ACTION OF CLASSICAL GROUPS ON VARIETIES ASSOCIATED WITH SKEW FIELD EXTENSIONS'

KARL KOLLISCHAN

Abstract

Let $L \mid K$ be a finite skew field extension, K commutative and V a finite dimensional vector space over L. We study the action of general L-linear groups on the set of K -subspaces of V and the action of unitary groups on the set of f^{\prime}-isotropic K -subspaces of V. In the latter case let (V, f) be a vector space endowed with a regular ε-hermitian form, $\varphi: L \longmapsto \mathrm{~K}$ a K-linear map and $f^{\prime}:=\varphi \circ f$. We show that for linear groups the number of orbits depends only on the degree of the field extension and on the dimension of V. The orbits are classified completely when $[\mathrm{L}: \mathrm{K}] \leq 3$. For unitary groups in general the number of orbits depends also on the underlying fields and on the $\operatorname{map} \varphi$. We discuss in more detail the quadratic casefor some particular fields.

1 Introduction, Notation and Main Results

In [28] Patrick Rabau studies the action on Grassmannians of general linear groups defined over an extension field of the base field. In [20] this work was extended by him and Dae San Kim to the case of a symplectic group defined over an extension field of the base field acting on singular subspaces of a symplectic space. The present paper generalizes these studies to non commutative extension fields and to arbitrary trace-valued ε-hermitean spaces.

Let $L \mid K$ be a finite skew field extension, where K is always commutative and V a finite dimensional vector space over L. We assume that the center Z of L is contained in K if L is non commutative. Then $[L: Z]$ is finite and L is a central simple Z-algebra [8, p. 49]. Denote by $\operatorname{comp}_{L} W$ the greatest L-subspace contained in a K-subspace W. We call comp ${ }_{L} W$ the L - component of W. We define the type of a vector v in W as $\operatorname{tp}_{W}(v):=\operatorname{dim}_{K}(W \cap L v)$. For W holds $\operatorname{dim}_{L} \mathrm{LW} \leq \operatorname{dim}_{K} W \leq s \operatorname{dim}_{L} L W$ with $s=[\mathrm{L}: K]$. One has $\operatorname{dim}_{K} W=s \operatorname{dim}_{L} \mathrm{LW}$ iff W is a L-subspace. K-subspaces with $\operatorname{dim}_{L} \mathrm{LW}=\operatorname{dim}_{K} W$ are called K -substructures. For K-subspaces $\mathrm{W}, W_{1}, \ldots, W_{k}$ we write $\mathrm{W}=W_{1} \oplus_{L} \ldots \oplus_{L} W_{k}$, if $\mathrm{W}=W_{1} \oplus \ldots \oplus W_{k}$ and $L W_{i} \mathrm{n} L W_{j}=0$ for all $i_{1} j=1, \ldots, \mathrm{k}, \mathrm{i} \neq j$. We call this sum direct over L . The set of d dimensional k -subspaces of a vector space V is a Grassmann variety and will be denoted by $\mathcal{G}_{k}(d, V)$. If we mean the set of all k -subspaces, we write $\mathcal{G}_{k}(V)$.
To decompose a K-subspace we need besides the just defined L-component and K-substructures (which already suffice in the case of a quadratic extension) two other basic subspaces: subspaces which contain only vectors of type 2 and triangular subspaces. We call a K-subspace W triangular if there is a $s>0$ such that $\operatorname{dim}_{K} \mathrm{~W}=3 s, \operatorname{dim}_{L} \mathrm{LW}=2 \mathrm{~s}$ and $\mathrm{t}_{W}(\mathrm{v})=1$ for all $0 \neq \mathrm{v}$ E W. If $s=1$, we cali W simple triungular.

[^0]First let us consider linear groups. Our main results are:
Theorem 1 Let $[L: K]=2$ and W be a K-subspace of V. Then there are L-independent vectors $V I, \ldots, v_{s} ; z_{1}, \ldots, z_{t}, s+t \leq n$, such that $W=\left(v i, \ldots, v_{s}\right\rangle_{L} \oplus_{L}\left\langle z_{1}, \ldots, z_{t}\right\rangle_{K}$.

If L is a cubic extension of K, we can choose a K-basis $\left\{1, \eta, \eta^{2}\right\}$ of L such that $\eta^{3}=a \in$ K. Here we always suppose $K \mid Z$ to be galois.

Theorem 2 Let $[L: K]=3$ and W be a K-subspace of V . Then there are L-independent vectors $v_{1}, \ldots, \nu ; \quad e_{1}, \ldots, e_{r} ; u_{1}, u_{1}^{\prime}, \ldots u_{s}, u_{s}^{\prime} ; w_{1}, \ldots, w_{t}, m+r+2 s+t \leq n$, such that

$$
W=W_{1} \oplus_{L} W_{2} \oplus_{L} W_{3} \oplus_{L} W_{4}
$$

with

$$
\begin{aligned}
W_{1} & =\left\langle v_{1}, \ldots, v_{m}\right\rangle_{L} \\
W_{2} & =\bigoplus_{i=1}^{r}\left\langle e_{i}, \eta e_{i}\right\rangle_{K}, \\
W_{3} & =\bigoplus_{i=1}^{s}\left\langle u_{i}, u_{i}^{\prime}, \eta u_{i}+\eta^{2} u_{i}^{\prime}\right\rangle_{K}, \\
W_{4} & =\left\langle w_{1}, \ldots, w_{t}\right\rangle_{K} .
\end{aligned}
$$

The subspaces W_{2}, W_{3} and W_{4} are not unique. The flag $\left(U_{1}, U_{2}, U 3, U_{4}\right)$ with $U_{j}:=\bigoplus_{i=1}^{J} W_{i}$ $(j=1, \ldots, 4)$, however, is completely determined by W.

From Theorem 1 and Theorem 2 follows at once that the number of orbits is finite for quadratic and cubic extensions. By the following theorem there are infinitly many orbits if $[L: K]>3$ and $|K|=\infty:$

Theorem 3 The number of orbits of K-subspaces of a vector space V over $L \mid K$ with $|K|=\infty$ is finite if and only if $[L: K] \leq 3$.

For proofs and discussion of the general linear case see section 2. Now we turn to a unitary group $\mathrm{U}(V, f)$. Let L be a skew field as above which now admits an involution $*$. Let K be such that $K^{*}=K$ and let $\varphi\left(\lambda^{*}\right)=\varphi(\lambda)^{*}$ for all $\lambda \in L$. Let (V, f) be a regular E-hermitian trace-valued space. Then (V, f), with $\mathbf{f}^{\prime}:=\varphi \circ f$, is also a regular ε-hermitian space over K. We investigate how the group $\mathrm{U}(V, f)$ acts an the set of f^{\prime}-singular K-subspaces of V . The results of the symplectic case, however, do not remain valid for the general case. In particular the number of orbits depends on the structure of the underlying skew fields and on the map φ. By wi (V, f) we denote the Witt-index of an ε-hermitian space (V, f), that is the dimension of an maximal f-singular subspace of V .

Theorem 4 Let $[L: K]=2$ and W be a f^{\prime}-singular K-suhspace of V and $\operatorname{ker} \varphi=K \alpha$. Then there is a hyperbolic sequence $v_{1}, v_{1}^{\prime}, \ldots, v_{,}^{\prime}, v_{m}^{\prime} ; u_{1}, u_{1}^{\prime}, \ldots, u_{s}, u_{s}^{\prime} ; w_{1}, w_{1}^{\prime}, \ldots, w_{t}, w_{t}^{\prime}$ of L-independent vectors, a sequence $y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}$ of L-independent vectors with $f\left(y_{i}, y_{i}\right)=0$,
$f\left(z_{i}, z_{i}\right) \neq 0, f\left(y_{i}, z_{i}\right)=1(i=1, \ldots, p)$ and an orthogonal sequence e_{1}, \ldots, e, of L-independent vectors, with $m+s+2 t+2 p+r \leq n$, such that

$$
\begin{aligned}
W= & \left\langle v_{1}, \ldots, v_{m}\right\rangle_{L} \perp_{L}\left\langle u_{1}, \ldots, u_{s}\right\rangle_{K} \perp_{L} \\
& \left\langle w_{1}, \alpha^{*} w_{1}^{\prime}, \ldots, w_{t}, \alpha^{*} w_{t}^{\prime}\right\rangle_{K} \perp_{L} \\
& \left\langle y_{1}, z_{1}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle y_{p}, z_{p}\right\rangle_{K} \perp_{L}\left\langle e_{1}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle e_{r}\right\rangle_{K} .
\end{aligned}
$$

$p \neq 0$ is possible only in the cases
(A) $L^{+}=K$ if L is commutative and
(B) $K \subset L^{+}$and $K \mid Z$ not separable, if L is not commutative, where $L^{+}:=\left\{h \in L: \lambda^{*}=h\right\}$. In these cases $a=1$ always holds.

We discuss the number of orbits for some particular fields in section 4.2.
Theorem 5 Let $[L: K]=3$ and W be a maximal f^{\prime}-singular K-subspace of V with $\mathrm{t}(W)=$ (m, r, s, t) and $\operatorname{ker} \varphi=\langle\alpha, \boldsymbol{\beta}\rangle_{K}$. Then there exists a decomposition

$$
\mathrm{W}=\mathrm{comp}_{L} W \perp_{L} W_{2,4} \perp_{L} W_{3}^{\prime} \perp_{L} W_{3}^{\prime \prime} \perp_{L}\left(\operatorname{rad}_{f} W_{3} \oplus_{L} W_{4}^{\prime}\right)
$$

where:
(a) $\operatorname{rad}_{f} W=\operatorname{comp}_{L} W$.
(b) $w_{2,4}=\left\langle\alpha w_{1}, \beta w_{1}, w_{1}^{\prime}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle\alpha w_{r}, \beta w_{r}, w_{r}^{\prime}\right\rangle_{K}$, where $w_{1}, w_{1}^{\prime}, \ldots, w_{r}, w_{r}^{\prime}$ is a hyperbolic sequence in (V, f).
(c) $W_{3}^{\prime} \perp_{L} W_{3}^{\prime \prime} \perp_{L} \mathrm{rad}_{f} W_{3}=\mathrm{W} 3$, where $\operatorname{rad}_{f} W_{3}$ is triangular.

If $W_{4}^{\prime} \perp_{L} \operatorname{rad}_{f} W_{3}$, then $\operatorname{rad}_{f} W_{3}=0$. Let $j:=\operatorname{dim}_{K} \operatorname{rad}_{f} W_{3}$. There ai-e L-independent vectors $u_{1}, v_{1} \ldots u_{k}, v_{k}$ and a hyperbolic sequence $x_{1}, x_{1}^{\prime}, \ldots, x_{l}, x_{l}^{\prime} ; y_{1}, y_{1}^{\prime}, \ldots, y_{l}, y_{l}^{\prime}$ in (V, f) such that

$$
\begin{aligned}
W_{3}^{\prime}= & \perp_{i=1}^{k}\left\langle u_{i}, v_{i}, \eta u_{i}+\eta^{2} v_{i}\right\rangle_{K} \\
W_{3}^{\prime \prime}= & \perp_{i=1}^{l}\left(\left\langle\alpha^{*} x_{i}, \beta^{*} y_{i}, \beta^{*} x_{i}+\alpha^{*} y_{i}\right\rangle_{K} \oplus_{L}\right. \\
& \left.\left\langle x_{i}^{\prime}, y_{i}^{\prime}, \beta \alpha^{-1} x_{i}^{\prime}-c \alpha \beta^{-1} y_{i}^{\prime}\right\rangle_{K}\right),
\end{aligned}
$$

with $s=j+k+21$. There are no f-singular triangular subspaces contained in W_{3}^{\prime}. In particular $f\left(u_{i}, u_{i}\right) \# 0$ or $f\left(v_{i}, v_{i}\right) \neq 0$ for $i=1, \ldots$, l. If L is commutative, then $c=N_{L \mid K}\left(\beta \alpha^{-1}\right)$. If L is non commutative, we can suppose that $\beta \alpha^{-1}$ equals η or η^{2}. Then $c=a$ or $c=a^{2}$.
(d) $W_{4}^{\prime} \leq \mathrm{W} 4$. In particular W_{4}^{\prime} is a K-substructure with $\operatorname{dim}_{K} W_{4}^{\prime}=t-r$.

We discuss this case further in section 5.2. Finally we show in section 6 that for extensions of higher degree under cerain conditions the number of orbits is infinite.

Theorem 6 If $[L: K]>3$, wi $(V, f) \geq 1$ and $|K|=\infty$, then the number of orbits of maximal f^{\prime}-singular K-subspaces under $\mathrm{U}(V, f)$ is infinite.

2 The General Linear Case.

By a vector space V over a skew field k we mean always a left vector space. The group $\mathrm{GL}\left(k^{n}\right)$ acts from the right. The subspace of V generated by a set X is denoted by $k X$ or $\left\langle x_{1}, \ldots, x_{s}\right\rangle_{k}$ if $X=\left\{x_{1}, \ldots, x_{s}\right\}$. By k we denote the multiplicative group of k.

2.1 Central simple algebras with involutions.

Before we go on, we want to recall some facts about central simple algebras and involutions. Let \mathbf{A} be a central simple algebra with center Z. Then $[A: Z]$ is always a square, say n^{2} and n is called degree of \mathbf{A}. By Wedderburn \mathbf{A} is isomorphic to a matrix algebra $\mathrm{M}_{t}(D)$, where D is a suitable division algebra. D is unique up to isometry and so is t. The number n / t is called index of \mathbf{A}. If there is a field extension $K \mid Z$ such that $\mathbf{A} \otimes_{Z} \mathrm{~K} \cong \mathrm{M}_{t}(\mathrm{~K})$ we call K a splitting field of A and say A splits over K . The smallest number \boldsymbol{m}, such that $\boldsymbol{A}^{\prime \prime \prime}=\mathbf{A} \otimes \ldots \otimes A$ splits over Z , is called exponent of \boldsymbol{A}. The exponent divides the index and any prime divisor of the index divides the exponent [32, p. 215]. If \mathbf{A} is a skew field, then there is a commutative subfield K such that $K \mid Z$ is separable and $[\mathrm{K}: Z]^{2}=[\mathrm{A}: \mathrm{Z}]$. One of the most important results is the theorem of Skolem and Noether, which says that every isomorphism of simple subalgebras of A can be extended to an inner automorphism of A.

Let $K \mid Z$ be galois of degree n and o be generator of $\operatorname{Gal}(K \mid Z)$. A cyclic algebra is an algebra which contains K and has a K-basis of the form $\left\{1, \eta, \ldots, \eta^{n-1}\right\}$ with $\eta^{n}=\mathrm{a} \in Z$ and $\eta c=c^{\sigma} \eta$ for all $c \mathrm{EK}$. We denote this algebra by $(K \mid Z, \sigma, a)$. In particular it is a central simple Z-algebra [33, p. 316]. By a theorem of Wedderburn any division algebra of degree 2 or 3 is cyclic [32, p. 209]. Algebras of degree 2 are called qunternion algebras.

For the whole paper $L \mid K$ denotes a finite skew field extension with K commutative. If L is not commutative, the center Z of L shall be contained in K . In this case K and $C_{L}(K)$ are Z-algebras and since $\left[L: C_{L}(K)\right]<\infty$, one has $\left[L: C_{L}(K)\right]=[\mathrm{K}: Z][8$, p. 49]. Then $[L: Z]$ is finite, too, and L is a central simple Z-algebra. In case of a quadratic or cubic extension K is a maximal subfield of L. This yields $\mathrm{K}=C_{L}(K)$ and $[L: Z]=[\mathrm{K}: Z]^{2}$. Moreover, an easy consequence of the Skolem-Noether-Theorem is $N_{\dot{L}}(\dot{K}) / \dot{K} \cong \operatorname{Gal}(K \mid Z)$.

2.2 Basic results.

Lemma 7 Let W_{1} and W_{2} be in $\mathcal{G}_{K}(V)$. Then holds:
(1) $L\left(W_{1}+W_{2}\right)=L W_{1}+L W_{2}$.
(2) $\operatorname{comp}_{L}\left(W_{1} \cap W_{2}\right)=\operatorname{comp}_{L} W_{1} \cap \operatorname{comp}_{L} W_{2}$.
(3) $L\left(W_{1} \cap W_{2}\right) \leq L W_{1} \cap L W_{2}$.
(4) $\operatorname{comp}_{L}\left(W_{1}+W_{2}\right) \geq \operatorname{comp}_{L} W_{1}+\operatorname{comp}_{L} W_{2}$, with equality iff W_{1} and W_{2} are direct over L.

Proof. trivial
Lemma8 Let $W \mathrm{E} \mathcal{G}_{K}(V)$ and let $\left\{\eta_{1}, \cdots \eta_{s}\right\}$ ben K-basis of L. Tlzen

$$
\operatorname{comp}_{L} W=\eta_{1}^{-1} W \mathrm{n} \ldots \mathrm{n} \eta_{s}^{-1} W
$$

Proof. trivial
Lemma 9 Let $\mathrm{W} \in \mathcal{G}_{K}(V)$ and $U \in \mathcal{G}_{L}(W)$. Then there exists $Z \in \mathcal{G}_{K}(V)$, such that $\mathrm{W}=$ $U \oplus_{L} Z$. For any other subspace Z^{\prime} with $\mathrm{W}=U \oplus_{L} Z^{\prime}$ there is a linear map $\tau E \mathrm{GL}_{L}(V)$ with $u \tau=u$ for all $u \in U$ and $Z \tau=Z^{\prime}$. In particular Z and Z^{\prime} are in the same orbit under $\mathrm{GL}_{L}(V)$.

Proof. see [28, p. 131], Prop. 3.3
Lemma 10 Let $\mathrm{W}, W_{1}, W_{2} \in \mathcal{G}_{K}(V)$ with $W=W_{1} \oplus_{L} W_{2}$. Let $v=v_{1}+v_{2} \in \mathrm{~W}$ with $0 \# v, \in W_{i}$, $i=1,2$. Then
(1) $\operatorname{tp}_{W}(v) \leq \min \left(\operatorname{tp}_{W_{1}}\left(v_{1}\right), \operatorname{tp}_{W_{2}}\left(v_{2}\right)\right)$.
(2) If $\operatorname{tp}_{W_{1}}\left(v_{1}\right)=[L: K]$, then $\operatorname{tp}_{W}(v)=\operatorname{tp}_{W_{2}}\left(v_{2}\right)$.

Proof. see [28, p. 131], Lemma 3.4
Lemma 11 The group L acts transitively on the K-hyperplanes of L
Proof. Let H_{1} and H_{2} be two K-hyperplanes in L and $\left\{\alpha_{1}, \ldots, \alpha_{s-1}\right\}$ be a K-basis of H_{1} with $s=[L: \mathrm{K}]$. Let $\mathrm{W}:=\bigcap_{i=1, ., s-1} \alpha_{i}^{-1} H_{2}$. Then $\operatorname{dim}_{Z} \mathrm{~W} \geq[K: Z]:=t$, since $\operatorname{dim}_{Z} H_{2}=t(s-1)$. For all nonzero vectors $\lambda \in \mathrm{W}$ holds $\alpha_{i} \lambda \in H_{2}, i=1, \ldots, s-1$. This yields $H_{1} \lambda=H 2$.

Corollary 12 Let $\left\{\alpha_{1}, \ldots, a\right.$, $\}$ be a K-basis of L and let $v \in \mathrm{~W} E \mathcal{G}_{K}(\mathrm{~V})$ with $\operatorname{tp}_{W}(v)=s-1$. Then $L v \cap \boldsymbol{W}=\left\langle\alpha_{1} v^{\prime}, \ldots, \alpha_{s-1} v^{\prime}\right\rangle_{K}$ for a vector $v^{\prime} \mathrm{E} W$.

Lemma 13 Let $\mathrm{W} \in \mathcal{G}_{K}(V)$. The following statements are equivalent
(i) W is a K-substructure.
(ii) Every K-independent subset of W is L-independent.
(iii) $\boldsymbol{A} K$-basis of W is L-independent.

Proof. trivial

2.3 Quadratic extensions: Proof of Theorem 1.

Let $L \mid K$ be a quadratic extension and V an n -dimensional vector space over L. We fix $\eta \in$ $L \backslash K$, such that $L=K \oplus K \eta$. Note that in characteristic two the extension $K \mid Z$ need not be galois.

Lemma 14 Let W be a K-subspace of V. Then
(1) $\operatorname{comp}_{L} W=\mathrm{W} \cap \eta W$.
(2) $\operatorname{dim}_{L} \operatorname{comp}_{L} W=\operatorname{dim}_{K} \mathrm{~W}-\operatorname{dim}_{L} L W$.
(3) For all $\mathrm{x} E \mathrm{~W}$ holds: $\mathrm{x} \in \operatorname{comp}_{L} W \Longleftrightarrow \eta x \in W$.

Proof. see [28, p. 134], Theorem 4.1

Lemma 15 Fora K-subspace W are equivalent:
(i) W is K -substructure.
(ii) $\operatorname{comp}_{L} W=0$.
(iii) For all nonzero vectors $\mathrm{v} \in \mathrm{W}$ holds $\operatorname{tp}_{W}(v)=1$.

Proof. trivial
Lemma 16 Let W, U and Y be K -subspaces with $\mathrm{W}=U \oplus \mathrm{Y}$ and $\operatorname{comp}_{L} W \leq U$. Then Y is a K-substructure, $W=U \oplus_{L} Y$ and $\operatorname{dim}_{K} Y=\operatorname{dim}_{L}(L W / L U)$.

Proof. see [28, p. 134], Theorem 4.1

Proof of Tlzeorem 1. By 16 there is Y E $G_{K}(t, W)$ such that $W=\operatorname{comp}_{L} W \oplus_{L} Y$. Choose a L-Basis $\left\{v_{1}, \ldots, v_{s}\right\}$ of $\operatorname{comp}_{L} W$ and a K-basis $\left\{z_{1}, \ldots, z_{t}\right\}$ of Y. By 16 Y is a K-substructure and the z_{i} are L-independent.

We define the (GL-) type of a K-subspace W of V to be the ordered pair of nonnegative integers

$$
\operatorname{tp}(W):=\left(\operatorname{dim}_{L} \operatorname{comp}_{L} W, \operatorname{dim}_{K}\left(W / \operatorname{comp}_{L} W\right)\right)
$$

Corollary 17 Two K-subspaces of W are in the same orbit under $\mathrm{GL}_{L}(V)$ ifand only if they have the same type.

Proof. Let W and W^{\prime} be two K-subspaces of V with $\operatorname{tp}(W)=\operatorname{tp}\left(W^{\prime}\right)$. Pick suitable L-bases B and B^{\prime} of V . The element of $\mathrm{GL}_{L}(V)$ which maps B to \boldsymbol{B}^{\prime} maps also W to W '.

Corollary 18 The number of orbits of K-subspaces under $\mathrm{GL}_{L}(V)$ equals $\binom{n+2}{2}$.
Proof. The number N of orbits equals $|\{s, t \in \mathbb{N} \cup\{0\}: s+t \leq n\}|$. This yields $\mathrm{N}=\sum_{i=0}^{n} \mid\{s+$ $t=i\} \left\lvert\,=\sum_{i} i+1=\frac{1}{2}(n+2)(n+1)=\binom{n+2}{2}\right.$.

2.4 Cubic Extensions: Proof of Theorem 2.

We now consider the case $[\mathrm{L}: K]=3$. Here we assume $K \mid Z$ to be galois. The fact that L is a central simple Z -algebra yields that L has a K-basis $\left\{1, \eta, \eta^{2}\right\}$ with $\eta^{3}=\mathrm{a} \in \mathrm{Z}$ and $\eta \mathrm{E} N_{\dot{L}}(\dot{K})$. In this whole section we choose a basis as above. Since $N_{\dot{L}}(\dot{K}) / \dot{K} \cong \mathbb{Z}_{3}$, one has $N_{\dot{L}}(\dot{K})=\dot{K} \oplus \dot{K} \eta \oplus \dot{K} \eta^{2}$.

By σ we denote the galois-automorphism $k \longmapsto k^{\sigma}:=\eta k \eta^{-1}, k \in \mathrm{~K}$.
Lemma 19 Let W E $\mathcal{G}_{K}(V)$ with $\operatorname{comp}_{L} W=0$ and let $W_{2}:=\left(\left\{v \mathrm{E} W: \operatorname{tp}_{W}(v)=2\right\}\right\rangle_{K}$. Then
(1) There exist L-independent vectors e_{1}, \ldots, e_{r} such that $W_{2}=\underset{i}{\oplus}=1$
(2) $\mathrm{W} \cap \eta W$ is $a \mathrm{~K}$-substructure and $W_{2}=(\mathrm{W} \cap \eta W) \oplus\left(\mathrm{W} \cap \eta^{-1} W\right)$.
(3) $\operatorname{dim}_{K}(W \cap \eta W)=\frac{1}{2} \operatorname{dim}_{K} W_{2}$.

Proof. see [28, p. 138], Theorem 5.2
Lemma 20 Let T be a simple triangular subspace
(1) Let $\{1, \gamma, \delta\}$ be a K-rigkt basis of L. Then there exist L-independent vectors x and y such that $T=\langle x, y, \gamma x+\delta y\rangle_{K}$.
(2) Let x, y be two arbitrary L-independent vectors in T . Then there is a K-right basis $\{1, \gamma, \delta\}$ of L such that $T=\langle x, y, \gamma x+\delta y\rangle_{K}$.

Proof. (1) For to show $L T=T \oplus \delta T$ use that $T \cap \delta T=0$, since T contains no vector of type ≥ 2 and the fact that $\operatorname{dim}_{Z} T=\operatorname{dim}_{Z} \delta T=\frac{1}{2} \operatorname{dim}_{Z} L T$ (in general δT is not a K-subspace). The rest of the proof is like in the commutative case, see [28, p. 137], Lemma 5.1.
(2) Let $\mathrm{T}=\langle x, y, z\rangle_{K}$. Since $z \mathrm{E} L T=\langle x, y\rangle_{L}$, there are $\gamma, \delta \mathrm{E} L$ such that $z=\gamma x+S y$. If $\{1, \gamma, \delta\}$ was no K-right basis, it would hold that $\mathbf{6}=p+\gamma q, p, q \in K$. Then we have $z=\gamma x+(p+\gamma q) y$ E T. Now y E T yields $\gamma(x+q y) \mathrm{E} T$ and since $\gamma \notin \mathrm{K}$, one gets the contradiction $\operatorname{tp}_{T} \quad(x+q y) \geq 2$.

Lemma 21 If x andy are two L-independent vectors, then $\mathrm{W}=\left\langle x, y, \eta x+\eta^{2} y\right\rangle_{K}$ is a simple triangular subspace.

Proof. Obviously $\operatorname{dim}_{L} L W=2$. Let $v=b x+c y+d\left(\eta x+\eta^{2} y\right), b, c, d \in K$ be a nonzero vector in W and suppose that also $\mathrm{W} \ni h v=b^{\prime} x+c^{\prime} y+d^{\prime}\left(\eta x+\eta^{2} y\right), b^{\prime}, c^{\prime}, d^{\prime} \in K$. We have to show that $h \mathrm{E} \boldsymbol{K}$.

Let $h:=p+q \eta+\eta^{2}, p, q, r \in \boldsymbol{K}$. Then

$$
\begin{aligned}
h v= & \left(p+q \eta+\eta^{2}\right)\left(b x+c y+d\left(\eta x+\eta^{2} y\right)\right. \\
= & p b x+p c y+p d\left(\eta x+\eta^{2} y\right)+ \\
& q b^{\sigma} \eta x+q c^{\sigma} \eta y+q d^{\sigma}\left(\eta^{2} x+a y\right)+ \\
& r b^{\sigma^{2}} \eta^{2} x+r c^{\sigma^{2}} \eta^{2} y+r d^{\sigma^{2}}(a x+a \eta y)
\end{aligned}
$$

Comparing the coefficients yields the following equations

$$
\begin{align*}
p b+r d^{\sigma^{2}} a & =b^{\prime} \tag{1}\\
p c+q d^{\sigma} a & =c^{\prime} \tag{2}\\
p d+q b^{\sigma} & =d^{\prime} \tag{3}\\
q c^{\sigma}+r d^{\sigma^{2}} a & =0 \tag{4}\\
q d^{\sigma}+r b^{\sigma^{2}} & =0 \tag{5}\\
p d+r c^{\sigma^{2}} & =d^{\prime} \tag{6}
\end{align*}
$$

If $q=0$ or $r=0$, one gets easily from the equations above that $\lambda \in K$. So let both q and r be different from zero. We can assume that $r=1$. One has $\mathrm{d} \neq 0$, otherwise would hold $c=0$ (4) and $b=0$ (5). Now (4) yields $q c^{\sigma}=-d^{\sigma^{2}} a$. Then follows $c^{\sigma^{2}}=\frac{-d a}{q^{\sigma}}$. From (5) one gets
$b^{\sigma^{2}}=-q d^{\sigma}$, that is $b^{\sigma}=-q^{\sigma^{2}} d$. Finally (3) and (6) imply $q b^{\sigma}=c^{\sigma^{2}}$. Then $-q q^{\sigma^{2}} d=-\frac{d a}{q^{\sigma}}$. This yields $a=q q^{\sigma} q^{\sigma^{2}}=N_{K \mid Z}(q)$. But this is a contradiction, since it implies that the skew field L splits [33, p. 318].

Lemma 22 Let W be a triangular subspace. Then
(1) $L W=\mathrm{W} \oplus \lambda W$, for all $\lambda \in L \backslash K$.
(2) Let $\{1, \gamma, \delta\}$ be an arbitrary K-right basis of L. Thenfor each $0 \neq x \mathrm{E} \mathrm{W}$ there is exactly one $y \in \mathrm{~W} \backslash L x$ such that $\langle x, y, \gamma x+\delta y\rangle_{K}$ is the unique simple triangular subspace which contains x.

Proof. see [28, p. 144], Prop. 5.6
Lemma 23 Let W be triangular and let $T, T^{\prime} \subset \mathrm{W}$ be simple triangular and $T \neq T^{\prime}$. Then $L T \cap L T^{\prime}=0$.

Proof. see [28, p. 144], Cor. 5.11
Lemma 24 Let W be a triangular subspace and T a simple triangular subspace of W . Then there is a triangular subspace Y such that $\mathrm{W}=T \oplus_{L} Y$.

Proof of Theorem 2. Only the proof of (d) differs a bit from the commutative case ([28, p. 134], Theorem 4.1):
(d) Choose a K-substructure $Z \leq \mathrm{W}$ such that $L W=L W_{2} \oplus L Z$. If $W=W_{2} \oplus Z$, we are done with $W_{3}=0$ and $W_{4}=Z$. Otherwise one can find K-independent vectors x_{1}, \ldots, x_{s} such that $\mathrm{W}=W_{2} \oplus Z \oplus\left\langle x_{1}, \ldots, x_{s}\right\rangle_{K}$. In general the sum of W_{2} and $Z \oplus\left\langle x_{1}, \ldots, x_{s}\right\rangle_{K}$ will not be direct over L. We now show that x_{1}, \ldots, x_{s} can always be chosen in such a manner that the above sum is direct over L. For all $\tilde{x}_{i} \mathrm{E}$ W holds

$$
\tilde{x}_{i}=\lambda \tilde{w}_{i}+\mu \tilde{z}_{i},
$$

with $\lambda, \mu \in L, \tilde{w}_{i} \in\left\langle e_{1}, \ldots, e_{r}\right\rangle_{K}$ and $\tilde{z}_{i} \in Z$.
Let $\lambda:=p+q \eta+r \eta^{2}$ and $\mu:=p^{\prime}+q^{\prime} \eta+r^{\prime} \eta^{2}, p, q, r, p^{\prime}, q^{\prime}, r^{\prime} \in K$. Adding to each \tilde{x}_{i} the vectors $-(p+q \eta) \tilde{w}_{i} \in W_{2}$ and $-p^{\prime} \tilde{z}_{i} \in Z$ we get

$$
x ;:=r \eta^{2} \tilde{w}_{i}+\left(q^{\prime} \eta+r^{\prime} \eta^{2}\right) \tilde{z}_{i} \mathrm{E} W
$$

Since $\eta \mathrm{E} N_{\dot{L}}(\dot{K})$, follows $y_{i}:=\eta^{-2} r \eta^{2} \tilde{w}_{i} \mathrm{E}\left\langle e_{1}, \ldots, e_{r}\right\rangle_{K}, z_{i}:=\eta^{-1} q^{\prime} \eta \tilde{z}_{i} \in Z$ and $z_{i}^{\prime}:=\eta^{-2} r^{\prime}$ $\eta^{2} \tilde{z}_{i} \in Z$. Then we can write

$$
x_{i}=\eta z_{i}+\eta^{2}\left(z_{i}^{\prime}+y_{i}\right)
$$

with $z_{i}, z_{i}^{\prime} \in Z, y_{i} \in\left\langle e_{1}, \ldots, e_{r}\right\rangle_{K}, i=1, \ldots, s$.
The rest of the proof is exactly as in the commutative case.
In the cubic case we define the (GL-) type of a K-subspace $\operatorname{tp}(W)$ to be the ordered quadruple of nonnegative integers

$$
\left(\operatorname{dim}_{L} \operatorname{comp}_{L} W,{ }_{2} \operatorname{dim}_{K}\left(\frac{U_{2}}{\operatorname{eom} L^{W}}\right), \frac{1}{3} \operatorname{dim}_{K}\left(\frac{U_{3}}{U_{2}}\right), \operatorname{dim}_{K}\left(\frac{W}{U_{3}}\right)\right)
$$

U_{2} is the subspace generated by all vectors $v \in \mathrm{~W}$ with $\operatorname{tp}_{W}(v) \geq 2 . U_{3}$ is the sum of U_{2} and all simple triangular subspaces contained in W. By Theorem 2 this type is well defined.
Corollary 25 Two K-subspaces of W are in the same orbit under $\mathrm{GL}_{L}(V)$ iff they have the same type.
Proof. The proof is analogous to the proof of 17 .
Corollary 26 For the number N_{d} of orbits of d-dimensional K-subspaces under $\mathrm{GL}_{L}(V)$ holds

$$
N_{d}=\frac{1}{24}\left(2 d^{3}+15 d^{2}+34 d+24\right)
$$

if d is even and

$$
N_{d}=\frac{1}{24}\left(2 d^{3}+15 d^{2}+34 d+21\right)
$$

if d is odd. For the number N of all orbits we have

$$
N=\frac{1}{48}\left(n^{4}+12 n^{3}+50 n^{2}+84 n+48\right)
$$

if n is even and

$$
\left.N=\frac{1}{48} 4^{4}+12 n^{3}+50 n^{2}+84 n+45\right)
$$

if n is odd.
Proof. We have $N=|\{m+r+2 s+t \leq n: m, r, s, t \in \mathbb{N} \cup\{0\}\}|, N_{d}=\mid\{m+r+2 s+t=d$: $m, r, s, t \in \mathbb{N} \cup\{0\}\} \mid$ and $N=\sum_{d=0}^{n} N_{d}$. We calculate N_{d}. For convenience we define $N_{d}:=0$ if $d<0$. Then $N_{d}=\{m+r+2 s+t=d\}=\sum_{i=0}^{d}\left|\{r+2 s+t=i\}=\sum_{i=0}^{d} \sum_{j=0}^{i}\right|\{2 s+t=j\}$ $=\sum_{i-0}^{c}\left(\left\lfloor\frac{i}{2}\right\rfloor+1\right)\left(\left\lceil\frac{i}{2}\right\rceil+1\right)$.

Let $G_{d}:=N_{d}$ if d is even and $U_{d}:=N_{d}$ if d is odd. By induction one proves that

$$
\begin{aligned}
G_{d} & =\frac{1}{24}(d+2)(d+4)(2 d+3) \quad \text { and } \\
U_{d} & =\frac{1}{24}(d+1)(d+3)(2 d+7)
\end{aligned}
$$

For the number N of all orbits holds

$$
\begin{aligned}
& N=\sum_{k=0}^{\frac{n}{2}} G_{2 k}+U_{2 k-1} \\
& \text { if } n \text { is even and } \\
& N=\sum_{k=0}^{\frac{n-1}{2}} G_{2 k}+U_{2 k+1} \\
& \text { if } n \text { is odd. }
\end{aligned}
$$

Using the formulas $\sum_{d=1}^{n} d=\frac{n(n+1)}{2}, \sum_{d=1}^{n} d^{2}=\frac{n(n+1)(2 n+1)}{6} \underline{a n d} \sum_{d=1}^{n} d^{3}=\frac{n^{2}(n+1)^{2}}{4}$ we get

$$
\begin{array}{rlr}
N & =\left(\frac{n+1}{2}\right)\left(\frac{n^{3}+10 n^{2} 2+30 n+24}{24}\right) & \text { if } n \text { is even and } \\
& =\left(\frac{n+1}{2}\right)\left(\frac{n^{3}+11 n^{2} 2439 n+45}{24}\right) & \text { if } n \text { is odd. }
\end{array}
$$

2.5 Extensions of higher degree: Proof of Theorem 3

To prove Theorem 3 it suffices to show that there are infinitely many orbits of 2-dimensional K-subspaces of L under the multiplicative group $\dot{L}=\mathrm{GL}_{L}(L)$ of L. Let $s:=[L: \mathrm{K}]>3$ and $m:=[K: Z]$ and consider L as an s-dimensional K-vector space. We show that $\mathcal{G}_{K}(d, L)$, $l \leq d \leq s$, is a projective variety over \mathbf{Z} with dimension $d m(s-d)$. Recall that the Grassmann variety $\mathcal{G}_{Z}(m d, L)$ already is a projective variety over Z with dimension $d m(s m-d m)$, see e.g. [2, p. 135] or [17, p.14].

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a K-basis of L and $\left\{v i, \ldots, v_{m}\right\}$ be a Z-basis of K, such that $v_{p} v_{k}=$ $\sum_{q=1}^{m} c_{p k q} v_{q}, c_{p k q} \in Z, p, k=1, \ldots, m$. Let

$$
W_{0}=\left\langle v_{l} e_{1}, \ldots, v_{m} e_{1}, \ldots, v_{l} e_{d}, \ldots, v_{m} e_{d}\right\rangle_{z}
$$

and

$$
W_{0}^{\prime}=\left\langle v_{1} e_{d+1}, \ldots, v_{m} e_{d+1}, \ldots, v_{1} e_{s}, \ldots, v_{m} e_{s}\right\rangle_{z}
$$

Any subspace $W \in G_{Z}(d m, V)$ which the projection maps isomorphically onto W_{0} has a unique basis of the form

$$
\left\{v_{1} e_{1}+x_{11}(W), \ldots, v_{m} e_{d}+x_{m d}(W)\right\},
$$

with

$$
x_{p i}(W)=\sum_{j>d, q=1, \ldots, m} a_{p i q j} v_{q} e_{j} \in W_{0},
$$

$a_{p i q j} \in Z, i=1, \ldots, d, p=1, \ldots, m$.
In the proofs cited above is shown that the image of $G_{Z}(d m, L)$ under the injection $\psi: W \longmapsto Z v_{1} e_{1} \mathrm{~A} \ldots \mathrm{~A} v_{m} e_{d}$ in the projective space $\mathbb{P}\left(\bigwedge^{m d} L\right)$ is essentially the graph of a morphism from the space of the $a_{\text {piqj }}$ to another linear space. In particular it is closed, hence is a projective variety. The dimension one gets by counting the free $a_{p i q j}$.

Now we must show that the fact that W is a K-subspace can be expressed in polynomial conditions on the $a_{p i q j}$. Since

$$
W=\left\langle v_{1} e_{1}+x_{11}(W), \ldots, v_{1} e_{d}+x_{1 d}(W)\right\rangle_{K}
$$

there is $c_{p i} \in \mathrm{~K}$ such that

$$
v_{p} e_{i}+x_{p i}(W)=c_{p i}\left(\operatorname{vie} ;+x_{1 i}(W)\right)
$$

Without loss we can suppose $v_{1}=1$. Thus $c_{p i}=v_{p}, \mathrm{i}=1, \ldots, d$. We have

$$
\begin{aligned}
\sum_{j>d, q} a_{p i q j} v_{q} e_{j} & =v_{p} \sum_{j>d, k} a_{1 i k j} v_{k} e_{j} \\
& =\sum_{j>d, k} a_{1 i k j}\left(\sum_{q} c_{p k q} v_{q}\right) e_{j} \\
& =\sum_{j>d, q}\left(\sum_{k} a_{1 i k j} c_{p k q}\right) v_{q} e_{j}
\end{aligned}
$$

Comparing coefficients yields $a_{p i q j}=\sum_{k} c_{p k q} a_{1 i k j}, i=1, \ldots, \mathrm{~d}$. Thisshows that $\psi\left(\mathcal{G}_{K}(d, V)\right)$ can be considered as the graph of a morphism from the space of the $a_{1 i q j}$ to another linear space. The dimension follows by counting the free $a_{1 i q j}$. Thus $\mathcal{G}_{K}(d, V)$ has the structure of a projective variety with dimension $d m(s-\mathrm{d})$.

Now the group \dot{L} is an sm-dimensional irreducible algebraic group over Z, since L is a Z algebra [2, p. 51]. \dot{L} acts on $\mathcal{G}_{K}(2, L)$. Suppose there are only finitely many orbits. Then at least one orbit must be Zariski-dense in $\mathcal{G}_{K}(2, L)$. Pick a subspace W contained in such a dense orbit. Denote by R the closure of this orbit and consider the orbit map

$$
\gamma_{W}: \begin{aligned}
& \dot{L} \\
& \lambda
\end{aligned} \longmapsto \mathcal{G}_{K} .
$$

Let S be the stabilizer of \boldsymbol{W}. We have $\operatorname{dim} B=2 m(s-2)$ and $\operatorname{dim} S \geq 1$, since Z is contained in S. By applying the formula (see [3, p.12])

$$
\operatorname{dim} \dot{L}=\operatorname{dim} B+\operatorname{dim} S
$$

we get

$$
2 m s-4 m \leq m s-1
$$

This yields the contradiction $s \leq 3$.
REMARK: This method works also in the commutative case. \dot{L} is an algebraic group over K with $\operatorname{dim} \dot{L}=s$ and, as rnentioned above, $G_{K}(2, \mathrm{~L})$ is a projective variety over K with $\operatorname{dim} \mathcal{G}_{K}(2, L)=2(s-2)$. Since K is contained in the stabilizer of any subspace, we get in the same way the contradiction $s \leq 3$.

3 The Hermitean Case: Further Notation And Basic Results.

Let L be a skew field with an involution $*$ and let Z be the center of L. Recall that an involution on L is an anti automorphism of L such that $\boldsymbol{\alpha}^{* *}=a$ for all $a \in L$. It is easy to see that $Z^{*}=Z$. If $\left.*\right|_{Z}$ is the identity, $*$ is called involution of the first kind. Otherwise $*$ is called involution of the second kind. In this case $Z \mid Z_{0}$ is a separable quadratic extension, where Z_{0} denotes the fixed field of $\left.*\right|_{Z}$. Let $L^{+}:=\left\{a \in \mathrm{~L}: \alpha^{*}=a\right\}$ and $L^{-}:=\left\{a \in L: \alpha^{*}=-\alpha\right\}$. The latter we define only for characteristics unequal 2. If the degree of L is n, the following holds [33, p. 303].
(1) If char $Z \neq 2$, then $L=L^{+} \oplus L^{-}$.
(2) If $*$ is of the second kind, then $\operatorname{dim}_{Z_{0}} L^{+}=\operatorname{dim}_{Z_{0}} L^{-}=n^{2}$.
(3) If $*$ is of the first kind, then $\operatorname{dim}_{Z} L^{+}=\frac{1}{2} n(n+1)$ or $=\frac{1}{2} n(n-1)$. If char $Z=2$, always $\operatorname{dim}_{Z} L^{+}=\frac{1}{5} n(n+1)$.

An involution of the first kind is called orthogonal if $\operatorname{dim}_{Z} L^{+}=\frac{1}{2} n(n+1)$ and symplectic if $\operatorname{dim}_{Z} L^{+}=\frac{1}{2} n(n-1)$. Involutions of the second kind are also called unitary. By a theorem of Albert [32, p. 232] a central simple algebra has exponent 2 if and only if it admits an involution of the first kind.

Let V be a finite-dimensional left-vector space over L. A sesquilinear form f is a map $f: V \times V \longrightarrow L$ such that

$$
\begin{aligned}
f(x+y, z) & =f(x, z)+f(y, z), \\
f(x, y+z) & =f(x, y)+f(x, z), \\
f(\lambda x, y) & =\lambda f(x, y), \\
f(x, \lambda y) & =f(x, y) \lambda^{*},
\end{aligned}
$$

for all $x, y, z \in V$ and all $\lambda \in L$. A sesquilinear form f is called ε-hermitian $(\mathrm{E}= \pm 1)$ if $f(x, y)=\varepsilon f(y, x)^{*}$ for all $x, y \in V$. An E-hermitian form f is called symmetric if $*=\mathrm{id}$ and $\mathrm{E}=+1$, skew symmetric if $*=\mathrm{id}$ and $\mathrm{E}=-1$ and symplectic (or alternating) if $f(x, x)=0$ for all $x \mathrm{E} V$.

Now let U be a subspace of an E-hermitian space (V, f). We write $x \perp y$ if $f(x, y)=0$ and $x \perp U$ if $f(x, u)=0$ for all $u \mathrm{E} U$. The orthogonal subspace of U in V is the space $U^{\perp}=\{v \in V: v \perp u \forall u \mathrm{E} U\}$. The radical of U is the space $\operatorname{rad}_{f} U:=\left\{u \in U=U \cap U^{\perp}\right\}$. A space (V, f) is called regular iff $\operatorname{rad}_{f} V=0$. Otherwise it is called degenerate. A vector $v \in \mathrm{~V}$ is called isotropic if $f(v, v)=0$. A subspace U is called isotropic space if it contains an isotropic vector. Otherwise it is called anisotropic. A subspace U is singular if $f\left(u, u^{\prime}\right)=0$ for all $u, u^{\prime} \mathrm{E} U$.

A sequence e_{1}, \ldots, e_{r} in (V, f) is called orthogonal iff $e_{i} \perp e_{j}$ for $\mathrm{i} \neq j$. A sequence $v_{1}, v_{1}^{\prime}, \ldots, v_{r}, v_{r}^{\prime}$ is called hyperbolic iff $f\left(v_{i}, v_{i}^{\prime}\right)=1, f\left(v_{i}, v_{j}\right)=f\left(v_{i}^{\prime}, v_{j}^{\prime}\right)=0$ and $f\left(v_{i}, v_{j}^{\prime}\right)=0$ if $i \neq j$. Two vectors $x, y \in V$ are a hyperbolic pair if $f(x, x)=f(y, y)=0$ and $f(x, y)=1$. The plane $\mathrm{H}:=\langle x, y\rangle$ is called hyperbolic plane. A space is called hyperbolic if it is the orthogonal sum of hyperbolic planes. If a orthogonal or a hyperbolic sequence form a basis of V, it is called an orthogonal basis or a symplectic basis respectively. An ε-hermitian form f is called trace-valued if for all $\mathrm{x} \in V$ holds $f(x, x) \mathrm{E}\left\{h+\varepsilon \lambda^{*}: \lambda \mathrm{E} L\right\}$.

An isometry between two spaces $\left(V_{1}, f_{1}\right)$ and $\left(V_{2}, f_{2}\right)$ is an injective linear map $\tau: V_{1} \longrightarrow$ $V 2$, such that $f_{2}(x \tau, y \tau)=f_{1}(x, y)$ for all $x, y \mathrm{E} V_{1}$. The spaces $\left(V_{1}, f_{1}\right)$ and $\left(V_{2}, f_{2}\right)$ are called isometric, we write $\left(V_{1}, f_{1}\right) \sim\left(V_{2}, f_{2}\right)$, if there is a bijective isometry $\boldsymbol{V}_{1} \longrightarrow \boldsymbol{V}_{2}$. The bijective isometries of a space (V, f) onto itself form the Unitary $\operatorname{Group} \mathrm{U}(V, f)$.

From now on we consider only regular and trace-valued forms. If we want to emphasize the particular form f, we write f-orthogonal, f-isotropic, f-singular, etc..

Recall that if an ε-hermitian space is not symplectic, one can always find an orthogonal basis. If the space is symplectic, it is an orthogonal sum of hyperbolic planes.

Closely related to the theory of symmetric bilinear spaces is the theory of quadratic forms. They are equivalent concepts if the characteristic is unequal 2 . Let V be a vector space over a field K. A quadraticform is a map $q: V \longrightarrow \boldsymbol{K}$ with

$$
q(\lambda x)=\lambda^{2} q(x)
$$

for all $x \in V, \lambda \mathrm{E} \boldsymbol{K}$ such that the $\operatorname{map} b_{q}: V \times V \longrightarrow K$,

$$
b_{q}(x, y):=q(x+y)-q(x)-q(y),
$$

is a bilinear form over K. The map b_{q} is called the associated bilinearform of q. The pair (V, q) is called quadratic space. If b is a bilinear form, the map $q_{b}: V \longrightarrow \boldsymbol{K}, q_{b}(x):=b(x, x)$,
is called the associated quadraticform of b. It holds that $b_{q_{b}}(x, y)=b(x, y)+b(y, x)$ and $q_{b_{q}}(x)=2 q(x)$.

Let (V, q) be a quadratic space. A vector $x \mathrm{E} V$ is called isotropic if $q(x)=0$ and anisotropic if $q(x) \neq 0$. Two vectors x and y are called orthogonal if $b_{q}(x, y)=0$.

3.1 Statement of the problem and basic results.

Let (V, f) be a regular trace-valued ε-hermitian space over ($L, *$) and K a commutative subfield of L such that $K^{*}=\mathrm{K}$. If L is non commutative, let always $Z:=Z(L) \subset \mathrm{K} . *$ induces an involution on K, which we also denote by $*$. Let $\varphi: L \longrightarrow \boldsymbol{K}$ be a K-linear map with $\varphi\left(\lambda^{*}\right)=\varphi(\lambda)^{*}$. Since $\varphi(\lambda c)=\varphi\left(\left(c^{*} \lambda^{*}\right)^{*}\right)=\varphi\left(c^{*} \lambda^{*}\right)^{*}=\left(c^{*} \varphi\left(\lambda^{*}\right)\right)^{*}=\varphi(\lambda) c$ for all c E K, $\lambda \in L, \varphi$ is two-sided K-linear. Define $f^{\prime}:=\varphi \circ f$. It is easy to see that $\left(V, f^{\prime}\right)$ is a regular ε-hermitian space over $\left(\mathrm{K},{ }^{*}\right)$. Since every isometry of (V.f) is an isometry of $\left(V, f^{\prime}\right)$, too, one gets an embedding $\mathrm{U}(V, f) \hookrightarrow \mathrm{U}\left(V, f^{\prime}\right)$.

If orthogonality refers to the form f^{\prime}, we write $x \perp^{\prime} y, U \perp^{\prime} W, U^{\perp^{\prime}}$, etc.. We write $U \perp_{L} W$ if $U \perp W$ and $U \oplus_{L} \mathrm{~W}$.

Lemma 27 Let U be a L-subspace of V.
(1) For $\mathrm{x} \in V$ holds that $x \perp^{\prime} U$ iff $x \perp U$.
(2) It holds that $U^{\perp^{\prime}}=U^{\perp}$. In particular U is f-singular iff U is f^{\prime}-singular and U is f-regular iff U is f^{\prime}-regular.

Proof. see [20, p.285] Lemma 4.1
Lemma 28 Let W be a f^{\prime}-singular K-subspace of V. Then
(1) $\operatorname{comp}_{L} W \leq \operatorname{rad}_{f} W$.
(2) If W is maximal f^{\prime}-singular in $L W$, then $\operatorname{comp}_{L} W=\operatorname{rad}_{f} W$

In particular $\operatorname{comp}_{L} W$ is f-singular.
Proof. see [20, p.285] Lemma 4.1
Lemma 29 Let W be f^{\prime}-singular and let X be a K-subspace of W . If there is a f^{\prime}-regular L-subspace U of V such that $\mathrm{X} C U$ and $\operatorname{dim}_{K} U=2 \operatorname{dim}_{K} X$, then there exists another K subspace Y of V such that $\mathrm{W}=X \perp_{L} Y$. In particular $Y=U^{\perp} \mathrm{n} \mathrm{W}$ is such a subspace.
Proof. Since $V=U \perp_{L} U^{\perp}$, it is enough to show that $W \leq X+\left(W \cap U^{\perp}\right)$. Let $W \ni x=x_{1}+x_{2}$, $x_{1} \in U$ and $x_{2} \in U^{\perp}$. Then $x \perp^{\prime} X$, since W is f^{\prime}-singular and $x_{2} \perp X$, since $\mathrm{X} \mathrm{C} U$. This yields $x_{1} \perp^{\prime} X$, that is $x_{1} \mathrm{E} U \cap X^{\perp^{\prime}}$. We now show that $U \cap X^{\perp^{\prime}}=X$. Obviously it holds that $\mathrm{X} \leq U \cap X^{\perp^{\prime}}$. Since U is f^{\prime}-regular, we have

$$
\operatorname{dim}_{K} X^{\perp^{\prime}} \cap U=\operatorname{dim}_{K} U-\operatorname{dim}_{K} X=\operatorname{dim}_{K} X
$$

Therefore, equality follows by dimensional reasons. This implies x_{1} E X.

For a K-subspace W we denote by $R(W):=\{f(w, w): \mathrm{w} \in \mathrm{W}\}$ the set of all elements of L which are represented by $\left.f\right|_{W}$.

Lemma 30 Let W he a f^{\prime}-singular K-suhspace and let $R(W) \cap \operatorname{ker} \varphi=0$. Then W is f singular f one of thefollowing conditions holds:
(1) $*=\mathrm{id}$ and f is not symplectic.
(2) L is commutative and there is $a \zeta \in \mathrm{~K}$ with $\zeta^{*}=-\zeta$ or $\zeta^{*}=\zeta+1$ in characteristic 2 respectively.
(3) L is not commutative and there is a $\zeta \in Z$ with $\zeta^{*}=-\zeta$ or $\zeta^{*}=\zeta+1$ in characteristic 2 respectively.

Proof. In all cases we can by "Hilbert 90 " suppose that $\mathbf{E}=1$. For all $x \in W$ it holds that $f(x, x)=0$. Then for any $y \in W$ holds $0=f(x+y, x+y)=f(x, y)+f(y, x)$, that is $f(x, y)=$ $-f(y, x)$. Case (1) is clear. In (2) there exists $\zeta \in K$ with $\zeta^{*}=-\zeta$ if char $K \neq 2$. Thus $0=f(x+\zeta y, x+\zeta y)=-2 \zeta f(x, y)$, hence $f(x, y)=0$. If char $\mathrm{K}=2$, there exists $\zeta^{*}=\zeta+1$ and we get similarly $f(x, y)=0$. The proof of (3) is the same with $\zeta \in Z$. This yields $f(x, y)=0$.

4 The Hermitean Case: Quadratic Extensioiis

In this section we consider extensions with $[L: K]=2$. If L is not commutative, it is a quaternion algebra over the center Z of L. The basic difference to the symplectic case is that in the general situation $f(w, w), w \in V$, may be different froni zero. Since W is f^{\prime}-singular, we must investigate the set $R(W) \cap$ ker φ. In general not much is known about $R(W)$. We have $R(W) \subset L^{+}$if f is 1 -hermitian and $R(W)$ с L^{-}if f is (-1)-hermitian. For this reason we consider the sets $S^{+}:=L^{+} \cap \operatorname{ker} \varphi$ and $S^{-}:=L^{-} \cap \operatorname{ker} \varphi$. Note that S^{-}is defined only for characteristic unequal 2.

Recall that if $*$ is a nontrivial involution on the field K , then $K \mid K^{+}$is a separable quadratic extension and $* \in \operatorname{Gal}\left(K \mid K^{+}\right)$. Without loss we can suppose that $K=K^{+}(\eta)$ and $\eta^{*}=-\eta$ if char $K \neq 2$ and $\eta^{*}=\eta+1$ if char $K=2$.

4.1 Lemmas and proof of Theorem 4

If L is commutative, three cases can occur: $*=\mathrm{id}, * \neq \mathrm{id}$ with $L^{+}=K$ and $* \neq \mathrm{id}$ with $L^{+} \neq \mathrm{K}$. In the first case clearly $L^{+} \cap \operatorname{ker} \varphi=\operatorname{ker} \varphi$. So $\operatorname{ker} \varphi=K \alpha$ is possible for any $\boldsymbol{a} \mathrm{E} L$. If $* \#$ id, L^{+}is a field and $L \mid L^{+}$is a separable quadratic extension.

If $L^{+}=K$, we can suppose that $L=K \oplus K \xi$ with $\xi^{*}=-\xi$ if $\operatorname{char} L \neq 2$ and $\xi^{*}=\xi+1$ if $\operatorname{char} L=2$.

Lemma 31 If L is commutative und $L^{+}=K$, thefollowing holds:
(1) $S^{+}=0$ and $S^{-}=K \xi$ if char $K \neq 2$.
(2) $S^{+}=K$ ifchar $K=2$.

Proof. (i) $-\varphi(\xi)=\varphi(-\xi)=\varphi\left(\xi^{*}\right)=\varphi(\xi)$, that is $\operatorname{ker} \varphi=K \xi$.
(2) $\varphi(\xi)=\varphi(\xi)^{*}=\varphi\left(\xi^{*}\right)=\varphi(\xi)+\varphi(1)$, that is $\operatorname{ker} \varphi=\mathrm{K}$.

If $L^{+} \neq K$, it holds that $K^{+}=L^{+} \cap K . K^{+}$is a field with $\left[K: K^{+}\right]=2$. Choose $\xi \mathrm{E} L^{+}$ such that $L=K \oplus K \xi$. By "Hilbert 90' we can suppose that f is 1-hermitian.

Lemma 32 If L is commutative and $L^{+} \neq K$, it holds that $S^{+}=K^{+} \alpha, a \in K^{+} \oplus K^{+} \xi$
Proof. Let char $K \neq 2$. Pick $\eta \mathrm{E} K \backslash K^{+}$with $\eta^{*}=-\eta$. Write $K=K^{+} \oplus K^{+} \eta$. Let $\varphi(1)=$ $x+y \eta \in K$. Now $\varphi(1)=\varphi\left(1^{*}\right)=\varphi(1)^{*}$ yields $y=0$. In the same way follows $\varphi(\xi)=x \in K^{+}$. Then it holds that $z-x \xi \in \operatorname{ker} \varphi$. The proof for char $K=2$ is the same with $\eta^{*}=\eta+1 . \quad O$

If L is non commutative, L is a yuaternion algebra over Z.
Lemma 33 For every maximal subfield K of a quaternion algebra L there exists a Z-basis $\{1, \eta, \xi, \eta \xi\}$ of L with $K=\langle 1, \eta\rangle_{Z}$ and
(1) $\eta^{2}=a \in Z, \xi^{2}=b \in Z$ and $\eta \xi=-\xi \eta$ if $\operatorname{char} Z \neq 2$,
(2) $\eta^{2}+\eta=a \mathrm{E} Z, \xi^{2}=b \mathrm{E} Z$ and $\eta \xi=\xi \eta+\xi$ if $\operatorname{char} Z=2$ and $K \mid Z$ is separable
(3) $\eta^{2}=a \in \dot{Z}, \xi^{2}+\xi=b \in Z$ and $\eta \xi=\xi \eta+\eta$ if $\operatorname{char} Z=2$ and $K \mid Z$ is not separable.

Proof.

Se: [33, p. 300, p. 312].

We call a basis like in the previous lemma a standard basis of L. In the following we always choose such a basis if L is not commutative.

Lemma 34 Let L be a quaternion algebra over Z and let $K \mid Z$ be separable. Then $\langle\xi, \eta \xi\rangle_{Z}^{*}=$ $\langle\xi, \eta \xi\rangle_{Z}$.

Proof. First we consider tlie case char $K \neq 2$. Suppose $\eta^{*}=x+y \eta, x, y \in Z$. Since $\left(\eta^{*}\right)^{2}=$ $\left(\eta^{2}\right)^{*}=a^{*} \in Z$, follows $x^{2}+2 x y \eta+y^{2} a \in Z$. Then $x=0$, for $y=0$ leads to the contradiction $\eta^{*} \in Z$. This yields $\eta^{*}=y \eta$. From $\eta=\eta^{* *}=y y^{*} \eta$ one gets $y y^{*}=1$. Then the following holds:

$$
\eta \xi^{*}=\left(\xi \eta^{*}\right)^{*}=(y \xi \eta)^{*}=(-y \eta \xi)^{*}=-\xi^{*} \eta^{*} y^{*}=-\xi^{*} \eta y y^{*}=-\xi^{*} \eta .
$$

Let $\xi^{*}:=p+q \eta+r \xi+s \eta \xi, p, q, r s \in \mathrm{Z}$. Then

$$
\eta \xi^{*}=p \eta+q a+m \xi+s a \xi=-\xi^{*} \eta=-(p \eta+q a+r \xi \eta+s \eta \xi \eta)
$$

This implies $p=q=0$ and we get $(\eta \xi)^{*}=\xi^{*} \eta^{*}=(r \xi+s \eta \xi) y \eta=-y m \xi-s y a \xi$. This proves $\langle\xi, \eta \xi\rangle_{Z}^{*}=\langle\xi, \eta \xi\rangle_{Z}$.

The case char $K=2$ is similar: From $\left(\eta^{*}\right)^{2}+\eta^{*} \in Z$ follows $x^{2}+y^{2}(a+\eta)+x+y \eta \in Z$. Then $y=\mathrm{i}$. Since $\eta=\eta^{* *}=x+x^{*}+\eta, x=x^{*}$. We have

$$
\begin{array}{r}
\eta \xi^{*}=\left(\xi \eta^{*}\right)^{*}=(\xi x+\xi \eta)^{*}=(\xi x+\eta \xi+\xi)^{*}=x^{*} \xi^{*}+\xi^{*} \eta^{*}+\xi^{*}= \\
=x \xi^{*}+\xi^{*} x+\xi^{*} \eta+\xi^{*}=\xi^{*} \eta+\xi^{*}
\end{array}
$$

This yields

$$
\eta \xi^{*}=p \eta+q \eta^{2}+r \eta \xi+s \eta^{2} \xi \text { and } \xi^{*} \eta=p \eta+q \eta^{2}+r \eta \xi+r \xi+s \eta^{2} \xi+s \eta \xi
$$

One gets $\xi^{*}=r \xi+s \eta \xi$. Thisimplies $(\eta \xi)^{*}=(r \xi+s \eta \xi)(\eta+x)=r \xi \eta+s \eta \xi \eta+r x \xi+s x \eta \xi$. Since $\xi \eta=\eta \xi+\xi$ and $\eta \xi \eta=\left(\eta^{2}+\eta\right) \xi=a \xi$, it holds that $(\eta \xi)^{*} \in\langle\xi, \eta \xi\rangle_{Z}$.

Lemma 35 Let L be a quaternion algebra over Z. Then there is astandard basis $\{1, \eta, \xi, \eta \xi\}$ of L such that:
(1) $L^{+}=\langle 1, \eta, \xi\rangle_{Z}$ and $L^{-}=\langle\eta \xi\rangle_{Z}$ if $*$ is orthogonal, $\mathrm{K} \subset \mathrm{L}^{\prime}$ and $K \mid Z$ separable.
(2) $L^{+}=(1, \xi, \eta \xi\rangle_{Z}$ and $L^{-}=\langle\eta\rangle_{Z}$ if $*$ is orthogonal and $K \not \subset L^{+} . K \mid Z$ is always separable.
(3) $L^{+}=\mathrm{Z}$ and $L^{-}=\langle\eta, \xi, \eta \xi\rangle_{Z}$ if $*$ is symplectic. char $\mathrm{K}=2$ is notpossible in this case.
(4) If $*$ is unitary and $K \mid Z$ separable, it holds that $L^{+}=Z^{+} \oplus Z^{+} \eta \oplus Z^{+} \xi \oplus Z^{-} \eta \xi f$ char $K \neq 2$. If $\operatorname{char} K=2$, one has $L^{+}=Z^{+} \oplus Z^{+} \eta \oplus Z^{+} \xi \oplus Z^{+}(\eta+\zeta) \xi$, where $\zeta \in Z$ with $\zeta^{*}=\zeta+1$.

Proof. Let $\{1, \eta, \rho, \eta \rho\}$ be an arbitrary standard basis of L. Choose $\xi \mathrm{E} L^{+} \backslash \mathrm{K}$ and let $\xi=x+y \eta+z \rho+t \eta \rho, x, y, z, t \mathrm{E} Z$. If $K \mid Z$ is separable, we have $\mathrm{zp}+t \eta \rho \mathrm{E} L^{+}$by 34 .
(1) Without loss let $L^{+} \ni \xi=z \rho+t \eta \rho$. If char $K \neq 2, \eta \xi=\eta(z \rho+t \eta \rho)=-z \rho \eta-t \eta \rho \eta=$ $-\xi \eta$ and $\xi^{2}=z^{2} \rho^{2}+z t \rho \eta \rho+z t \eta \rho^{2}+t^{2} \eta \rho \eta \rho E Z$. If char $K=2$, we have $\eta \xi=\eta(z \rho+$ $t \eta \rho)=z(\rho \eta+\rho)+t \eta(\rho \eta+\rho)=\xi \eta+\xi$ and $\xi^{2}=z^{2} \rho^{2}+z t \rho \eta \rho+z t \eta \rho^{2}+t^{2} \eta \rho \eta \rho=z^{2} \rho^{2}+z t$ $(\rho \eta+\eta \rho) \rho+t^{2} \eta(\eta \rho+\rho) p=z^{2} \rho^{2}+z t \rho^{2}+t^{2}\left(\eta^{2}+\eta\right) \rho^{2} \in Z$.
(2) Since $\left.*\right|_{K}$ equals the nontrivial automorphism of $\operatorname{Gal}(K \mid Z)$, we have $\eta^{*}=-\eta$ if char $K \neq 2$ and $\eta^{*}=\eta+1$ if char $K=2$. In particular $K \mid Z$ is separable. Like in (1) one proves that $\{\mathrm{i}, \eta, \xi, \eta \xi\}$ is a standard basis.
(3) Since in characteristic 2 always $L^{+}=3$, we must have char $\mathrm{K} \neq 2$ in this case. $L^{+}=\mathrm{Z}$ is clear. Like in (2) one gets $\eta^{*}=-\eta$. Every vector in L^{-}has the form $x \eta+z \rho+t \eta \rho$ with $x, z, t \in \mathrm{Z}$. Since $x \eta \in L^{-}$and $\operatorname{dim}_{Z} L^{-}=3, \xi:=z \rho+t \eta \rho$ is also in L^{-}. The rest of the proof is like (1).
(4) We show that we can suppose $\eta^{*}=\eta$. Let $\{1, o, \ldots\}$ be an arbitrary standard basis. If char $K \neq 2$, we have $\sigma^{*}=y \sigma$ with $\mathrm{y} \in Z$ and $y y^{*}=\mathrm{i}$ (see proof of 34). By "Hilbert 90 " there is $u \in \mathrm{Z}$ with $y=u^{*} u^{-1}$. With $\eta:=u^{*} \sigma$ we are done. If char $\mathrm{K}=2$, we have $\mathrm{O}=\mathrm{o}+x$ with $x \in Z$ and $x+x^{*}=0$ (see proof of 34). Since $Z \mid Z^{+}$is separable, there exists $\zeta \in Z$ with $\zeta^{*}=\zeta+1$. Then $\eta:=\sigma+x \zeta$ is fixed under $*$. Like in (1) follows $\xi \in L^{+}$.

Lemma 36 For $0 \neq a \in R(W) \cap \operatorname{ker} \varphi$ holds $a \mathrm{E} N_{L}(\dot{K})$.
Proof. Let $f(w, \mathrm{w})=a$. Then for all $k \in \mathrm{~K}$ holds $f(k w, k w) \in \operatorname{ker} \varphi=K a$. Hence $k \alpha k^{*}=\mathrm{ca}$, $\mathrm{c} \in \mathrm{K}$. Since k and k^{*} are arbitrary, we get $\alpha K=\mathrm{Ka}$.

Lemma 37 If $R(W) \cap \operatorname{ker} \varphi \neq 0, \operatorname{ker} \varphi=\mathrm{K}$ or $\operatorname{ker} \varphi=K \xi$. If $K \mid Z$ is not separable, only $\operatorname{ker} \varphi=\mathrm{K}$ is possible.

Proof. Since $N_{L}(\dot{K}) / \dot{K} \cong \operatorname{Gal}(K \mid Z)$, we have $\operatorname{Gal}(K \mid Z) \cong \mathbb{Z} / 2 \mathbb{Z}$ if $K \mid Z$ is separable. Otherwise $\operatorname{Gal}(K \mid Z)$ is trivial. In the separable case it is easy to prove that $\xi \mathrm{E} N_{\dot{L}}(\dot{K})$, hence $N_{L}(\dot{K})=\dot{K} \cup \dot{K} \xi$.

Now we suppose that we have $\operatorname{ker} \varphi=\mathrm{K}$ or $\operatorname{ker} \varphi=K \xi$. But not always these two cases can occur as the next lemma shows.

Lemma 38 (1) $*$ is orthogonal and $\mathrm{K} c L^{+}: \operatorname{ker} \varphi=K \xi$ if $K \mid Z$ is separable and $\operatorname{ker} \varphi=\mathrm{K}$ if $K \mid Z$ is not separable.
(2) $*$ is orthogonal and $\mathrm{K} \not \subset L^{+}: \operatorname{ker} \varphi=K \xi$.
(3) $*$ is symplectic: $\operatorname{ker} \varphi=K \xi$.
(4) $*$ is unitary: $\operatorname{ker} \varphi=\mathrm{K}$ or $\operatorname{ker} \varphi=K \xi$.

Proof. (1) If char $K \# 2$, it holds that $-\varphi(\eta \xi)=\varphi\left((\eta \xi)^{*}\right)=\varphi(\eta \xi)^{*}=\varphi(\eta \xi)$. Thus $\eta \xi \mathrm{E}$ $\operatorname{ker} \varphi$ and hence $\operatorname{ker} \varphi=K \xi$. If char $K=2$ and $K \mid Z$ is separable, we have $\varphi(\eta \xi)=\varphi\left((\eta \xi)^{*}\right)$ $=\varphi(\xi \eta)=\varphi(\eta \xi)+\varphi(\xi)$. Hence $\varphi(\xi)=0$. In the non separable case $\varphi(\eta \xi)=\varphi\left((\eta \xi)^{*}\right)=$ $\varphi(\xi \eta)=\varphi(\eta \xi)+\varphi(\eta)$ holds. Hence $\varphi(\eta)=0$.
(2)By $35 L^{+}=(1, \xi, \eta \xi\rangle_{Z}$. Suppose $\operatorname{ker} \varphi=$ K. Since $\varphi\left(L^{+}\right)=K^{+}=Z$ and $\operatorname{dim}_{Z} L^{+}=3$, there are two Z -independent vectors in $L^{+} \cap \operatorname{ker} \varphi$. But this is impossible, since $\mathrm{K} \cap L^{+}=\mathrm{Z}$.
(3) By $35 L^{-}=\langle\eta, \xi, \eta \xi\rangle_{Z}$. Since $\varphi\left(L^{-}\right)=K^{-}=Z \eta$ and $\operatorname{dim}_{Z} L^{-}=3$, the assumption $\operatorname{ker} \varphi=\boldsymbol{K}$ provides a contradiction as in (2).
(4) Here is nothing to prove.

Proof of Theorem 4. (a) Let v_{1}, \ldots, v_{m} be a L-basis of $\operatorname{comp}_{L} W$. By $28 \operatorname{comp}_{L} W$ is f-singular. Thus there exists a hyperbolic sequence $v_{1}, v_{1}^{\prime}, \ldots, v_{/ \prime} v_{m}^{\prime}$ in (V, f). By 29 we have $\mathrm{W}=\operatorname{comp}_{L} W \perp_{L} Y$ for a suitable K-subspace Y of W . So without loss we can suppose $\operatorname{comp}_{L} W=0$.
(b) Let $\mathrm{W}=\operatorname{rad}_{f} W \oplus Y$ with $Y \leq V$. By 28 and 16 it holds that $W=\operatorname{rad}_{f} W \oplus_{L} \mathrm{Y}$, hence $W=\operatorname{rad}_{f} W \perp_{L} Y$. Let $\left\{u_{1}, \ldots, u_{s}\right\}$ be a K-basis of $\operatorname{rad}_{f} W$. Since $\operatorname{rad}_{f} W$ is a K substructure, u_{1}, \ldots, u_{s} are linear independent over L (13). Then there exists a hyperbolic sequence $u_{1}, u_{1}^{\prime}, \ldots, u_{s}, u_{s}^{\prime}$ in $\left(V_{f}\right)$. So without loss let $\operatorname{rad}_{f} W=0$.
(c) Suppose there is $w_{1} \in W$ such that $f\left(w_{1}, w_{1}\right)=0$. Since $\operatorname{rad}_{f} W=0$, there exists $\tilde{x}_{1} \mathrm{E}$ W such that $f\left(w_{1}, \mathrm{X}\right) \neq 0$. We can suppose that $f\left(w_{1}, \tilde{x}_{1}\right)=a$. If $f\left(\tilde{x}_{1}, \tilde{x}_{1}\right)=0$, define $x_{1}:=\tilde{x}_{1}$. Otherwise $f\left(\tilde{x}_{1}, \tilde{x}_{1}\right)=c a, c \mathrm{E} \mathrm{K}$ and $f\left(\tilde{x}_{1}, \tilde{x}_{1}\right)=\lambda+\varepsilon \lambda^{*}, \lambda \mathrm{E} \dot{L}$, since f is tracevalued. Define

$$
x_{1}:=-h a-{ }^{1} w_{1}+\tilde{x}_{1} .
$$

Then $f\left(x_{1}, x_{1}\right)=-\lambda-\varepsilon \lambda^{*}+\lambda+\varepsilon \lambda^{*}=0$. Let $w_{1}^{\prime}:=\left(\alpha^{*}\right)^{-1} x_{1}$. Then $\left(w_{1}, w_{1}^{\prime}\right)$ is a hyperbolic pair. If $x_{1} \in \mathrm{~W}$, by 29 we have

$$
W=\left\langle w_{1}, \alpha^{*} w_{1}^{\prime}\right\rangle_{K} \perp_{L} Y,
$$

for a suitable K-subspace Y of W , since $\left\langle w_{1}, x_{1}\right\rangle_{K}$ is maximal f^{\prime}-singular in the hyperbolic (thus regular) L-subspace $\left\langle w_{1}, w_{1}^{\prime}\right\rangle_{L}$. By induction we get

$$
W=\left\langle w_{1}, \alpha^{*} w_{1}^{\prime}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle w_{t}, \alpha^{*} w_{t}^{\prime}\right\rangle_{K} \perp_{L} W_{A},
$$

where W_{A} is a K-subspace of W which contains no f-isotropic vector.
It remains to investigate the conditions for x_{1} to be in W . Since W is a K-substructure and $\tilde{x}_{1}, w_{1} \mathrm{E} W, x_{1} \mathrm{E} W$ holds iff $\lambda \alpha^{-1} \mathrm{E} K$. This is always the case when the characteristic is odd, since $\lambda=-\frac{1}{2} f\left(\tilde{x}_{1}, \tilde{x}_{1}\right)=\frac{1}{2} c \alpha$. Now consider the cases in characteristic 2 . Let $\gamma:=f\left(\tilde{x}_{1}, \tilde{x}_{1}\right)$.

If L is commutative and $\left.*\right|_{K} \neq \mathrm{id}$, then $K \mid K^{+}$is separable. Hence there is a $\zeta \mathrm{E} \mathrm{K}$ such that $\zeta^{*}=\zeta+1$. With $\lambda:=\zeta \gamma$ follows $\lambda+\lambda^{*}=\gamma$ and $\lambda \alpha^{-1}=c \zeta$ E K. Let now L be non commutative. Note that $\alpha \in N_{\dot{L}}(\dot{K})(36)$ if there exists $v \in W$ with $f(v, v) \# 0$. If $*$ is orthogonal, $\mathrm{K} \mathrm{C} L$ and $K \mid Z$ separable, then $\operatorname{ker} \varphi=K \xi$ (38) that is $\alpha=\xi$ and $L^{+}=\langle 1, \eta, \xi\rangle_{K}$ (35). Hence $\gamma=c \xi$ with $c \in Z$, since f is trace-valued. Moreover, $(\eta \xi)^{*}=\xi \eta=\eta \xi+\xi$. With $\lambda:=c \eta \xi$ follows $\lambda+\lambda^{*}=c \xi$ and $\lambda \xi^{-1}=c \eta \in K$. If $*$ is orthogonal and $\mathrm{K} \not \subset L^{\dagger}$, we have $L^{+}=\langle 1, \xi, \eta \xi\rangle_{K}(35)$ aiid $\operatorname{ker} \varphi=K \xi$ (38). An easy calculation shows $\lambda+\lambda^{*} \mathrm{E} \mathrm{K}$ for all $\lambda \mathrm{E} L$. Since f is trace-valued. we have $f\left(\tilde{x}_{1}, \tilde{x}_{1}\right) \mathrm{E} K \cap K \xi=0$. Hence $x_{1} \mathrm{E} W$. In characteristic 2 there are no symplectic involutions. If $*$ is unitary, $Z \mid Z^{+}$is separable and there is $\zeta \mathrm{E} Z$ such that $\zeta^{*}=\zeta+1$. With $\lambda:=\zeta \gamma$ follows $x_{1} \in \mathrm{~W}$.

It remains to consider the cases (A) and (B). In both cases it holds that $\operatorname{ker} \varphi=K$ and $\left.*\right|_{K}=\operatorname{id}$ (31 and 38). Suppose there is $y_{1} \mathrm{E} W$ such that $f\left(y_{1}, y_{1}\right)=0$. As above there is $z_{1} \in W$ such that $f\left(y_{1}, z_{1}\right)=1$. If $f\left(z_{1}, z_{1}\right) \neq 0$, we have $f\left(z_{1}, z_{1}\right)=\lambda+\lambda^{*}$. In order to find a vector $t_{1} \mathrm{E}\left\langle y_{1}, \zeta_{1}\right\rangle_{K}$ such that $\left(y_{1}, t_{1}\right)$ is a hyperbolic pair take $t_{1}:=\lambda y_{1}+z_{1}$ as above. But then it must hold that $\lambda \in \mathrm{K}$ and we get the contradiction $f\left(z_{1}, z_{1}\right)=0$.
(d) If $W_{A} \neq 0$, pick $0 \neq e_{1} \in W_{A}$. Since $\left\langle e_{1}\right\rangle_{K}$ is maximal f^{\prime}-singular in the f-regular L-subspace $\left\langle e_{1}\right\rangle_{L}$, the assertion follows by induction as in (c).

4.2 Qrbits of f^{\prime}-singular suhspaces.

We define the f-type $\operatorname{tp}_{f}(W)$ of W to be the 5 -tuple (m, s, t, p, r). A necessary condition for two subspaces W and W^{\prime} to be in the same orbit under $\mathrm{U}(V, f)$ is $\mathrm{tp}_{f}(W)=\operatorname{tp}_{f}\left(W^{\prime}\right)$. In general, however, this condition is not sufficient. Let W_{I} be the subspace generated by all f-isotropic vectors of W,

$$
\begin{aligned}
W_{I} & :=\left\langle v_{1}, \ldots, v_{m}\right\rangle_{L} \perp_{L}\left\langle u_{1}, \ldots, u_{s}\right\rangle_{K} \\
& \perp_{L}\left\langle w_{1}, \alpha^{*} w_{1}^{\prime}, \ldots, w_{t}, \alpha^{*} w_{t}^{\prime}\right\rangle_{K} \perp_{L}\left\langle y_{1}, \ldots, y_{p}\right\rangle_{K}
\end{aligned}
$$

and let

$$
W_{A}:=\left\langle z_{1}, \ldots, z_{p}, e_{1}, \ldots, e_{r}\right\rangle_{K}
$$

We have $\operatorname{comp}_{L} W \leq \operatorname{rad}_{f} W \leq W_{I}$ and. if $p=0, W=W_{I} \perp_{L} W_{A}$.
Let now $p+r=0$. Then two f^{\prime}-singular subspaces W and W^{\prime} are in the same orbit under $\mathrm{U}(V, f)$ iff $\operatorname{tp}_{f}(W)=\operatorname{tp}_{f}\left(W^{\prime}\right)$. For if $\operatorname{tp}_{f}(W)=\operatorname{tp}_{f}\left(W^{\prime}\right)$, every isometry $\sigma: \mathrm{W} \longrightarrow W^{\prime}$ can be extended to an isometry $\Sigma \in \mathrm{U}(V, f)$. This, for example, occurs in the symplectic case [20]. Let $\mathrm{v}:=\mathrm{wi}(V, f)$ and $\mathrm{v}^{\prime}:=\mathrm{wi}\left(V, f^{\prime}\right)$. A necessary and sufficient condition for $(m, s, t, 0,0)$ to be the f-type of a subspace is $m+s+t \leq \mathrm{v}$. For then $\operatorname{dim}_{L} L W=m+s+2 t \leq n$ and $\operatorname{dim}_{K} W=2 m+s+2 t \leq \mathrm{v}^{\prime}$. For all $d \geq 0$ let N_{d} be the number of orbits of d-dimensional K-subspaces if $p+r=0$. To simplify our notation we define $N_{d}:=0$ if $d<0$. If $p+r=0$, we have $0 \leq d \leq 2 v$ and the following holds [20]

$$
N_{d}= \begin{cases}\binom{\left\lfloor\frac{d}{2}\right\rfloor+2}{2} & \text { if } \quad 0 \leq d \leq v, \quad \text { and } \\
\binom{\left\lfloor\frac{d}{2}\right\rfloor+2}{?}-\left(\begin{array}{c}
d-v+1 \\
?
\end{array}\right. & \text { if } \quad v<d<2 v\end{cases}
$$

For the number of orbits we get

$$
N=|\{m+s+t \leq v: m, s, t \in \mathbb{N} \cup\{0\}\}|=
$$

Now consider the general case where $\boldsymbol{p} \boldsymbol{r}_{\mathrm{I}^{\prime}}>0$. If two subspaces \boldsymbol{W} and \boldsymbol{W}^{\prime} are in the same orbit under $\mathrm{U}(V, f)$, they must have the same type and the spaces

$$
\left\langle y_{1}, z_{1}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle y_{p}, z_{p}\right\rangle_{K} \perp_{L}\left\langle e_{1}\right\rangle_{K} \perp_{L} \cdots \perp_{L}\left\langle e_{r}\right\rangle_{K}
$$

and

$$
\left\langle y_{1}^{\prime}, z_{1}^{\prime}\right\rangle_{K} \perp_{L} \ldots \perp_{L}\left\langle y_{p}^{\prime}, z_{p}^{\prime}\right\rangle_{K} \perp_{L}\left\langle e_{1}^{\prime}\right\rangle_{K} \perp_{L} \cdots \perp_{L}\left\langle e_{r}^{\prime}\right\rangle_{K}
$$

must be isometric. Recall that $\operatorname{ker} \varphi=K \alpha$. Without loss we can assume that $\alpha^{*}=a$ or $\alpha^{*}=-\alpha$ respectively. By defining $\tilde{f}:=\left.f\right|_{W_{A}} \alpha^{-1}$ we get a map

$$
\tilde{f:} \begin{array}{ccc}
W_{A} \times W_{A} & \longrightarrow & K \\
(x, y) & \longmapsto & f(x, y) \alpha^{-1}
\end{array}
$$

An easy calculation shows that \tilde{f} is a I-hermitian formover $(K, * \circ \sigma)$, whereo $\in \operatorname{Gal}(K \mid Z)$ (put $Z=\mathrm{K}$ if L is commutative). Moreover, two $p+\mathrm{r}$-dimensional anisotropic subspaces W_{A} and W_{A}^{\prime} are in the same orbit under $U(V, \mathbf{f})$ iff the induced forms \tilde{f} and \tilde{f}^{\prime} are isometric over $(K, * \circ \sigma)$. The problem to decide whether two subspaces are in the same orbit leads to the classification of hermitian forms over fields. Since very little is known about the case of general fields, we are able to treat this problem only for some special fields.

Before we do so, let us consider how the form \tilde{f} depends on L and $*$. The following table gives an overview:

Proof of the Table. See 31 and 32 in the commutative case and 35 and 38 in the non commutative case.

If L is commutative, $L=\langle 1, \xi\rangle_{K}$. Obviously we have here $\sigma=\mathrm{id}$.
$*=$ id. Since $S^{+}=K \alpha$ and $S^{-}=0, \mathrm{r}>0$ is only possible if j is symmetric. In char $\mathrm{K} \neq 2$ it holds that $a_{i} \mathrm{EK}$ and \tilde{f} is a symmetric bilinear form over K. Since in char $K=2$ always $a_{i} \alpha=\lambda+\lambda=0$, the situation $\mathrm{r}>0$ cannot occur in this case.
$* \neq \mathrm{id}$ and $K=L^{+}$. If char $K \neq 2$, we have $S^{+}=0$ and $S^{-}=K \xi$. Thus $r>0$ is only possible if f is a (-1)-hermitian form. Then $a_{i} \in \boldsymbol{K}$ and \tilde{f} is symmetric. In cliar $K=2 f$ is symmetric but non trace-valued (case(A)).
$* \neq \mathrm{id}$ and $\mathrm{K} \neq L^{+}$. It suffices to consider 1 -hermitian forms. In all cases it holds that $S^{+}=K^{+} \alpha$, where $\alpha=z+x \xi, z, x \in K^{+}$. The a; are in \dot{K}^{+}and \tilde{f} is a non symmetric form over

Table 1:

$* *$	L^{+}	char K	$K \mid Z$	\hat{f}
$=\mathrm{id}$		$\neq 2$		symmetric, trace-valued
$\neq \mathrm{id}$	$K=L^{+}$	$\neq 2$		symmetric, trace-valued
$\neq \mathrm{id}$	$K=L^{+}$	$=2$		symmetric, non trace-valued
$\neq \mathrm{id}$	$K \neq L^{+}$	$\neq 2$		non symmetric, trace-valued
$\neq \mathrm{id}$	$K \neq L^{+}$	$=2$		non symmetric, trace-valued
orthogonal	$K \subset L^{+}$	$\# 2$		non symmetric, trace-valued
orthogonal	$K \subset L^{+}$	$=2$	separabel	non symmetric, trace-valued
orthogonal	$K \subset L^{+}$	$=2$	non separabel	symmetric, non trace-valued
orthogonal	$K \not \subset L^{+}$	$\neq 2$		symmetric, trace-valued
symplectic		$\neq 2$		symmetric, trace-valued
unitary		$\neq 2$		non symmetric, trace-valued
unitary		$=2$	separabel	non symmetric, trace-valued
unitary		$=2$	non separabel	non symmetric, trace-valued

$\left(K,{ }^{*}\right)$. In characteristic 2 we have $K=K^{+} \oplus K^{+} \eta$, where $\eta^{*}=\eta+1$. Then $a ;=a_{i} \eta+\left(a_{i} \eta\right)^{*}$, hence \tilde{f} is trace-valued.

Now let L be non commutative, that is $L=\langle 1, \eta, \xi, \eta \xi\rangle_{Z}$.
$*$ orthogonal and $K \subset L^{+}$. If char $K \neq 2$, we have $S^{+}=Z \xi$ and $S^{-}=Z \eta \xi$. The a_{i} are in Z and $a \mathrm{E}\{\xi, \eta \xi\}$. Hence $\mathrm{o} \neq \mathrm{id}$. Since $\left.*\right|_{K}=\mathrm{id}, \tilde{f}$ is a non symmetric form over (K, σ). If char $K=2$, we have $S^{+}=Z \xi$ if $K \mid Z$ is separable. Like in the odd characteristic case one gets a non symmetric form \tilde{f} over (K, O). Since $K=Z \oplus Z \eta$ and $\eta^{\sigma}=\eta+1$, the form \tilde{f} is trace-valued. If $K \mid Z$ is not separable, \tilde{f} symmetric but non trace-valued (case (B)).
$*$ orthogonal and $K \not \subset L^{+}$. We have $S^{+}=K \xi$ and $S^{-}=0$. The a; are in K and $\left.*\right|_{K}=\mathbf{o}$. Hence \tilde{f} is symmetric. In characteristic 2 we have always $r=0$ (see the proof of Theorem 4(c)).

* symplectic. This case occurs only if char $K \neq 2$. We have $S^{+}=0$ and $S^{-}=K \xi$. The a; are in \boldsymbol{K} and $\left.*\right|_{K}=0$. Thus \tilde{f} is symmetric.
* unitary. It suffices to consider 1-hermitian forms. If char $K \neq 2$, we have $S^{+}=Z^{+} \oplus$ $Z^{+} \eta=K^{+}$or $S^{+}=Z^{+} \xi \oplus Z^{-} \eta \xi$. In the first case \tilde{f} is a non symmetric form over (K, ${ }^{*}$). In the second case let $a_{i}=b_{i 1}+b_{i 2} \eta$ and $a_{i}^{\prime}=b_{i 1}^{\prime}+b_{i 2}^{\prime} \eta, b_{i 1}, b_{i 1}^{\prime} \mathrm{E} Z^{+}$and $b_{i 2}, b_{i 2}^{\prime} \mathrm{E} Z^{-}$. Then

$$
b_{i 1} \xi+b_{i 2} \eta \xi=\sum_{j} a_{i j}\left(b_{i 1}^{\prime} \xi+b_{i 2}^{\prime} \eta \xi\right) a_{i j}^{*}
$$

Multiplication from the right by ξ^{-1} yields

$$
b_{i 1}+b_{i 2} \eta=\sum_{J} a_{i j}\left(b_{i 1}^{\prime}+b_{i 2}^{\prime} \eta\right)\left(a_{i j}^{*}\right)^{\sigma} .
$$

Let F be the fixed field of the involution $* \circ \mathrm{O}$. Since $* \circ \mathrm{O} \neq \mathrm{id}$, we have $[K: F]=2$. Since $Z^{+} \subset F$ and $Z^{-} \eta \subset F, F=Z^{+} \oplus Z^{-} \eta$. Hence \tilde{f} is a non symmetric form over $(K, * \circ O)$.

The case char $K=2$ is not essentially different: if $K \mid Z$ is separable, the cases $\operatorname{ker} \varphi=K$ and $\operatorname{ker} \varphi=K \xi$ can occur. In the first case we have $S^{+}=Z^{+} \oplus Z^{+} \eta=K^{+}$. In the second case we have $S^{+}=Z^{+} \xi \oplus Z^{+}(\zeta+\eta) \xi, \zeta \mathrm{E} Z$ and $\zeta^{*}=\zeta+1$. Like in odd characteristics we get that \tilde{f} is a non symmetric Form over $(K, *)$ or over ($K, *$ o σ) respectively. Since $a_{i} \mathrm{E} K$ implies (a; E $K, a_{i}=\left(a ;+\left(\zeta a_{i}\right)^{*}\right.$ or $a_{i}=\zeta a_{i}+\left(\zeta a_{i}\right)^{* \circ \sigma}$ respectively. Thus \tilde{f} in both cases in trace-valued. If $K \mid Z$ is not separable, we have $\operatorname{ker} \varphi=K$, hence $S^{+}=K$. Since there is a $\zeta \mathrm{E} Z$ with $\zeta^{*}=\zeta+1$, the form \tilde{f} is trace-valued and non symmetric over $(K, *)$.

We have seen that \tilde{f} is either a symmetric or non symmetric form over K. Now let R_{d} be the number of orbits of d-dimensional f^{\prime}-singular subspaces if $\boldsymbol{p}+\mathrm{r} \geq 0$. Recall that N_{d} denotes the number of orbits if $\boldsymbol{p}+\mathrm{r}=0$. In order to calculate $R_{\boldsymbol{d}}$ one has to solve two problems: On the one hand we must investigate how many forms \tilde{f} can be realized, given an ε-hermitian space (V, f) and a subspace W . On the other hand one must know which of these forms are isometric. For convenience suppose $p=0$. Let $W_{0}:=L W_{A}=\left\langle e_{1} \ldots, e_{r}\right\rangle_{L}$ and let $\mathrm{V}=W_{0} \oplus W_{0}^{\prime}$, where $W_{0}^{\prime}=\left\langle e_{r+1}, \ldots, e_{n}\right\rangle_{L}$. Then every r-dimensional subspace W^{\prime} has theform $\left\langle\delta_{1} e_{1}+x_{1}\left(W^{\prime}\right), \ldots, \delta_{r} e_{r}+x_{r}\left(W^{\prime}\right)\right\rangle_{K}$ with $\delta_{i} \in\{0,1\}$ and $x_{i}\left(W^{\prime}\right)=\sum_{j=r+1}^{n} \lambda_{i j} e_{j}$, $\mathrm{i}=1, \ldots, r$. Let $L=K \alpha \oplus K \beta(\beta=1$ if $a \notin K)$. If at least one subspace W exist with $\tilde{f} \sim\left[a_{1}, \ldots, a,\right]$, then $(V, f) \sim\left[a_{1} \alpha, \ldots, a_{r} \alpha, a_{r+1} \alpha+b_{r+1} \beta, \ldots, a_{n} \alpha+b_{n} \beta\right]$. Then we have for all basis vectors of W^{\prime}

$$
f\left(\delta_{i} e_{i}+x_{i}, \delta_{i} e_{i}+x_{i}\right)=\delta_{i} a_{i} \alpha+\sum_{j=r+1}^{n} \lambda_{i j}\left(a_{j} \alpha+b_{j} \beta\right) \lambda_{i j}^{*} .
$$

In order for a subspace W^{\prime} with a form ${\tilde{f^{\prime}}}^{\prime} \sim\left[a^{\prime}, \ldots, a_{r}^{\prime}\right]$ to be realized, given a subspace W with $\tilde{f} \sim\left[a l, \ldots, a_{r}\right]$, the equation

$$
a_{i}^{\prime} \alpha=\delta_{i} a_{i} \alpha+\sum_{j=r+1}^{n} \lambda_{i j}\left(a_{j} \alpha+b_{j} \beta\right) \lambda_{i j}^{*}
$$

must be solvable over \mathbf{i}.for $\mathrm{i}=1, \ldots, \mathrm{r}$. Very little is known yet about the problem under which conditions this holds true for the general case. However, every form can be realized if W_{0}^{\prime} contains a hyperbolic sequence $y_{1}, y_{1}^{\prime}, \ldots, y_{r}, y_{r}^{\prime}$. With $x_{i}:=\gamma y_{i}+y_{i}^{\prime}, \gamma \in L$ one gets $f\left(e_{i}+x_{i}, e_{i}+x_{i}\right)=a_{i} \alpha+\gamma+\gamma^{*}$. Since we consider only trace-valued forms, we have $a_{i} \alpha$ and $a_{i}^{\prime} \alpha \in\left\{h+\lambda^{*}: \lambda \in L\right\}$, and the equation $a_{i} \alpha=a_{i}^{\prime} \alpha+\gamma+\gamma^{*}$ can be solved.

Since in general we cannot decide which forms can be realized, we are only able to give an upper limit for the number of orbits. In the following we consider some special fields. The invariants of a form f we use for classification are the dimension $\operatorname{dim}(f)$, the determinant $\operatorname{det}(f)$, the signature $\operatorname{sig}(f)$ and the Hasse-invariant $s(f)$. Recall that $s(f)$ denotes the equivalence class of the Hasse-algebra $S(f):=\otimes_{i, j}\left(a ; \alpha_{j}\right)$, where $f \sim[a i, \ldots, a$,$] . Here$ $\left(\alpha_{i}, \alpha_{j}\right)$ denotes the quaternion algebra with standard basis $\{1, \eta, \xi, \eta \xi\}$ such that $\eta^{2}=\alpha_{i}$ and $\xi^{2}=a$,

Let K be a field with characteristic unequal 2. If every 3-dimensional symmetric bilinear space over K is isotropic, the forms over K are completely classified by their dimension and determinant [33, p. 38]. If every 5 -dimensional symrnetric bilinear space over K is isotropic, the forms over K are completely classified by their dimension, determinant and Hasse-invariant [33, p. 91].

For a quadratic form q in characteristic 2 we use two other invariants. These are the Clifford-invariant $c(q)$ which is the equivalence class of the Clifford-algebra $C(q)$ in the Brauergroup [33, p. 333] and the Arf-invariant $\Delta(q)$ [33, p. 340].

Let $h: V \boldsymbol{x} V \longrightarrow \boldsymbol{K}$ be a hermitian form over a field \boldsymbol{K} with nontrivial involution $*$. Let $k:=K^{+}$. Then $K=k(\eta)$, where $k(\eta) \mid k$ is a separable quadratic extension. Let $\eta^{2}=: a \in k$ if chark $\neq 2$ and $\eta^{2}+\eta=: \mathrm{a} \in \boldsymbol{k}$ if char $\mathrm{k}=2$. By defining $q_{h}(x):=h(x, x)$ we get canonically a quadratic form $q_{h}: V \longrightarrow k$. A theorem of Jacobson [26, p. 115] says:
(i) A hermitian form h over \boldsymbol{K} is isotropic iff q_{h} is isotropic over k.
(2) Two herrnitian forms h_{1} and h_{2} are isometric over K iff $q_{h_{1}}$ and $q_{h_{2}}$ are isometric over k.

The following relations hold for the invariants of h and $q_{h}[23$, p. 261 ff$],[33$, p. 350]:

$$
\begin{aligned}
\operatorname{dim}\left(q_{h}\right) & =2 \operatorname{dim}(h), \\
\operatorname{det}\left(q_{h}\right) & =(-a)^{\operatorname{dim}(h)}, \\
s\left(q_{h}\right) & =(-a, \operatorname{det}(h)), \\
\operatorname{sig}\left(q_{h}\right) & =2 \operatorname{sig}(h) . \\
c\left(q_{h}\right) & =(a, \operatorname{det}(h)) \quad \text { and } \\
\Delta\left(q_{h}\right) & =\operatorname{dim}(h) a .
\end{aligned}
$$

Above we have shown that \tilde{f} is either a syrnmetric bilinear form over K or a herrnitian forrn over $\boldsymbol{K} \mid \boldsymbol{k}$. We keep the notation $K^{+}=\boldsymbol{k}$. For simplicity let $\boldsymbol{K}:=\mathrm{k}$ if f is symrnetric.
\boldsymbol{k} is quadratically closed, char $k \# 2$. Here f must be symmetric, since a quadratically closed field cannot have a quadratic extension field. Every 2-dimensional space is isotropic, thus $\boldsymbol{f} \sim[1]$ and $\operatorname{tp}_{f}(W)=(m, s, t 1)$. Hence there are N_{d} orbits if $r=0$ and N_{d-1} orbits if $r=1$ and we have

$$
R_{d} \leq N_{d}+N_{d-1}
$$

For example, quadratically closed fields \boldsymbol{k} occur if L is the real quaternion skew field $\mathbb{H}=$ $\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} i j, k=\mathbb{C}$ and $*$ the involution which fixes i and j.
\boldsymbol{k} is real closed, char $k \neq 2$. Recall that a field is called real if -1 is not a sum of squares. A real field is called real closed if no proper algebraic extension field is real. If \tilde{f} is symmetric, every indefinite form with $\operatorname{dim}(\tilde{f}) \geq 2$ is isotropic. Hence $\tilde{f} \sim[1, \ldots, 1]$ or $\tilde{f} \sim[-1, \ldots,-1]$. We get

$$
R_{d} \leq N_{d}+2 \sum_{r=1}^{d} N_{d-r}
$$

If \tilde{f} is non symmetric, K is algebraically closed and every indefinite form is isotropic. Thus $\tilde{f} \sim[i, \ldots, 1]$ or $\tilde{f} \sim[-1, \ldots,-1]$. Since without loss we can take a $=-1$, we have $q_{\tilde{f}} \sim$ $[1, \ldots, i]$ or $q_{\tilde{f}} \sim[-1, \ldots,-1]$
k is cl finite field, chark \# 2. Every 3-dimensional quadratic form over a finite field is isotropic and there are exactly two non isometric anisotropic quadratic forms [33, p. 39]. Hence, if \tilde{f} is symmetric, we have exactly two anisotropic forrns for $r=\mathrm{i}$ and $r=2$. Th

$$
R_{d} \leq N_{d}+2 N_{d-1}+2 N_{d-2}
$$

Let now \tilde{f} be non symmetric. Since every 3 -dimensional form $q_{\tilde{f}}$ is isotropic, W_{A} contains an isotropic vector if $r>1$. Hence $r \leq 1$ and since the dimension is the only invariant in this case, we get

$$
R_{d} \leq N_{d}+N_{d-1}
$$

k is a local field, chark $\neq 2$. By a local field we mean a finite extension of the p-adic numbers \mathbb{Q}_{p} or the field of Laurent series $\mathbb{F}_{q}((X))$. Let \bar{k} denote the residue class field of k. Recall that for the number g of square classes of k holds $g=4$ if char $\bar{k} \neq 2$ and $g=2^{\left[k \mathbb{Q}_{2}\right]}$ if char $\bar{k}=2$. Here k is a finite extension of \mathbb{Q}_{2} [33, p. 217]. Moreover, there is up io isomorphy only one non split quaternion algebra over k. This allows us to replace the Hasse-invariant by the Hasse-symbol, which we also denote by s. If f is a symmetric bilinear form with diagonal representation $\left[a i, \ldots, \alpha_{n}\right]$, the Hasse-symbol is the product $s(f):=\prod_{i<j} s\left(\alpha_{i}, \alpha_{j}\right)$, where $s(\alpha, \beta)$ is the Hilbert-symbol defined by

$$
s(\alpha, \beta)=\left\{\begin{array}{rll}
1 & \text { if } & (\alpha, \beta) \text { splits } \\
-1 & \text { if } & (\alpha, \beta) \text { not splits. }
\end{array}\right.
$$

Every 5 -dimensional form over a local field is isotropic and there is up to isometry exactly one anisotropic 4-dimensional form [33, p. 217]. Therefore, forms over local fields can be classified by their diinension, determinant and Hasse-symbol. Any combination of these three invariants is possible except when $\operatorname{dim}=1$ or $\operatorname{dim}=2$ and $\operatorname{det} \mathrm{E}-\dot{k}^{2}$. Then $s=(\operatorname{det},-1)$ [25, p. 171]. Let \tilde{f} be symmetric. Since any 5-dimensional form is isotropic, we have $r \leq 4$. If $r=4$, there is only one anisotropic form. If $r=3$, the invariants det and s are independent. Since $s= \pm 1$, the number of orbits is $\leq 2 g N_{d-3}$ for $r=3$. If $r=2$, we have $s=(\operatorname{det},-1)$ if det $\in-k^{2}$. Hence the number of orbits is $\leq(2 g-1) N_{d-2}$ for $\boldsymbol{r}=2$. If $\boldsymbol{r}=1$, we have $s=(\operatorname{det},-1)$. Thus here the number of orbits is $\leq g N_{d-1}$. For the number of all orhits we get

$$
R_{d} \leq N_{d}+g N_{d-1}+(2 g-1) N_{d-2}+2 g N_{d-3}+N_{d-4} .
$$

If \tilde{f} is non symmetric, every 5 -dimensional form $q_{\tilde{f}}$ is isotropic. Hence $r \leq 2$. The only invariants are $\operatorname{dim}(\tilde{f})$ and $\operatorname{det}(\tilde{f})$, since $s\left(q_{\tilde{f}}\right)=(-a, \operatorname{det}(\tilde{f}))$. For non symmetric forms the determinant is an element of $k / N_{K \mid k}(K)$. Since for local fields $\dot{k} / N_{K \mid k}(\dot{K}) \cong \operatorname{Gal}(K \mid k)[24, \mathrm{p}$ 315], we have $\left|\dot{k} / N_{K \mid k}(\dot{K})\right|=2$ and hence we get

$$
R_{d} \leq N_{d}+2\left(N_{d-1}+N_{d-2}\right) .
$$

k is a global field, char $k \neq 2$. A global field is a finite extension of \mathbb{Q} or a finite extension of $\mathbb{F}_{q}(X)$. The completions of a global field at all discrete valuations are the local fields. Symmetric bilinear forms over global fields are isometric iff the corresponding forms at each valuation are isometric. This is the famous local-global principle of Hasse and Minkowski [33, p. 223]. If \tilde{f} is symmetric, the invariants are the dimension, the determinant, the Hassesymbols at each non archimedean valuation and the signatures at each archimedean valuation. If \tilde{f} is non symmetric, the Hasse-symbols are completely determined by the determinant. Since the number of square classes is not finite in general, the number of orbits does not have to be finite either. We give an example in which infinitely many orbits occur:

Consider the quaternion algebra $L=(-1,-1)_{\mathbb{Q}} . L$ is a skew field with center $\mathrm{Z}=\mathrm{Q}$. Let $\{1, \eta, \xi, \eta \xi\}$ be the corresponding standard basis and let $K:=\mathbb{Q}(\eta)$. By (4) we have
$S^{+}=\mathbb{Q} \xi$. Let (V, f) be a 2-dimensional hermitian vector space over L and let $f \sim[I, 1]$ for a L-basis $\left\{e_{1}, e_{2}\right\}$. Let $a, \beta \in L$ with $a=a_{1}+a_{2} \eta+a_{3} \xi+a_{4} \eta \xi$ and $\beta=b_{1}+b_{2} \eta+b_{3} \xi+b_{4} \eta \xi$, $a i, b_{i} \in \mathbb{Q}(i=1, \ldots, 4)$. For $V \ni \boldsymbol{w}:=\alpha e_{1}+\beta e_{2}$ holds $f(w, w)=\alpha \alpha^{*}+\beta \beta^{*}$. Since for all $\lambda \mathrm{E} L, \lambda=x_{1}+x_{2} \eta+x_{3} \xi+x_{4} \eta \xi$, holds $\lambda \lambda^{*}=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+x_{4}^{2}+2\left(x_{1} x_{2}-x_{3} x_{4}\right) \eta+2$ $\left(x_{1} x_{3}+x_{2} x_{4}\right) \xi$, we get

$$
f(w, w)=2\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right) \xi
$$

if we choose $a_{1}=a_{3}, a_{2}=a_{4}, b_{1}=b_{3}$ and $b_{2}=b_{4}$. Thus $f(w, w) \in S^{+}$for any $a_{1}, a_{2}, b_{1}, b_{2}$. We show that there are infinitely many orbits of such subspaces.

By a theorem of Hilbert and Siegel [31] every positive element of \mathbb{Q} can be written as a sum of four squares. Pick two primes p,qE3(mod4). There exist infinitely many primes of this kind. Choose w and $w^{\prime}:=\left(a_{1}^{\prime}+a_{2}^{\prime} \eta+a_{2}^{\prime} \eta \xi\right) e_{1}+\left(b_{1}^{\prime}+b_{2}^{\prime} \eta+b_{1}^{\prime} \eta+b_{2}^{\prime} \eta \xi\right) e_{2}$ such that

$$
f(w, \boldsymbol{w})=2 p \xi \quad \text { and } \quad f\left(w^{\prime}, \boldsymbol{w}^{\prime}\right)=2 q \xi .
$$

If the K-subspaces $K w$ and $K w^{\prime}$ are isometric, we must have $f(w, \boldsymbol{w})=f\left(c w^{\prime}, c w^{\prime}\right)$ for some $c \mathrm{E} K$. Now we show that this is impossible.

Suppose there is such a c. Then $2 p \xi=c(2 q \xi) c^{*}$, hence

$$
p=N_{K \mid \mathbb{Q}}(c) q \quad \text { or } \quad p=\left(c_{1}^{2}+c_{2}^{2}\right) q
$$

if $c=c_{1}+c_{2} \eta, c_{1}, c_{2} \in \mathrm{Q}$. Both c_{1} and c_{2} must be different from zero. For instance if $c_{2}=0$, follows

$$
p s^{2}=q r^{2}
$$

if $c_{1}=\frac{r}{s}, r, s \mathrm{E} \mathbb{Q},(r, s)=1$. Thus $q \mid s$ and hence $s=m_{1} q^{n_{1}},\left(m_{1}, q\right)=1, n_{1} \neq 0$ and $r=m_{2} p^{n_{2}}$, $\left(m_{2}, p\right)=1, n_{2} \neq 0$. Thus we have

$$
m_{1}^{2} q^{2 n_{1}-1}=m_{2}^{2} p^{2 n_{2}-1}
$$

This yields $q \mid m_{2}$, hence $q \mid r$ which contradicts $(r, s)=\mathrm{I}$.
Without loss let c_{1} and c_{2} be positive. Let $c i=\frac{r_{i}}{s_{i}}$ with $r_{i}, s_{i} \mathrm{E} \mathbb{N}$ and $\left(r_{i}, s_{i}\right)=1, \mathrm{i}=1,2$. We get

$$
\frac{p}{q}=\frac{r_{1}^{2}}{s_{1}^{2}}+\frac{r_{2}^{2}}{s_{2}^{2}}=\frac{\left(r_{1} s_{2}\right)^{2}+\left(r_{2} s_{1}\right)^{2}}{\left(s_{1} s_{2}\right)^{2}}
$$

This yields $q \mid s_{1} s_{2}$, hence $s_{1}=m_{1} q^{n_{1}}$ and $s_{2}=m_{2} q^{n_{2}}$ with $\left(m_{i}, q\right)=1$ and $n_{i}>0$ for at least one i. Now we have

$$
\frac{P}{q}=\frac{r_{1}^{2} m_{2}^{2} q^{2 \mathrm{n}_{2}}+r_{2}^{2} m_{1}^{2} q^{2 n_{1}}}{m_{1}^{2} m_{2}^{2} q^{2\left(n_{1}+n_{2}\right)}}
$$

or equivalently

$$
\begin{equation*}
p m_{1}^{2} m_{2}^{2} q^{2\left(n_{1}+n_{2}\right)-1}=r_{1}^{2} m_{2}^{2} q^{2 n_{2}}+r_{2}^{2} m_{1}^{2} q^{2 n_{1}} \tag{1}
\end{equation*}
$$

If $n_{1} \neq n_{2}, n_{1}<n_{2}$, say, multiplication of (1) by $q^{-2 n_{1}}$ yields $q \mid r_{2}^{2} m_{1}^{2}$. This contradicts $\left(r_{2}, m_{1}\right)=1$. Let now be $n_{1}=n_{2}=: n$. Thus (1) becomes

$$
\begin{equation*}
p m_{1}^{2} m_{2}^{2} q^{2 n-1}=r_{1}^{2} m_{2}^{2}+r_{2}^{i} m_{1}^{2} \tag{2}
\end{equation*}
$$

This is equivalent to

$$
m_{1}^{2}\left(p m_{2}^{2} q^{2 n-1}-r_{2}^{2}\right)=r_{2} m_{2} .
$$

Since $\left(m_{1}, r_{1}\right)=1$, we have $m_{1} \mid m_{2}$. In the same way we get $m_{2} \mid m_{1}$, hence $m_{1}=m_{2}=: \mathrm{m}$. Finally we have the equation

$$
p m^{2} q^{2 r-1}=r_{1}^{2}+r_{2}^{2}
$$

which contradicts the following theorem from elementary number theory: a natural number n is a sum of two squares in \mathbb{N} iff in the decomposition of n the exponent of each prime p with $p \equiv 3(\bmod 4)$ is even [31].

Fields of characteristic 2. First let us exclude the cases (A) and (B). Hence $p=0$ and f is always non symmetric. Recall that a field F in characteristic 2 is called perfect if $\dot{F}=\boldsymbol{F}$, Regular quadratic forms over perfect fields are completely classified by the dimension and the Arf-invariant [33, p. 342]. In particular finite fields are perfect. If $\left[F: F^{2}\right]=2, \operatorname{dim}(q)$, $\Delta(q)$ and $c(q)$ are a complete set of invariants for a regular quadratic form 4. $\left[\mathrm{F}: F^{2}\right]=2$ holds for algebraic function fields and for local fields [1, p. 167].
k is a finite field, char $=2$. If k is finite, $\mathrm{r} \leq 1$ must hold, since we have, as in odd characteristics, $\operatorname{dim}\left(q_{\tilde{f}}\right)=2 \operatorname{dim}(\tilde{f})$ and $q_{\tilde{f}}$ is isotropic if $\operatorname{dim}\left(q_{\tilde{f}}\right) \geq 3$. Since the Arf-invariant $\Delta\left(q_{\tilde{f}}\right)$ is completely determined by $\operatorname{dim}(\tilde{f})$, we get

$$
R_{d} \leq N_{d}+N_{d-1}
$$

Local and global fields, char $=2$. Local and global fields in characteristic 2 are C_{2}-fields. Recall that a field is called C_{i}-field if for every homogeneous polynomial P of degree d in $n>d^{i}$ variables the equation $P\left(X_{1}, \ldots, X_{n}\right)=0$ has a nontrivial solution. Therefore, 5dimensional forms are isotropic [1, p. 164], hence $r \leq 2$. The invariants of $q_{\tilde{f}}$ are $\operatorname{dim}\left(q_{\tilde{f}}\right)$, $\Delta\left(q_{\tilde{f}}\right)$ and $c\left(q_{\tilde{f}}\right)$. These are completely determined by $\operatorname{dim}(\tilde{f})$ and $\operatorname{det}(\tilde{f})$. Since $\operatorname{det}(\tilde{f}) \in$ $\dot{k} / N_{K \mid k}(\dot{K})$ and $\left|\dot{k} / N_{K \mid k}(\dot{K})\right|=2$, it holds that

$$
R_{d} \leq N_{d}+2\left(N_{d-1}+N_{d-2}\right)
$$

Now we tum to the cases (A) and (B). Only here $p \neq 0$ is possible and f is always a non trace-valued symmetric form.

Finite fields, (\boldsymbol{A}) and (B).If K is finite, it is a perfect field. Then every equation of the form $c X^{2}+d Y^{2}=0$ has a nontrivial solution over K. Thus $p+r \leq 1$ and $f \sim[1]$ if $p+r=1$. We have N_{d} orbits if $p=r=0, N_{d-1}$ orbits if $\mathrm{r}=1$ and N_{d-2} orbits if $p=1$. For the number of ali orbits we get

$$
R_{d} \leq N_{d}+N_{d-1}+N_{d-2}
$$

Local and global fields, (\boldsymbol{A}) and (B). Since every 5 -dimensional form is isotropic, we have $p+\mathrm{r} \leq 4$. For local and global fields in characteristic 2 it holds that $\left[K: K^{2}\right]=2$. A simple calculation shows that $\left|\dot{K} / \dot{K}^{2}\right|=\infty$. Thus infinitely many orbits are possible. This we want to illustrate by the following example: Let $V:=\left\langle e_{1}, e_{2}\right\rangle_{L}$ and $f \sim[1, k]$ with $k \mathrm{E} K \backslash K^{2}$. Let $W:=W(p, q):=\left\langle p e_{1}+q e_{2}\right\rangle_{K}, p, q \mathrm{E} K$. Two subspaces W and $W^{\prime}:=W\left(p^{\prime}, q^{\prime}\right)$ are in the same orbit iff the corresponding forms \tilde{f} and \tilde{f}^{\prime} lie in the same square-class of K. But the forms f can assume values in every square-class of K, since $f\left(p e_{1}+q e_{2}, p e_{1}+q e_{2}\right)$ $=p^{2}+k q^{2}$ and $K=K^{2} \oplus k K^{2}$.

5 The Hermitean Case: Cubic Extensions

In this section we consider the case $[L: \mathrm{K}]=3$. If L is commutative, the involution $*$ is either the identity or it holds that $\mathrm{K} \not \subset L^{+}$, hence $\left[\mathrm{K}: K^{+}\right]=2$. Recall that a central simple algebra has exponent 2 iff it admits an involution of the first kind [32, p. 232]. Thus if L is non commutative, $*$ must be a unitary involution. In both the conimutative and the non commutative case it suffices to consider 1-hermitian forms.

If L is commutative, there is $\eta \in L^{+} \backslash K$. Thus $\left\{1, \eta, \eta^{2}\right\}$ is a K-basis of L with $\eta^{*}=\eta$. In the non commutative case one can find a K-basis $\left\{1, \eta, \eta^{2}\right\}$ of L such that $\eta \in N_{L}(\dot{K})$ and $\eta^{3}=a \in Z$. Since $N_{L}(\dot{K})=K \oplus K \eta \oplus K \eta^{2}$ and η^{*} is contained in the normalizer, too, we have $\eta^{*}=c \eta$ or $\eta^{*}=d \eta^{2}, c, d \in \mathrm{~K}$. For this whole section $\left\{1, \eta, \eta^{2}\right\}$ shall be a K-basis of L as above. Furthermore we fix $\alpha, \beta \in L$ such that $\operatorname{ker} \varphi=\langle\alpha, \beta\rangle_{K}$. Observe that $\operatorname{ker} \varphi$ is both a left- and right vector space, since $\varphi: L \longrightarrow \mathrm{~K}$ is two-sided K -linear. Moreover, we have $\operatorname{ker} \varphi=(\operatorname{ker} \varphi)^{*}$.

5.1 Lemmas and proof of Theorem 5

The next lemma shows that in the nommutative case not every selection of α and β is possible.

Lemma 39 If L is non commutative, then $\operatorname{ker} \varphi=\langle 1, \eta\rangle_{K}, \operatorname{ker} \varphi=\left\langle 1, \eta^{2}\right\rangle_{K}$ or $\operatorname{ker} \varphi=\left\langle\eta, \eta^{2}\right\rangle_{K}$.
Proof. Since $\operatorname{ker} \varphi=\langle\alpha, \beta\rangle_{K}$ is both a K-right vector space and a K-left vector space for all $k \in K, \alpha k=p \alpha+q \beta$ and $\beta k=r \alpha+s \beta, p, q, r, s \in \mathrm{~K}$. Without loss we can assume that $\alpha=1$, $\eta, \eta^{2}, 1+b \eta$ or $1+c \eta^{2}$ for some $b, c \in K$.

Let $\beta:=x+y \eta+z \eta^{2}$. Then $\beta k=k x+k^{\sigma} y \eta+z k^{\sigma^{2}} \eta^{2}=r \alpha+s x+s y \eta+s z \eta^{2}$. Let $\alpha=1$. Without loss we can suppose that $x=0$. If $y=0$ or $z=0$, then $\beta \in\left\{\eta, \eta^{2}\right\}$. So we take $y \neq 0$ and $z \neq 0$. Cornparing coefficients yields $y k^{\prime \prime}=s y$ and $z k^{\sigma^{2}}=s z$. But this is only possible for $k E Z$. In the same way follow the assertions for $\alpha=\eta$ and $\alpha=\eta^{2}$.

If $\alpha=1+b \eta$ without loss we can suppose that $z \neq 0$. If $\alpha k=p \alpha+q \beta$, then $q=0$. Thus $k+b k^{\sigma} \eta=p+p b \eta$. This yields $p=k$ and $k \in Z$. If $\alpha=1+c \eta^{2}$, we get in the same way that $k E Z$.

We shall apply frequently the following simple lemma:
Lemma 40 Let W be a f^{\prime}-singular subspace of V and let $x \in W$. Then x^{\perp} meets every 3dirnensional K-subspace of W non trivially.

We now consider the special subspaces mentioned in the introduction.
Lemma 41 Let W be a f^{\prime}-singular subspace. Then $\operatorname{comp}_{L} W \oplus_{L} W_{2}$ is f-singular.
Proof. It suffices to proof this lemma for vectors contained in W_{2}, since $\operatorname{comp}_{L} W \mathbf{C} \operatorname{rad}_{f} W$. By 19 we have $W_{2}=\stackrel{r}{i=1}\left\langle e_{i}, \eta e_{i}\right\rangle_{K}$. We show that the inner products of the basis vectors vanish. Let $\lambda:=f\left(e_{i}, e_{j}\right)$. Then $\lambda, \eta \lambda, \lambda \eta^{*}$ and $\eta \lambda \eta^{*}$ are contained in $\operatorname{ker} \varphi$. If $\lambda \neq 0$, we
have $\operatorname{ker} \varphi=\langle\lambda, \eta \lambda\rangle_{K}=: U$. The space U is both a left- and a right-vector space over L . Since $\lambda \eta^{*}$ and $\eta \lambda \eta^{*} E U$, the space U is invariant under multiplication by $\left(\eta^{*}\right)^{2}$ from the right, too. Let $0 \# u \in U$ and $\mu=p+q \eta^{*}+r\left(\eta^{*}\right)^{2}$. Then $u \mu=u p+u q \eta^{*}+u r\left(\eta^{*}\right)^{2}$. Since every summand lies in U, also $u \mu \mathrm{E} U$. Note that $\left\{1, \eta^{*},\left(\eta^{*}\right)^{2}\right\}$ is a K-basis of L, too. Thus $u \mu \in U$ for all $\mu \in L$. This yields the contradiction $u L \subset U$.

Lemma 42 Let W be a f^{\prime}-singular simple triangular subspace and $\mathbf{x} \in W$. Let $T \subset \mathrm{~W}$ be a unique simple triangular subspace containing x and $Y \subset \mathrm{~W}$ an arbitrary simple triangular subspace. Then $x \perp Y$ iff $T \perp Y$.

Proof. Let $T=\left\langle x, y, \eta x+\eta^{2} y\right\rangle_{K}$. Since by $40 y^{\perp} \cap Y \neq 0$, there are vectors u, v such that $Y=\left\langle u, v, \eta u+\eta^{2} v\right\rangle_{K}$ and $f(y, u)=0$. Let $\rho:=f(y, v)$. In $\operatorname{ker} \varphi$ are contained: $\rho, f(y, \eta u+$ $\left.\eta^{2} v\right)=\rho\left(\eta^{2}\right)^{*}, f\left(\eta x+\eta^{2} y, v\right)=\eta^{2} \rho$ and $f\left(\eta x+\eta^{2} y, \eta u+\eta^{2} v\right)=\eta^{2} \rho\left(\eta^{2}\right)^{*}$. If $\rho \neq 0, \rho$ and $\eta^{2} \rho$ form a basis of $\operatorname{ker} \varphi$. Then $\operatorname{ker} \varphi$ is invariant under multiplication by $\left(\eta^{2}\right)^{*}=\left(\eta^{*}\right)^{2}$ and $\eta^{*}=\frac{1}{a^{*}}\left(\eta^{*}\right)^{2}\left(\eta^{*}\right)^{2}$ from the right. Like in 41 we get $\rho=0$.

Lemma 43 Let $T:=\left\langle x, y, \eta x+\eta^{2} y\right\rangle_{K}$ be a f^{\prime}-singular simple triangular subspace.
(1) If $f(x, x)=f(y, y)=0$, then $f(x, y)=0$.
(2) If $f(x, y)=f(y, y)=0$, then $f(x, x)=0$.
(3) If $f(x, y)=f(x, x)=0$, then $f(y, y)=0$.

Proof. (1) Let $\lambda:=f(x, y)$. In $\operatorname{ker} \varphi$ are contained: $\lambda, f\left(x, \eta x+\eta^{2} y\right)=\lambda\left(\eta^{*}\right)^{2}, f(y, \eta x+$ $\left.\eta^{2} y\right)=\lambda^{*} \eta^{*}$ and $f\left(\eta x+\eta^{2} y, \eta x+\eta^{2} y\right)=\eta \lambda\left(\eta^{*}\right)^{2}+\eta^{2} \lambda^{*} \eta^{*}$. Note that if $\gamma \in \operatorname{ker} \varphi$, then $\gamma^{*} \in \operatorname{ker} \varphi$. If L is commutative, we have $\eta \mathrm{E} L^{+}$. Hence $\lambda, \eta \lambda$ and $\eta^{2} \lambda \in \operatorname{ker} \varphi$. This yields $\lambda=0$.

Suppose now L is non commutative. Here $\operatorname{ker} \varphi=\langle 1, \eta\rangle_{K}, \operatorname{ker} \varphi=\left\langle 1, \eta^{2}\right\rangle_{K}$ or $\operatorname{ker} \varphi=$ $\left\langle\eta, \eta^{2}\right\rangle_{K}$. Suppose $\operatorname{ker} \varphi=\langle 1, \eta\rangle_{K}$. Then $\lambda=p+q \eta, p, q \in K$, hence $\eta \lambda=p^{\sigma} \eta+q^{\sigma} \eta^{2} \in \operatorname{ker}$ φ. This yields $q=0$ and $\lambda E K$. Recall that $\eta^{*}=c \eta$ or $\eta^{*}=d \eta^{2}$. We get $\operatorname{ker} \varphi \ni \lambda\left(\eta^{*}\right)^{2}=$ $\lambda c c^{\sigma} \eta^{2}$ or $\operatorname{ker} \varphi \ni(\eta \lambda)^{*}=\lambda^{*} d \eta^{2}$. This implies $\lambda=0$. The other cases are proved similar.
(2) Let $\lambda:=f(x, x)$. Then $\lambda, \eta \lambda$ and $\eta \lambda \eta^{*} \in \operatorname{ker} \varphi$. If L is commutative, $\eta \lambda \eta^{*}=\eta^{2} \lambda$, hence $\lambda=0$. The non commutative case works as in (1).
(3) like (2).

Corollary 44 A f-degenerate f^{\prime}-singular simple triangular subspace T is also f-singular.
Proof of Theorem 5. In the proof we need that both $\left\{1, \alpha \beta^{-1}, \beta \alpha^{-1}\right\}$ and $\left\{1 . \beta^{-1} \alpha, \alpha^{-1} \beta\right\}$ is a K-left basis of L. This is clear for the commutative case. For the non commutative case by 39 we can choose a and β such that this is true. Note that in characteristic 2 a trace-valued symmetric bilinear form is symplectic. Thus we can assume that char $\mathrm{K} \neq 2$ when $*=\mathrm{id}$.
(a) By 28 it holds that $\operatorname{comp}_{L} W=\operatorname{rad}_{f} W$ if W is maximal f^{\prime}-singular.
(b) Without loss we can suppose that $\operatorname{tp}(W)=(0, r, s, t)$. Choose $\tilde{w}_{1} \mathrm{E} \mathrm{W}$ with $\operatorname{tp}_{W}\left(\tilde{w}_{1}\right)=$ 2. By 41 we have $f\left(\tilde{w}_{1}, \tilde{w}_{1}\right)=0$. Since $\operatorname{rad}_{f} W=0$, there is $\tilde{w}_{1}^{\prime} \mathrm{EW}$ such that $f\left(\tilde{w}_{1}, \tilde{w}_{1}^{\prime}\right) \neq 0$. Choose $w_{1} \mathrm{E} L \tilde{w}_{1}$ such that $f\left(w_{1}, \tilde{w}_{1}^{\prime}\right)=1$. Since $f\left(L w_{1} \cap W, \tilde{w}_{1}^{\prime}\right) \subset \operatorname{ker} \varphi=K \alpha \oplus K \beta$, follows

$$
\mathrm{W} \cap L \tilde{w}_{1}=\left\langle\alpha w_{1}, \beta w_{1}\right\rangle_{K} .
$$

If already $f\left(\tilde{w}_{1}^{\prime}, \tilde{w}_{1}^{\prime}\right)=0$, define $w_{1}^{\prime}:=\tilde{w}_{1}^{\prime}$. Otherwise $f\left(\tilde{w}_{1}^{\prime}, \tilde{w}_{1}^{\prime}\right)=\lambda+h *, \lambda \in \dot{L}$. Choose

$$
w_{1}^{\prime}:=-\lambda w_{1}+\tilde{w}_{1}^{\prime} .
$$

Then $\left(w_{1}, w_{1}^{\prime}\right)$ is a hyperbolic pair. It remains to show that $w_{1}^{\prime} \in \mathrm{W}$. If char $K \# 2$, we have $h=\frac{1}{2} f\left(\tilde{w}_{1}^{\prime}, \tilde{w}_{1}^{\prime}\right)$. Since $f\left(\tilde{w}_{1}^{\prime}, \tilde{w}_{1}^{\prime}\right) \in \operatorname{ker} \varphi$, there are $p, q \in K$ such that $\lambda=p \alpha+q \beta$. Hence $w_{1}^{\prime}=-(p \alpha+q \beta) w_{1}+\tilde{w}_{1}^{\prime} \in W$, because $\left\langle\alpha w_{1}, \beta w_{1}\right\rangle_{K} \subset \mathrm{~W}$. We now show that in characteristic 2 , too, h is contained in $\operatorname{ker} \varphi$. Then follows analogously that $w_{1}^{\prime} \in \mathrm{W}$. Without loss let $* \neq \mathrm{id}$. Then there is $\zeta \in K$ (if L is commutative) or $\zeta \in Z$ (if L is non commutative) such that $\zeta^{*}=\zeta+1$. Let $f\left(\tilde{w}_{1}^{\prime}, \tilde{w}_{1}^{\prime}\right)=$: γ. Now $\gamma \mathrm{E} S^{+}$and $K \gamma \mathbf{C} \operatorname{ker} \varphi \operatorname{imply} \zeta \gamma \mathrm{E} \operatorname{ker} \varphi$. Defining $\lambda:=\zeta \gamma$ we have $\lambda+\lambda^{*}=\zeta \gamma+\zeta \gamma+\gamma=\gamma$.

Since $\left\langle\alpha_{1}, \beta w_{1}, w_{1}^{\prime}\right\rangle_{K}$ is maximal f^{\prime}-singular in the hyperbolic L-subspace $\left\langle w_{1}, w_{1}^{\prime}\right\rangle_{L}, 29$ yields $\mathrm{W}=\left\langle\alpha w_{1}, \beta w_{1}, w_{1}^{\prime}\right\rangle_{K} \perp_{L} Y$ for a suitable K-subspace Y of W. Then $\operatorname{tp}(Y)=(0, r-$ $1, s, t-1$) and by induction we get $W=W_{2,4} \perp_{L} W^{\prime}$. In particular $\boldsymbol{r} \leq \boldsymbol{t}$.
(c) Without loss let $\operatorname{tp}(W)=\left(0,0, s, t^{\prime}\right)$, where $t^{\prime}:=t-r$. By 42 and 43 follows that $\operatorname{rad}_{f} W_{3}$ is triangular. Let $W_{3}=\hat{W}_{3} \perp_{L} \operatorname{rad}_{f} W_{3}$. Then \hat{W}_{3} is f-regular and triangular. \hat{W}_{3} is maximal f^{\prime}-singular in the f-regular L-subspace $L \hat{W}_{3}$, since $\operatorname{dim}_{K} \hat{W}_{3}=3(s-j)$ and $\operatorname{dim}_{K} L \hat{W}_{3}=$ $6(s-j)$. Thus 29 yields $W=\hat{W}_{3} \perp_{L} Y$ for a suitable K-subspace Y of W. Since $\operatorname{rad}_{f} W_{3} \leq \mathrm{Y}$, there is a subspace W_{4}^{\prime} such that $\mathrm{Y}=\operatorname{rad}_{f} W_{3} \oplus_{L} W_{4}^{\prime}$. Then W_{4}^{\prime} is a K-substructure with $\operatorname{dim}_{K} W_{4}^{\prime}=t^{\prime}$. If $\operatorname{rad}_{f} W_{3} \perp_{L} W_{4}^{\prime}$, then $\operatorname{rad}_{f} W_{3} \leq \operatorname{rad}_{f} W=0$.

Without loss suppose that W_{3} is f-regular. We have a decomposition

$$
W_{3}=\bigoplus_{i=1}^{s} T_{i} \quad \text { with } T_{i}:=\left\langle\tilde{x}_{i}, \tilde{y}_{i}, \eta \tilde{x}_{i}+\eta^{2} \tilde{y}_{i}\right\rangle_{K}
$$

Let $T_{1} \ldots T_{k}$, say, be f-regular and $T_{k+1} \ldots T_{s}$ not f-regular. Moreover, choose the decomposition such that k is minimal. By $44 T_{k+1} \ldots T_{s}$ are f-singular. For $\mathrm{i}=1, \ldots, k$ holds $T_{i}=\left\langle u_{i}, v_{i}, \eta u_{i}+\eta^{2} v_{i}\right\rangle_{K}$. By 43 (2) either $f\left(u_{i}, u_{i}\right) \# 0$ or $f\left(v_{i}, v_{i}\right) \neq 0$. Since T_{i} is maximal f^{\prime}-singular in the f-regular subspace $L T_{i}$, by 29 we get $\mathrm{W} 3=T_{1} \perp_{L} \ldots \perp_{L} T_{k} \perp_{L}\left(\bigoplus_{i=k+1}^{s}\right.$ Ti).

Consider now the f-singular T_{i}. Let $T:=\left\langle\tilde{x}, \tilde{y}, \eta \tilde{x}+\eta^{2} \tilde{y}\right\rangle_{K}$ be such a subspace. Choose $\alpha^{*} x \in T$. Since $\left\{1, \beta^{*}\left(\alpha^{*}\right)^{-1}, \alpha^{*}\left(\beta^{*}\right)^{-1}\right\}$ is a K-right basis of $L\left(\left\{1, \alpha^{-1} \beta, \beta \alpha^{-1}\right\}\right.$ isleftbasis $)$, by 22 there is exactly one $\boldsymbol{\beta}^{*} y \in T$ such that

$$
T:=\left\langle\alpha^{*} x, \beta^{*} y, \beta^{*} x+\alpha^{*} y\right\rangle_{K}
$$

There is a simple triangular subspace T^{\prime} such that $f\left(T, T^{\prime}\right) \neq 0$, otherwise it would hold that $T \subset \operatorname{rad}_{f} W_{3}=0$. By 23 we have $L T \cap L T^{\prime}=0$. By 40 there exist nonzero vectors $x^{\prime}, y^{\prime} \mathrm{E} T^{\prime}$ such that $f\left(y, x^{\prime}\right)=0=f\left(x, y^{\prime}\right)$. Hence 42 implies $f\left(x, x^{\prime}\right) \neq 0$. Thus

$$
\begin{array}{clllll}
f\left(x^{\prime}, \alpha^{*} x\right) & =f\left(x^{\prime}, x\right) \alpha & \text { E } & K \alpha \oplus K \beta & \text { and } \\
f\left(x^{\prime}, \beta^{*} x+\alpha^{*} y\right) & =f\left(x^{\prime}, x\right) \beta & \text { E } & K \alpha \oplus K \beta . &
\end{array}
$$

This yields

$$
f\left(x^{\prime}, x\right) \mathrm{E}\left(K \oplus K \beta \alpha^{-1}\right) \cap\left(K \alpha \beta^{-1} \oplus K\right)=K
$$

since $\left\{1, \beta \alpha^{-1}, \alpha \beta^{-1}\right\}$ is a K-left basis of L, too. As we consider only 1 -hermitian forms we can suppose $f\left(x, x^{\prime}\right)=1=f\left(x^{\prime}, x\right)$ and analogously $f\left(y, y^{\prime}\right)=1=f\left(y^{\prime}, y\right)$. Since x^{\prime} and y^{\prime}
are linear independent over L and T^{\prime} is f-singular, we get a hyperbolic sequence $x, x^{\prime}, y, y^{\prime}$. Now $T \oplus_{L} T^{\prime}$ is maximal f^{\prime}-singular in the hyperbolic L-subspace $\mathrm{LT} \oplus L T^{\prime}=\left\langle x, x^{\prime}, y, y^{\prime}\right\rangle_{L}$. Hence there is a triangular subspace $\mathrm{Y} \leq W_{3}$ such that $W=\left(T \oplus_{L} T^{\prime}\right) \perp_{L} Y$ with $\operatorname{tp}(Y)=$ $(0,0, s-k-2,0)$. Byinduction weget $W=\left(T_{1} \oplus_{L} T_{1}^{\prime}\right) \perp_{L} \ldots \perp_{L}\left(T_{l} \oplus_{L} T_{l}^{\prime}\right)$, wheres $=k+2 l$.

It remains to normalize T^{\prime} : By 20 (2) T^{\prime} has a basis of the form $\left\{x^{\prime}, y^{\prime}, \gamma x^{\prime}+\delta y^{\prime}\right\}$, where $\{1, \gamma, \delta\}$ is a K-right basis of L. Then

$$
\begin{aligned}
& f\left(\gamma x^{\prime}+\delta y^{\prime}, \alpha^{*} x\right)=\gamma \alpha E K \alpha \oplus K \beta \Longrightarrow y E K \oplus K \beta \alpha^{-1} \quad \text { and } \\
& f\left(\gamma x^{\prime}+\delta y^{\prime}, \beta^{*} y\right)=\delta \beta \in K \alpha \oplus K \beta \Longrightarrow \delta \in K \oplus K \alpha \beta^{-1} .
\end{aligned}
$$

Thus for suitable $p, q, r, s \in \mathrm{~K}$

$$
\left(p+q \beta \alpha^{-1}\right) x^{\prime}+\left(r+s \alpha \beta^{-1}\right) y^{\prime} \in T^{\prime}
$$

Then there is $c \in K$ such that

$$
z^{\prime}:=\beta \alpha^{-1} x^{\prime}-c \alpha \beta^{-1} y^{\prime} \mathrm{E} T^{\prime}
$$

Since x^{\prime}, y^{\prime} and z^{\prime} are linear independent over $\mathrm{K}, T^{\prime}=\left\langle x^{\prime}, y^{\prime}, z^{\prime}\right\rangle_{K}$. We get

$$
T \oplus_{L} T^{\prime}=\left\langle\alpha^{*} x, \beta^{*} y, \beta^{*} x+\alpha^{*} y\right\rangle_{K} \oplus_{L}\left\langle x^{\prime}, y^{\prime}, \beta \alpha^{-1} x^{\prime}-c \alpha \beta^{-1} y^{\prime}\right\rangle_{K}
$$

Now

$$
f\left(z^{\prime}, \beta^{*} x+\alpha^{*} y\right)=\beta \alpha^{-1} \beta-c \alpha \beta^{-1} \alpha \in K \alpha \oplus K \beta
$$

With $\lambda:=\beta \alpha^{-1}$ and multiplication by $\alpha^{-1} \lambda$ from the right we get

$$
\lambda^{3}-c \mathrm{E} K \lambda \oplus K \lambda^{2}
$$

Hence there are $b, d \mathrm{E} \mathrm{K}$ such that

$$
\lambda^{3}-c=b \lambda+d \lambda^{2}
$$

If L is commutative, then $c=N_{L \mid K}\left(\beta \alpha^{-1}\right)$, since the minimal polynomial of λ has degree 3 . If L is non commutative, wecanassume withoutloss that $\{\alpha, \beta\} \in\left\{\{1, \eta\},\left\{1, \eta^{2}\right\},\left\{\eta_{1}, \eta^{2}\right\}\right\}$. Then $\beta \alpha^{-1}=\eta$ or $\beta \alpha^{-1}=\eta^{2}$ respectively. Thus we have $\mathrm{c}=a$ or $c=a^{2}$.
(d) follows from (b).

5.2 Orbits of f^{\prime}-singular subspaces

We define the f-type $\mathrm{tp}_{f}(W)$ of W in the cubic case to be the 6-tuple

$$
\operatorname{tp}_{f}(W):=(m, r, k, l, j, t-r)
$$

Let $W=W_{1} \oplus_{L} W_{2} \oplus_{L} W_{3} \oplus_{L} W_{4}$ and $\hat{W}=\hat{W}_{1} \oplus_{L} \hat{W} \oplus_{L} \hat{W}_{3} \oplus_{L} \hat{W}_{4}$ be in the same orbit under $\mathrm{U}(V, f)$. Then there is an isometry $\tau: W \mapsto W$. Since τ preserves the GL-type, we have by Theorem 2 that $\left(\hat{W}_{1} \oplus_{L} \hat{W}_{2} \oplus_{L} \hat{W}_{3}\right)_{\tau}=W_{1} \oplus_{L} W_{2} \oplus_{L} W 3$. By 41 the subspaces $W_{1} \oplus_{L} W_{2}$ and $\hat{W}_{1} \oplus_{L} \hat{W}_{2}$ are f-singular. Thus by Witt's cancelation theorem $L \hat{W}_{3}$ and LW3 are isometric. This yields $\operatorname{rad}_{f} W_{3}=\operatorname{rad}_{f} \hat{W}_{3}$. From this follows that if two subspaces are in the same orbit under
$\mathrm{U}(V, f)$, they must have the same f-type. Like in the quadratic case this condition is not sufficient. Moreover there must be an isometry $W_{3}^{\prime} \perp_{L}\left(\operatorname{rad}_{f} W_{3} \oplus_{L} W_{4}^{\prime}\right) \longrightarrow \hat{W}_{3}^{\prime} \perp_{L}\left(\operatorname{rad}_{f} \hat{W}_{3} \oplus_{L}\right.$ $\left.\hat{W}_{4}^{\prime}\right)$.

We now discuss the question when two subspaces of the same type are in the same orbit. Let $U:=W_{3}^{\prime} \perp_{L}\left(\operatorname{rad}_{f} W_{3} \oplus_{L} W_{4}^{\prime}\right)$ and $\hat{U}:=\hat{W}_{3}^{\prime} \perp_{L}\left(\operatorname{rad}_{f} \hat{W}_{3} \oplus_{L} \hat{W}_{4}^{\prime}\right)$. Since U is f^{\prime}-singular, $\left.f\right|_{U} \mathrm{E} K \alpha \oplus K \beta$. Define f_{α} to be the α-component and f_{β} to be the β-component of $\left.f\right|_{U}$, that is $f_{\alpha}(u, v)=p$ and $f_{\beta}(u, v)=q$ if $f(u, v)=p \alpha+q \beta$. First must be shown whether $f_{\alpha}, f_{\beta}: U \times U \longrightarrow \mathrm{~K}$ are hermitian forms at all. We have to show that there exist involutions i- and \ddagger on K such that $f_{\alpha}(u, k v)=f_{\alpha}(u, v) k^{\dagger}$ and $f_{\beta}(u, k v)=f_{\beta}(u, v) k^{\ddagger}$ for all $u, v \mathrm{E} U$ and $k \mathrm{E}$ K. We consider only f_{α}, since it will be the same for f_{β}. Let $f(u, v)=p \alpha+q \beta$. Then $f_{\alpha}(u, k v)=p \alpha k^{*}=p\left(\alpha k^{*} \alpha^{-1}\right) \alpha$. Therefore we must show whether ihe map $k \longmapsto \alpha k^{*} \alpha^{-1}$ is an involution on K. Obviously this is the case when L is commutative. Thus here we have $\dagger=\dagger=\left.*\right|_{K}$. The same is true in the non commutative case if $a=1$. If $a \# 1$ we can assume $a=\eta$ or $a=\eta^{2}$, hence $\mathrm{qk}^{*}=k^{* \circ \sigma} \eta$ and $\eta^{2} k^{*}=k^{* \circ \sigma^{2}} \eta^{2}$. There are the cases $\eta^{*}=c \eta$ and $\eta^{*}=d \eta^{2}, c, d \mathrm{E}$ K. In the first case we have $\left(k^{\sigma}\right)^{*}=\left(k^{*}\right)^{\sigma^{2}}$ and $\left(k^{\sigma^{2}}\right)^{*}=\left(k^{*}\right)^{\sigma}$. In the second case it holds that $\left(k^{\sigma}\right)^{*}=\left(k^{*}\right)^{\sigma}$ and $\left(k^{\sigma^{2}}\right)^{*}=\left(k^{*}\right)^{\sigma^{2}}$ for all $k \in K$. Thus for $\eta^{*}=c \eta$ we have $k^{(* \circ \sigma)^{2}}=\left(\left(\left(k^{*}\right)^{\sigma}\right)^{*}\right)^{\sigma}=\left(\left(k^{\sigma^{2}}\right)^{*^{2}}\right)^{\sigma}=k^{\sigma^{3}}=k$ and $(k l)^{(* \circ \sigma)}=l^{(* \circ \sigma)} k^{(* \sigma \sigma)}$ for all $k, l \in K$. Hence $* o \boldsymbol{O}$ is an involution. In the same way one shows that $* \circ \sigma^{2}$ is an involution. If $\eta^{*}=d \eta^{2}$, then $k^{(* \circ \sigma)^{2}}=\left(\left(k^{\sigma}\right)^{*^{2}}\right)^{\sigma}=k^{\sigma^{2}}$. Since not for all $k \in \mathrm{~K}$ holds that $k^{\sigma^{2}}=k$, $* \circ \sigma$ is no involution. In the same way follows that $* \circ \sigma^{2}$ is no involution.

Since in the non commutative case not both a and β equal 1 , the maps f_{α} and f_{β} are only hermitian forms if $\eta^{*}=c \eta$. In order to proceed as in the quadratic case, we suppose this to be the case. Since U (and \hat{U}) in general contains triangular subspaces, we cannot conclude like in the quadratic case that U and \hat{U} are in the same orbit iff f_{α} and f_{β} are simultaneously isometric (over K) to \hat{f}_{α} and \hat{f}_{β}. But this is the case if both U and \hat{U} are K -substructures. However, in general the forms f_{α} and f_{β} (and \hat{f}_{α} and \hat{f}_{β}) may be isotropic and are not given in diagonal form, since K-substructures in the cubic case in general cannot be diagonalized over K.

If $R(W) \cap \operatorname{ker} \varphi=0$, then W is f -singular by 30 . If this is the case for all subspaces, the number of orbits is finite and independent of the underlying fields. We now consider two further special cases: Let n be odd. Denote by v the Witt-index of (V, f) and by v^{\prime} the Wittindex of $\left(V, f^{\prime}\right)$. We can assume without loss that $\operatorname{comp}_{L} W=0$. If \mathbf{v}^{\prime} is maximal, that is if $\mathrm{v}^{\prime}=3 n / 2$, it holds that $W=W^{\perp^{\prime}}$, since $\mathrm{W} \subset W^{\perp^{\prime}}$ and $\operatorname{dim}_{K} V=\operatorname{dim}_{K} W+\operatorname{dim}_{K} W^{\perp^{\prime}}$. From $W^{\perp} \subset W^{\perp^{\prime}}$ follows $W^{\perp} \subset$ comp $_{L} W$, hence $W^{\perp}=0$. Since $V=L W \perp W^{\perp}$, we have $V=$ LW. The equations

$$
\begin{aligned}
& \operatorname{dim}_{L} L W=r+2 s+t=n \quad \text { and } \\
& \operatorname{dim}_{K} W=2 r+3 s+t=3 n / 2,
\end{aligned}
$$

yield $r=t$. Thus $W_{4}^{\prime}=0$ and hence $\operatorname{rad}_{f} W_{3}=0$. Moreover, if v is maximal, that is $\mathbf{v}=n / 2$, we have $\mathrm{v}=\boldsymbol{r}+21$. Since $n / 2=r+s$, follows $\mathrm{s}=2 l$, hencc $k=0$. Then all simple triangular subspaces of W are f-singular. Thus the condition $\operatorname{tp}_{f}(W)=\operatorname{tp}_{f}\left(6^{\prime}\right)$ is sufficient for W and W to be in the same orbit under $U(V, f)$.

6 The Herinitean Case: Extensions Of Higher Degree

In this section we consider skew field extensions $L \mid K$ with $[L: K]=s \geq 4$. We show that the number of orbits of f^{\prime}-singular K-subspaces is infinite provided the Witt-index of (V, f) is greater than zero and K is infinite. To us no counterexample is known when the Witt-index of (V, f) equals zero. Our conjecture is that in this case, too, the number of orbits is always infinite. However, this cannot be proved by the methods used to prove Theorem 6. We give an example that illustrates that there may occur infinitely many orbits when $w i(V, f)=0$.

Proof of Theorern 6. Let W be a 2-dimensional K-subspace of L. The map $\varphi: L \longrightarrow \mathrm{~K}$ induces via $\phi: L \times L \rightarrow \mathrm{~K}, \phi(\alpha, \beta):=\varphi\left(\alpha \beta^{*}\right)$ a regular I-hermitian form over K. Then there is an unique (s-2)-dimensional K-subspace W^{\prime} of L with $\phi\left(W, \mathrm{~W}^{\prime}\right)=0$.

First suppose that the Witt-index of (V, f) equals 1 . Let $\left(e, e^{\prime}\right)$ be a hyperbolic pair in (V, f). The space $X:=W e \oplus W^{\prime} e^{\prime}$ is f^{\prime}-singular and contained in a maximal f^{\prime}-singular subspace U. Since $\operatorname{dim}_{K}\left\langle e, e^{\prime}\right\rangle_{L}=2 \operatorname{dim}_{K} X$, by 29 follows $U=X \perp_{L} Y$ for a K-subspace Y of U. The space Y is f-anisotropic, for if Y contained a f-isotropic vector y the space $\langle e, y\rangle_{L}$ would be f-singular which contradicts the assumption wi $(V, f)=1$.

Let \hat{W} be another 2-dimensional K-subspace of L and \hat{W}^{\prime} the unique ($s-2$)-dimensional K-subspace such that $\phi\left(\hat{W}, \hat{W}^{\prime}\right)=0$. Let $\hat{X}:=\hat{W} e \oplus \hat{W}^{\prime} e^{\prime}$. Then $\hat{X} \perp_{L} Y$ and $\hat{U}:=\hat{X} \perp_{L} Y$ is maximal f^{\prime}-singular. We have $L U=\mathrm{Li}$? and if τ is an isometry in (V, f) with $U \tau=\hat{U}, \tau$ is an isometry in $(L U, f)$, too. Thus we can suppose $\mathrm{V}=L U$. Let $\left\{y_{1}, \ldots, y_{r}\right\}$ be a maximal L-independent set in Y. Then $\left\{e, e^{\prime}, y_{1}, \ldots, y_{l}\right\}$ is a L-basis of V. Let

$$
\begin{aligned}
e \tau & =\alpha e+\beta e^{\prime}+\sum_{j=1}^{r} \rho_{j} y_{j} \in \hat{U} \text { and } \\
e^{\prime} \tau & =\gamma e+\delta e^{\prime}+\sum_{j=1}^{r} \sigma_{j} y_{j} \in \hat{U}
\end{aligned}
$$

Now $\alpha=0 \quad(\gamma=0)$ implies $\rho_{j}=0 \quad\left(\sigma_{j}=0\right)$ for $j=1, \ldots, r$, since Y is f-anisotropic. Not both α and γ are zero, otherwise we would have the contradiction $1=f\left(e, e^{\prime}\right)=f\left(e \tau, e^{\prime} \tau\right)=$ $f\left(\beta e^{\prime}, F e^{\prime}\right)=0$.

Since

$$
\begin{aligned}
& (W e) \tau=(W \alpha) e+\ldots=\hat{W} e+\ldots \quad \text { and } \\
& \left(W^{\prime} e^{\prime}\right) \tau=\left(W^{\prime} \gamma\right) e+\ldots=\hat{W} e+\ldots
\end{aligned}
$$

either $W \alpha=\hat{W}$ or $W^{\prime} \gamma=\hat{W}$, where $\gamma \# 0$ is possible only if $s=4$ for dimensional reasons. Since by Theorem 3 the number of orbits of 2-dimensional K-subspaces is infinite, there are infinitely many orbits of maximal f^{\prime}-singular K-subspaces.

Suppose now $\mathrm{wi}(V, f)=m>1$ and let $e_{1}, e_{1}^{\prime}, \ldots, e_{m}, e_{m}^{\prime}$ be a hyperbolic sequence in $(V, f) . \operatorname{Let} X:=\left(W e_{1} \oplus W^{\prime} e_{1}^{\prime}\right) \perp_{L} \ldots \perp_{L}\left(W e_{m} \oplus W^{\prime} e_{m}^{\prime}\right)$ and $\hat{X}:=\left(\hat{W} e_{1} \oplus \hat{W}^{\prime} e_{1}^{\prime}\right) \mathbf{I} L \ldots \perp_{L}\left(\hat{W} e_{m} \oplus\right.$ $\left.\hat{W}^{\prime} e_{m}^{\prime}\right)$. As above there is a K-subspace Y such that $U:=X \perp_{L} Y$ and $\hat{U}:=\hat{X} \perp_{L} Y$ are maximal f^{\prime}-singular. Let $\tau \in \mathrm{U}(L U, f)$ and let $\left\{y_{1}, \ldots, y_{r}\right\}$ be as above. Let

$$
e_{i} \tau=\sum_{i=1}^{m}\left(\alpha_{i} e_{i}+\beta_{i} e_{i}^{\prime}\right)+\sum_{j=1}^{r} \rho_{j} y_{j} \in \hat{U} \quad \text { and }
$$

$$
e_{1}^{\prime} \tau=\sum_{i=1}^{m}\left(\gamma_{i} e_{i}+\delta_{i} e_{i}^{\prime}\right)+\sum_{j=1}^{s} \rho_{j} y_{j} \in \hat{U} .
$$

As above we get that not all α_{i} and γ_{i} can vanish and in the same way follows that there are infinitely many orbits.

Note that in the proof we cannot use Witt's cancelation theorem to conclude that the spaces X and \hat{X} are f-isometric, because f is a form over L, but X and \hat{X} are K-subspaces. The following example illustrates that there may occur infinitely many orbits when $w i(V, f)=0$:

Let L be an infinite field and char $L \neq 2$. Let $\left\{1, \eta, \eta^{2}, \eta^{3}\right\}$ be a K-basis of L such that $\operatorname{ker} \varphi=\left\{1, \eta, \eta^{2}\right\}, \varphi\left(\eta^{3}\right)=1$ and $\eta^{4}=\mathrm{a} E K$. Let ϕ be as above. Then $w i(L, \phi)=2$. This is clear, since the space $(1, \eta\rangle_{K}$ is ϕ-singular.

Moreover, for all $c \in \mathrm{~K}$ the space $W(c):=\left(1+c \eta^{2}, \eta-c \eta^{3}\right\rangle_{K}$ is ϕ-singular, since

$$
\begin{aligned}
\phi\left(1+c \eta^{2}, \mathrm{I}+c \eta^{2}\right) & =\varphi\left(1+2 c \eta^{2}+c^{2} \eta^{4}\right) \\
@\left(\mathrm{i}+c \eta^{2}, \eta-c \eta^{3}\right) & =\varphi\left(\eta+c \eta^{3}-c \eta^{3}+c^{2} \eta^{5}\right)
\end{aligned}=0, \text { and }
$$

We now show that there is an infinite sequence $\left(c_{i}\right)_{i \in I}$ in K such that $W\left(c_{i}\right)$ and $W\left(c_{j}\right)$ are not in the same orbit under \dot{L} if $i \# j$. We need the following easy lemma, see [28, p. 129]:

Lemma 45 Let K be an infinite field and $P(X, Y)$ a nonzero polynomial over K. Then there is an infinite sequence $\left(a_{l}\right)_{1 \in I}$ in K such that for all $i_{,} j \in I$ holds $P\left(a_{i}, a_{j}\right) \neq 0$ if $i \neq j$.

We suppose that the spaces $W(c)$ and $W(d)$ are in the same orbit under \dot{L}. Then there are $\lambda \in L$ and $p, q, r, s \in K$ such that

$$
\begin{aligned}
& \left(1+c \eta^{2}\right) \lambda=p\left(1+d \eta^{2}\right)+q\left(\eta-d \eta^{3}\right) \quad \text { and } \\
& \left(\eta-c \eta^{3}\right) \lambda=r\left(1+d \eta^{2}\right)+s\left(\eta-d \eta^{3}\right)
\end{aligned}
$$

Elimination of λ yields

$$
\begin{aligned}
0 & =p\left(\eta+d \eta^{3}-c \eta^{3}-a c d \eta\right)+q\left(\eta^{2}-a d-a c+a c d \eta^{2}\right) \\
& -r\left(\mathrm{i}+d \eta^{2}+c \eta^{2}+a c d\right)-s\left(\eta+c \eta^{3}-d \eta^{3}-a c d \eta\right)
\end{aligned}
$$

We get the four equations

$$
\begin{align*}
q a(c+d)+r(1+a c d) & =0 \tag{1}\\
p(1-a c d)-s(1-n c d) & =0 \tag{2}\\
q(1+a c d)-r(c+d) & =0 \tag{3}\\
p(d-c)+s(d-c) & =0 \tag{4}
\end{align*}
$$

First suppose $q=r=0$. Then either p or s must be different from zero. Since d \# c, froin (4) follows that $s=-p$. Then (2) yields

$$
2 p(1-a c d)=0
$$

By 45 there exists an infinite sequence (ci) such that $\mathrm{i}-a c_{i} c_{j} \neq 0$. Hence there are infinitely many orbits.

Now let $q=0$ and $\boldsymbol{r} \neq 0$. Then (1) and (3)yield $1-a c^{2}=0$. Hence $\mathrm{a}=\frac{1}{c^{2}}$. Since $\eta^{4}=a$, we have $\eta^{2}= \pm \frac{1}{c}$. This is a contradiction, since $\eta^{2} \notin K$. For $q \neq 0$ and $r=0$ follows in the same way that $\eta^{2} \mathrm{E} K$.

It remains to consider the case $q \neq 0$ and $r \neq 0$. Now $1+a c d=0$ iff $c+d=0$. In this case we get as above the contradiction $\eta^{2} \in K$. Thus both $1+\operatorname{acd}$ and $c+\mathrm{d}$ are different from zero. From (1) and (3) follows

$$
a(c+d)^{2}+(1+a c d)^{2}=0
$$

By 45 we get that there are infinitely many orbits.
Now let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a L-basis of V and let $f \sim[i, \ldots, 1]$. Then all subspaces of the form

$$
U(c):=\perp_{i=1}^{n} W(c) e_{i}
$$

are maximal f^{\prime}-singular. If $U(c)$ is in the same orbit as $U(d)$, there is $\lambda \mathrm{E} \dot{L}$ such that $W(c) \lambda=$ $W(d)$. Since there is an infinite sequence (ci) such that $W\left(c_{i}\right) \lambda \neq W\left(c_{j}\right)$ for all $\lambda \in \dot{L}$ if $i \neq j$, there are infinitely many orbits.

References

[i] Cahit Arf. Untersuchungen uber quadratische Formen in Korpern der Charakteristik 2 (Teil I), J. Reine Angew. Math. 183(1941), 148 - 167.
[2] Armand Borel. Linear Algebraic Groups, 2nd enl. ed., Springer-Verlag, New York - u.a., 1991.
[3] Roger W. Carter. Finite Groups of Lie Type, John Wiley \& Sons, Chichester - Brisbane - Toronto - Singapore, 1985.
[4] Claude Chevalley. Théorie des Groupes de Lie, Bd. 2, Groupes algébriques, Hermann \& Cie Editeurs, Paris, 1951.
[5] Claude Chevalley. Théorie des Groupes de Lie, Bd. 4, Théorèmes gènèraux sur les algebrès des Lie, Hermann \& Cie Editeurs, Paris, 1955.
[6] Claude Chevalley. The algebraic theory of spinors, Columbia University Press, 1954.
[7] P. M. Cohn. Algebra Vol. 2, John Wiley \& Sons, London - New York - Sydney - Toronto, 1974.
[81 P. M. Cohn. Skew Field Constructions, Cambridge University Press, London - New Ycrk - Melbourne. 1977.
[9] Jean Dieudonné. On the structure of unitary groups, Trans. Amer. Math. Soc. 72 (1952), 367 - 385.
[10] P. K. Draxl. Skew Fields, Cambridge University Press, Cambridge - u.a., 1983.
[11] Richard Elman and T. Y. Lam. Classification theorems for quadratic forms over fields, Comment Math. Helv. 49 (1974), 373 - 381.
[12] P. Garret. Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (i987), no. 2,209-235.
[13] S. Gelbart, I. Piatetski-Shapiro and S. Rallis. Explicit constructions of autoinorphic L-functions. Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin - New York. 1987.
[14] Alexander J. Hahn and O. Timothy O'Meara. The Classical Groups and K-Theory, Springer-Verlag, Berlin - Heidelberg - New York, 1989.
[15] W. V. D. Hodge and D. Pedoe. Methods of Algebraic Geometry, Vols. 1-3. Cambridge University Press, Cambridge, 1968.
[16] Herberi Gross. Quadratic Forms in Infinite Dimensional Vector Spaces, Birkhauser, Boston - Basel - Stuttgart, 1979.
[17] James E. Humphreys. Linear Algebraic Groups, Springer-Verlag, New York - Heidelberg - Berlin, 1975.
[18] Irving Kaplansky. Forms in infinite-dimensional spaces, Anais Acad. Brasil. Ci. 22 (1950), 1 - 17.
[19] Dae San Kim, Myung-Hwan Kim and Jae Moon Kim. Action on flag varieties: 2diinensional case, Geom. Dedicata 43 (1993), no. 2, 177 - 201.
[20] Dae San Kim and Patrick Rabau. Field extensions and isotropic subspaces in symplectic geometry, Geom. Dedicata 34 (1990), no. 3, 281-293.
[21] Dae San Kim and Patrick Rabau. Actions on Grassmannians associated with commutative semisimple algebras, Trans. Amer. Math. Soc. 326 (1991), 157 - 178.
[22] Dae San Kim and Patrick Rabau. Products of symplectic groups acting on isotropic subspaces, Rocky Mountain J. Math. 23 (1993), no. 4, 1409-1429.
[23] D. W. Lewis. The isometry classification of Hermitian forms over division algebras, Linear Algebra Appl. 43 (1982), 245 - 272.
[24] Falko Lorenz. Einführung in die Algebra, Teil TI, BI-Wiss.-Verlag, Mannheim - Wien, 1990.
[25] O. Timothy O'Meara. Introduction to Quadratic Forms. Springer-Verlag, Berlin Göttingen - Heidelberg, 1963.
[26] J. Milnor and D. Husemoller. Symmetric Bilinear Forms. Springer-Verlag, New York Heidelberg - Berlin, 1973.
[27] I. Piatetski-Shapiro and S. Rallis. Rankin triple L functions, Compositio Math. 64 (1987), no. 1, $31-115$.
[28] Patrick Rabau. Action on Grassmannians associated with a field extension, Trans. Amer. Math. Soc. 326 (1991) no 1, 127-155.
[29] Patrick Rabau. Action of general linear groups on Grassmannians, Comm. Algebra 20 (1992), no. 7, 1989-2014.
[30] Patrick Rabau. Action of symplectic groups on isotropic subspaces, Quart. J. Math. Oxford (2) 44 (1993), 459 - 492.
[31] A. R. Rajwade. Squares, Cambridge University Press, Cambridpe, 1993.
[32] Louis H. Rowen. Ring Theory. Vol. II, Acadernic Press, Inc., Beston-u.a., 1988.
[33] Winfried Scharlau. Quadratic and Hermitian Forms, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1985.

Karl Kollischan
Mathematisches Institut
Bismarckstraße 1 1/2
D-91054 Erlangen

[^0]: ${ }^{\mathbf{1}}$ Key words: Skew field extension, Central simple algebra, General linear group, Unitary group, Grassmann variety, Hermitean Forms, Singular subspaces, Orbits
 Mathematics Subject Classification (1991): I1E57, 11E39, 12E15, 14L30, 15A03

