AU,X)E —n(X)AU +AQAX + g(U,X)AE. (3.12)
Taking the {-component, we obtain
g((Ve)X,C) = —2g(AU,X) + ag(U,X). (3.13)
Putting ¥ =& in (3.11) we have
(VxA)E = 0dAX — N(X)DAE + g(AX,U)E — ADAX +n(X)AU.
From this and (2.8) we have

(VeA)X = (VxA)E+0X
= adAX —N(X)0A’E + g(AX,U)E — ADAX +n(X)AU +0X. (3.14)

Taking the -component, we get
g((VeA)X, ) = 2¢(AU, X). (3.15)

From (3.13) and (3.15) we have
AU = -aU. (3.16)



A Characterization of a certain Real Hvpersurface of the Complex Projective Space 289

On the other hand, from the symmetry of VA and (3.14) we have

0 = g((VeAX,U)— g((VeA)U.X)
= 0g(0AX,U) — 0g(9AU,X) —M(X)g(0A“E,U) — 2g(ADAX ,U) + 2g(0X,U).
(3.17)
Putting X = € in (3.17) and using (3.16), we get
, !
g(9A~E,U) = sag(U,U). (3.18)

2
Putting X = A in (3.17) and using again (3.16), we obtain

1 ]
Euzg(U}U) o Eag(q)AEE_nU) +23(U:U) = 0.

From this and (3.18), we get
286(U,U) =0.

Hence U = 0AE = 0 and so, & is principal. From Lemma 1, if A = o&, o is constant. Then
(3.12) and (3.14) become

(V:A)X = —0A°X +AQAX,
(V:A)X 0OAX — AGAX + 0X .

From this we get
OX + ddAX — 2A0AX + 0A%X = 0.

We can prove A = OA in a similar way as for the case 2 in the proof of (3) = (1).
Thus our main theorem 1s proved.
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