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ACTION OF CLASSICAL GROUPS ON VARIETIES ASSOCIATED WITH SKEW
FIELD EXTENSIONS'

KARL KOLLISCHAN

Abstract. Let L|K be a finite skew field extension, K commutative and V a finite dimensional
vector space over L. We study the action of general L-linear groups on the set of K-subspaces
of V and the action of unitary groups on the set of f’-isotropic K-subspaces of V. In the latter
case let (Vf ) be a vector space endowed with a regular e-hermitian form, ¢ :L— K a
K-linear map and f' :=@of . We show that for linear groups the number of orbits depends
only on the degree of the field extension and on the dimension of V. The orbits are classified
completely when [L:K] < 3. For unitary groups in general the number of orbits depends also
on the underlying fields and on the map ¢. We discuss in more detail the quadratic casefor
some particular fields.

1 Introduction, Notation and Main Results

In [28] Patrick Rabau studies the action on Grassmannians of general linear groups defined
over an extension field of the base field. In {20] this work was extended by him and Dae San
Kim to the case of a symplectic group defined over an extension field of the base field acting
on singular subspaces of a symplectic space. The present paper generalizes these studies to
non commutative extension fields and to arbitrary trace-valued e-hermitean spaces.

Let L|K be a finite skew field extension, where K is always commutative and V a finite

dimensional vector space over L. We assume that the center Z of L is contained in K if L
is non commutative. Then [L :Z] is finite and L is a central simple Z-algebra [8, p. 49].
Denote by comp; W the greatest L-subspace contained in a K-subspace W. We call comp,W
the L — component of W . We define the type of a vector v in W as tpw (v) :=dimg (W (\Lv).
For W holds dim; LW < dimg W < sdimz LW with s = [L : K]. One has dimg W =sdim; LW
iff W is a L-subspace. K-subspaces with dim; LW =dimgW are called K-substructures.
For K-subspaces W, Wy,....W, we writt W =W, @&, ...Dp W, if W=W; S ...& W, and
Lw,NLW; =0 forall i,j = 1,...,k, i #j. We call this sum direct over L. The set of d-
dimensional k-subspaces of a vector space V is a Grassmann variety and will be denoted by
Gi(d,V). If we mean the set of all k-subspaces, we write Gi(V).
To decompose a K-subspace we need besides the just defined L-component and K-substructu-
res (which already suffice in the case of a quadratic extension) two other basic subspaces: sub-
spaces which contain only vectors of type 2 and triangular subspaces. We call a K-subspace
W triangular if there is a s > 0 such that dimg W = 3s, dim; LW =2s and tpy, (v) = 1forall
0#VEW. If s =1, we cali W simple triungular.

' Key words: Skew field extension, Central simple algebra, General linear group, Unitary group, Grassmann
variety, Hermitean Forms, Singular subspaces, Orbits
Mathematics Subject Classification (1991): 11E57, 11E39, 12E15, 14130, 15A03



246 Karl Kollischan

First let us consider linear groups. Our main results are:

Theorem 1 Let [L: K] =2 and W be a K-subspace of V. Then there are L-independent
VECLOIS V1, . .. VsiZl,- « 26 s TS N, such that W = (vi, ... o)L OL(z1, ... 2 )k

If L is a cubic extension of K, we can choose a K-basis {1,m,1?} of L such thatn® =ac
K. Here we always suppose K|Z to be galois.

Theorem 2 Let [L:K]=3 and W be a K-subspace d V. Then there are L-independent

VECLOrS Vi, ...,V €1 yunnrs tn,tl), .o is, it wi,. .. w, mTr+ 25+t <n, such that
W = W e Wb Wz, Wy,

with
Wi = (vi,. VL,

.
WZ = @(@:ﬂei)l(;
i=1
s
Wi = @(u,—,u}muﬂrnzubx,
i=I

W4 = <W1,...,W,)K.

The subspaces W», W5 and Wy are not unique. The flag (U1, U, u3,Us) with U; :=B_ | W;
(j=1,...,4), however, is completely determined by W.

From Theorem 1 and Theorem 2 follows at once that the number of orbits is finite for
quadratic and cubic extensions. By the following theorem there are infinitly many orbits if
[L:K] >3 and |K| =ce:

Theorem 3 The number of orbits d K-subspaces d a vector space V over L|K with |K| =co
is finite if and only if [L: K] < 3.

For proofs and discussion of the general linear case see section 2. Now we turn to a
unitary group U(V, f). Let L be a skew field as above which now admits an involution . Let
K be such that K* =K and let (A*) =@(A)* forall A € L. Let (V, f) be aregular E-hermitian
trace-valued space. Then (V, f), with ' :=@o f, is also a regular e-hermitian space over K.
We investigate how the group U(V, f) acts an the set of f’-singular K-subspaces of V. The
results of the symplectic case, however, do not remain valid for the general case. In particular
the number of orbits depends on the structure of the underlying skew fields and on the map
¢. By wi(V, f) we denote the Witt-index of an e-hermitian space (V, f), that is the dimension
of an maximal f-singular subspace of V.

Theorem 4 Let [L:K] =2 and W be a f”-singular K-suhspace of V and ker = Ko.. Then
there is a hyperbolic sequence vi, Vi ...V, Visu1, i) ... tts, W W1, Wy .. wr, W, o L-inde-
pendent vectors, a sequence yi,...,¥p, 21, ..,Zp d L-independent vectors with f (y;,y;) =0,
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F(zi,2) #0, f(yi,z) =1(i=1,...,p) and an orthogonal sequence e, . ..,e, of L-independent
vectors, with m+s +2t +2p +r < u, such that

W= (v, vmrdrour,.. udkLr
(wi, 0w, oW, Wk L
nz)kdLe - LeQyp,zp)kLilen)kLe ... Li(er)k.
p # 0 ispossible only in the cases
(A) LT =K if L is commutative and
(B) K C L* and K|Z not separable, if L is not commutative,
where LT :={he L :A* =h}. In these cases & = Llalways holds.

We discuss the number of orbits for some particular fields in section 4.2.

Theorem5 Let [L:K] =3 and W be a maximal f’-singular K-subspace of V with tp(W) =
(mr,s,t)and kero = (o, B)g. Then there exists a decomposition

W =comp, W L Waa L Wy L Wy L (rad/Ws 6 Wy),
where:
(@) radyW =comp, W.

(b) Wau ={owy.Bwi,w|)kLr ... Lr(ow,, Bw,, W)k, where wi,w), ..., w,,w, isa hyper-
bolic sequence in (V, f).

(c) WL Wy LiradsWs =W3 where radWj is triangular.
If Wy L radsWs, then vadfW3 =0. Let j :=dimgrad W3, There ai-e L-independent vec-

tors uy, vy ... ug, v and a hyperbolic sequence xi,x\,.. .,x;,x;y1,¥),-- . y,y) in (V,f)
such that

Wi = L% (v Tntvg

Wy = Lo (o, Bty Brxi+ otyi)k @

<X§>)’§7 B(X_IX§ _C(XB_I)’QK) y

with s =j *k+ 2L There are no f-singular triangular subspaces contained in W
In particular f(u;,u;) # 0 or f(v;,v;) # Ofor i =1,...,I. IfL is commutative, then
¢ =Nyg(Bo™"). If L is non commutative, we can suppose that Bor! equals 1 or n?.
Thenc=aorc =a’

(d) Wy < WA Inparticular Wy is a K-substructure with dimg W, =t —r.

We discuss this case further in section 5.2. Finally we show in section 6 that for extensions
of higher degree under cerain conditions the number of orbits is infinite.

Theorem 6 If [L :K]>3, wi(V,f ) > land [K| =<, then the number of orbits of maximal
f'-singular K-subspaces under U(V,f ) is infinite.
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2 The General Linear Case.

By a vector space V over a skew field k we mean always a left vector space. The group
GL(k™) acts from the right. The subspace of V generated by a set X is denoted by kX or
(X1, Xk ifX ={x1,...,x:}. By k we denote the multiplicative group of k.

2.1 Central simple algebras with involutions.

Before we go on, we want to recall some facts about central simple algebras and involutions.
Let A be a central simple algebra with center Z. Then [A :Z] is always a square, say n? and n
is called degree of A. By Wedderburn A is isomorphic to a matrix algebra M, (D), where D is
a suitable division algebra. D is unique up to isometry and so is t. The number 7/t is called
index of A. If there is a field extension K|Z such that A ®; K = M, (K) we call K a splitting
field of A and say A splits over K. The smallest number m,such that A" =A & ...®A splits
over Z, is called exponent of A. The exponent divides the index and any prime divisor of the
index divides the exponent [32, p. 215]). If A is a skew field, then there is a commutative
subfield K such that K|Z is separable and [K :Z]> = [A :Z]. One of the most important
results is the theorem of Skolem and Noether, which says that every isomorphism of simple
subalgebras of A can be extended to an inner automorphism of A.

Let K|Z be galois of degree n and o be generator of Gal(K|Z). A cyclic algebra is an
algebra which contains K and has a K-basis of the form {I,7,...,n" '} withn” =a € Z and
ne =c°n for all ¢ E K. We denote this algebra by (K|Z,6,a). In particular it is a central
simple Z-algebra [33, p. 316]. By a theorem of Wedderburn any division algebra of degree 2
or 3is cyclic [32, p. 209]. Algebras of degree 2 are called qunternion algebras.

For the whole paper L|K denotes a finite skew field extension with K commutative. If L
is not commutative, the center Z of L shall be contained in K. In this case K and C;(K) are
Z-algebras and since [L :CL(K)] <ee, one has [L:C.(K)] =[K: Z] [8, p. 49]. Then [L:Z]
is finite, too, and L is a central simple Z-algebra. In case of a quadratic or cubic extension K
is @ maximal subfield of L. This yields K =C;(K) and [L :Z] = [K : Z]>. Moreover, an easy
consequence of the Skolem-Noether-Theorem is N; (K) /K = Gal(K|Z).

2.2 Basic results.
Lemma7 Let W, and W, be in Gk (V). Then holds:
(1) L(Wy +Wa) = LW, + LW,
(2) comp; (W NW,) =comp, W) Ncomp; Wh.
(3) L(W, NWy) < LW, N LW-.
(4) comp, (W, +W,) > comp, W, +compLWg, with equality iff Wi and W, are direct over
L.

Proof. trivial O
Lemma8 Let W E Gk (V) and let {n;,---M,} ben K-basis of L. Tlzen
comp, W = nf'W n..Nnn'w.
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Proof. trivial O

Lemma9 Let W € Gx(V) and U € GL(W). Then there exists Z € Gk (V), such that W =
U @ Z. For any other subspace Z' with W =U @ Z' there is a linear map T E GLL(V) with
ut =uforalluc U and Zt =Z’. Inparticular Z and Z' are in the same orbit under GL. (V).

Proof. see [28, p. 131], Prop. 3.3 O

Lemma 10 Let W,W{,W> € gK(V) with W =W, @ Wh. Letv =y, +V2 € W with O#V, cWw,
i=1,2. Then

(1) tpy (v) < min(tpy, (vi), tpy, (v2)).

() If oy, (vi) =[L: K], then tpy (v) =tpy, (v2).
Proof. see [28, p. 131], Lemma 3.4 O
Lemma 11 The group L acts transitively on the K-hyperplanes o L
Proof. Let H; and H; be two K-hyperplanes in L and {o.,. .. 0, } be a K-basis of H; with

s=[L:K]. Let W :=,_,  ,_i0; 'H,. Thendimz W > [K:Z]:=t,since dimz H, =t(s — 1).
For all nonzero vectors A € W holds oA € Hy, i =1, ...,s — 1. This yields HjA =H2. O

Corollary 12 Let {ay,...,a,}be a K-basisof L and letve W E Gg(V) with tpy, (V) =s — L.
Then LynW = {0V, ... 0,1V )k for a vector v/ EW.

Lemma 13 Let W € Gk (V). The following statements are equivalent
(i) W is a K-substructure.
(if) Every K-independent subset of W is L-independent.
(iii) A K-basis & W is L-independent.

Proof. trivial O

2.3 Quadratic extensions: Proof of Theorem 1.

Let L|K be a quadratic extension and V an n-dimensional vector space over L. We fix n €
L\K, such that L =K & k7. Note that in characteristic two the extension K|Z need not be
galois.

Lemma 14 Let W be a K-subspace & V. Then
(1) comp; W =wnnw.
(2) dimzcomp; W =dimg W —dim; LW.
(3) Forallx EW holds: X € comp, W <= nx e W.
Proof. see [28, p. 134], Theorem 4.1 O
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Lemma 15 Fora K-subspace W are equivalent:
(i) W is K-substructure.
(if) comp, W =0.
(iii) For all nonzero vectors v € W holds tpy, (v) = 1.

Proof. trivial O

Lemma 16 Let W, U and Y be K-subspaces withW =U &Y and comp, W < U. ThenY is
a K-substructure, W =U &, Y and dimg Y =dimy (LW /LU).

Proof. see [28, p. 134], Theorem 4.1 O

Proof of Tlzeorem 1. By 16thereis Y E Gk(¢,W) such that W =comp, W &, Y. Choose a
L-Basis {vy,. ..,vs} of comp, W and a K-basis {zi,. ..,z } of Y. By 16 Y is a K-substructure
and the z; are L-independent. (

We define the (GL-) type of a K-subspace W of V to be the ordered pair of nonnegative
integers
tp(W) :=(dimy comp, W , dimg (W /comp, W)).

Corollary 17 Two K-subspaces o W are in the same orbit under GL. (V) ifand only if they
have the same type.

Proof. Let W and W' be two K-subspaces of V with tp(W) =tp(W’). Pick suitable L-bases
B and B’ of V. The element of GL. (V) which maps B to B' maps also W to W. g

Corollary 18 The number o orbits & K-subspaces under GL.(V) equals ("5?).

Proof. The number N of orbits equals |{s,7 € NU{0} :s+7 <n}|. ThisyieldsN =" ;|{s+
r=i}| =i+ 1= (n+2)(n+1) =("13). 0
2.4 CubicExtensions: Proof of Theorem 2.

We now consider the case [L: K] = 3. Here we assume K|Z to be galois. The fact that
L is a central simple Z-algebra yields that L has a K-basis {1,1,1?} with n® =a € Z and
n E N;(K). In this whole section we choose a basis as above. Since N; (K)/K = Z3, one has
N;(K) = K@ Kna Kn?.

By o we denote the galois-automorphism k — k° :=min~!, k € K.

Lemma 19 Let W E Gk (V) with comp, W =0 andlet W, :=({v EW :tpy,(v) =2})k. Then

(1) There exist L-independent vectors ey, . .., e, such that Wo = @ (e;,ne;) k-
i=l

(2) WNnW is a K-substructure and W, = (WNnW) & (WNn~'W).
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(3) dimg (W NMW) = 1 dimg Wa.
Proof. see [28, p. 138], Theorem 5.2 O

Lemma20 Let T be a simple triangular subspace

(1) Let {1,7,8} be a K-rigkt basis of L. Then there exist L-independent vectors x and y
such that T = {(x,y,yx + dv)x.

(2) Let x, y be two arbitrary L-independent vectors in T. Then there is a K-right basis
{1,7,8} of L such that T = {x,y,¥x + dy)k.

Proof. (1) For to show LT =T ¢ 8T use that T N87 =0, since T contains no vector of type
> 2 and the fact that dimy T =dimz 6T = %dimZLT (in general 87T is not a K-subspace).
The rest of the proof is like in the commutative case, see [28, p. 137], Lemma 5.1.

(2) Let T = (x,y,2)k. Since z E LT = {x,y), there are v,8 E L such that z =+x + Sy.
If {1,7,8} was no K-right basis, it would hold that 6 =p *+7yg, p,q € K. Then we have
I=y+ (p+vg)y ET. Nowy E T yields y(x +qy) E T and since y & K, one gets the
contradiction tpr x+qy) > 2. O

Lemma 21 Ifx andy are two L-independent vectors, then W = (x,y,nx +n2y)x i a simple
triangular subspace.

Proof. Obviously dim; LW =2. Letv =bx+cy+d(nx +n2y), b,c,d EK be a nonzero
vector in W and suppose that also W3 hv =b'x T¢'y Td'(nx+n12y), &',¢’,d’ EK. We have
to show that hE K.

Leth :=p+¢ntm?2 p.q,r € K. Then

(p+gn+m?)(bx+cy td(mx+n?y)
pbx+pey + pd(nx Fn2y)+

gbonx T geony + qd® (mPx + ay)+

b n2x+re% 2yt rd®’ (ax+any).

hv

Comparing the coefficients yields the following equations

pb+ rd%a = b, (1)
pc+qd®a = ¢, (2)
pd+qgb® = d', (3)
qc® + d%a = 0, 4)
gd®+r% = 0, (5)
pd +:9 = o (6)

If g =0 or r =0, one gets easily from the equations above that A € K. Solet both gand r
be different from zero. We can assume that r = 1. One has d # O, otherwise would hold ¢ =0

(4)and b =0 (5).Now (4) yields gc® = —d® a. Then follows ¢® = ‘q—ﬁ“ From (5) one gets
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b =—qd°, that is b° = ~¢ d. Finally (3) and (6) imply gb° =c%". Then —gq% d = —%.

This yields a :qq"q"2 = Nkz(q). But this is a contradiction, since it implies that the skew
field L splits [33, p. 318]. 0

Lemma 22 Let W be a triangular subspace. Then
(1) LW =We AW, forall L € L\ K.
(2) Let {1, 6{ be an arbitrary K-right basis of L. Thenfor each 0 #x E W there is exactly

oney € W\ Lx such that {x, y,yx T8y)x is the unique simple triangular subspace which
contains X.
Proof. see [28, p. 144], Prop. 5.6 O

Lemma 23 Let W be triangular and let T,7" C W be simple triangular and T # 7’. Then
LTNLT =0.

Proof. see [28, p. 144], Cor. 5.11 0]

Lemma 24 Let W be a triangular subspace and T a simple triangular subspace of W. Then
there is a triangular subspace Y such thatW =T &, Y.

Proof of Theorem 2. Only the proof of (d) differs a bit from the commutative case ({28,
p. 134}, Theorem 4.1):

(d) Choose a K-substructure Z < W such that LW =ILWa ®LZ. If W =Wa D Z, we are
done with W3 =0 and W, =Z. Otherwise one can find K-independent vectors xp,. ..,x; such
that W =Wo &Z & (x1,...,x,)k. In general the sum of Wy and Z & (xj,.. ., xs)x will not be
direct over L. We now show that xj, ...,x; can always be chosen in such a manner that the
above sum is direct over L. For all X; E W holds

X =M + uz;,

withA,ue L, w; € <€],. ek andZ e Z.
LetA:=p+gn+m?andu:= p' +gn+7n% p,q,1 0,4 .7 € K. Adding to each ; the
vectors —(p+qn)w; € Wy and —p'7; € Z we get

X; =i+ (g + M)z EW.

Since | EN; (K), follows y; :=n~2m>W; E (e}, ...,e,)x, zi :=N"'¢Mz € Z and z =i 27
Nz € Z. Then we can write
X =0z + (g + i),

with z;,20 € Z,y; € {e1,. ..,er)k, i =1,...,5.

The rest of the proof is exactly as in the commutative case.

O

In the cubic case we define the (GL-) type of a K-subspace tp(W) to be the ordered

quadruple of nonnegative integers

. 1 U W
dimy, comp; W, —dimg (eeﬁlanaer , = dimg =3 Jdimg [ — ) ).
2 3 U» Us
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U, is the subspace generated by all vectors v € W with tpy, (v) > 2. Uy is the sum of U, and
all simple triangular subspaces contained in W. By Theorem 2 this type is well defined.

Corollary 25 Two K-subspaces of W are in the same orbit under GL. (V) iff they have the
same type.

Proof. The proof is analogous to the proof of 17. ]

Corollary 26 For the number N, of orbits of d-dimensional K-subspaces under GL.(V)
holds

1

No= 57 (2a* +1542 +34d +24)
if d iseven and
214 (2d® +15d% + 34d +21)

if d isodd. For the number N of all orbits we have

N(l

1

N = g (n*+120" +50n" 1 84ntas),
if n iseven and

N = Tls f* 1203 + 5002 +84n+45),

if nisodd.

Proof. We have N = |[{m+r+2s+t <n:m,r,s,t € NU{O}}|, N, = [{m+r+2s+t=4d:
m,r,s,t ENU{0}} and N =3 _ Ny We calculateN,f For convenience we define Ny :=0
ifd <0. ThenNd—{m+r+2f+t—d} ¥4 r+2s+t =i} = il ()Z, ol{2s+1t=j}

=3¢
=)
gd =Ny 1(fc¥15 even and Uy :=Ny if d is odd. By induction one proves that
1
G, = Qz(d+2)(d+4)(2d+3) and
1
u, = éz(dnt D(d+3)2d+7).

For the number N of all orbits holds

n
=

N = Y Gu+Uy_, ifnisevenand
k=0
Q

N = 3 Gy+Uxyqr ifnisodd.
k=0

2 n(nt1)(2n+1 3 _ nt(n+l)?
42— 6/1 )andZZz:]d n

Using the formulas Y/}, d = =3 —weget

N = (E +1)<n3+10n22«430n+24) if 1 is even and
2 24
n+ 1\ [/ n® 4 110’24 390+ 45 s odd
5 24 g IT 7 1S 000Q.
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2.5 Extensions of higher degree: Proof of Theorem 3

To prove Theorem 3 it suffices to show that there are infinitely many orbits of 2-dimensional
K-subspaces of L under the multiplicative group L = GL,(L) of L. Lets :=[L:K] >3
and m :=[K :Z] and consider L as an s-dimensional K-vector space. We show that Gk (d,L),
1<d < s, isaprojective variety over Z with dimension dm(s —d). Recall that the Grassmann
variety Gz(md,L) already is a projective variety over Z with dimension dm(sm —dm), see
e.g. [2,p. 135 or (17, p.14).

Let {e1,...,e,} be a K-basis of L and {vi,...,vn} be a Z-basis of K, such that v,vx =
2’0’,’:1 CpkgVgs Cpig EZ, p,k =1,...,m. Let

Wo = <Vl€l,- cVmlly Ve, ---Vm€d>Z

and
/
WO = (Vled-!-]w v Vm€d+1y- .5 V1€s,- __,Vm(fs>z.

Any subspace W € Gz(dm,V ) which the projection maps isomorphically onto Wy has a
unique basis of the form

{vier +x11(W),...,vmeq +xma(W)},

with
W)= X apigjveej € W,
j>d.g=1,...m

apig; €Z,i=1,....d,p=1,...,m.

In the proofs cited above is shown that the image of [Gz(dm,L) under the injection
Y W — Zvie; A ...Avye, in the projective space P(A™ L) is essentially the graph of
a morphism from the space of the a,,; to another linear space. In particular it is closed,
hence is a projective variety. The dimension one gets by counting the free aiy;.

Now we must show that the fact that W is a K-subspace can be expressed in polynomial
conditions on the apy;. Since

W = <V161 + X711 (W), ..., Vieq -+—X1d(W)>K,
there is ¢,; € K such that

vpei +x,i(W) = cpi (vie; +x1,(W)) .

Without loss we can suppose vi =1. Thus ¢, =v,, i =1,...,d. We have
Y @igiVaei = Vp D, QUikjVe]
j>dg j>d k
= > ik | DCpigVq | €
J>d k q

= 2 <za”kjcpkt/> Vg€

j>dg \ k
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Comparing coefficients yields apigj = ¥ ¢ piq@iikj, I = 1,...,d. Thisshows that y (Gx(d,V))
can be considered as the graph of a morphism from the space of the ay;,; to another linear
space. The dimension follows by counting the free ay;g;. Thus Gx(d,V) has the structure of
a projective variety with dimension dm(s —d).

Now the group L is an sm-dimensional irreducible algebraic group over Z, since L is a
Z algebra [2, p. 51]. L acts on Gk(2,L). Suppose there are only finitely many orbits. Then
at least one orbit must be Zariski-dense in Gx(2,L). Pick a subspace W contained in such a
dense orbit. Denote by R the closure of this orbit and consider the orbit map

Woa — wa

Let Sbe the stabilizer of W . We have dim B =2m(s — 2) and dim§ > 1, since Z is contained
in S. By applying the formula (see [3, p.12])

dim/. =dimB +dim$S

we get
2ms—4m< ms— 1.

This yields the contradiction s < 3.

REMARK: This method works also in the commutative case. L is an algebraic group
over K with dimL =s and, as rnentioned above, Gx(2,L) is a projective variety over K with
dim Gk (2,L) =2(s — 2). Since K is contained in the stabilizer of any subspace, we get in the
same way the contradiction s < 3.

3 The Hermitean Case: Further Notation And Basic Results.

Let L be a skew field with an involution * and let Z be the center of L. Recall that an involution
on L is an anti automorphism of L such that o** =aforall a € L. Itiseasy toseethatZ* =Z.
If x|z is the identity, * is called involution of the first kind. Otherwise * is called involution
of the second kind. In this case Z|Z, is a separable quadratic extension, where Z, denotes the
fixed field of *|z. Let LY :={@e L :a* =a}and L~ :={@ec L :o* =—a}. The latter we
define only for characteristics unequal 2. If the degree of L is n, the following holds [33, p.
3031

(1) IfcharZ # 2, then L= LT ® L.
(2) If x is of the second kind, then dimz, L™ =dimz, L~ =nr°.

(3) If * is of the first kind, then dimz LT = i—n(n + 1) or = 4n(n - 1). If char Z =2, always
dimz LT =in(n+ 1).

An involution of the first kind is called orthogonal if dimz Lt = %n(n + 1) and symplectic if
dimz Lt = %n(n — 1). Involutions of the second kind are also called unitary. By a theorem
of Albert [32, p. 232] a central simple algebra has exponent 2 if and only if it admits an
involution of the first kind.
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Let V be a finite-dimensional left-vector space over L. A sesquilinear form f is a map
f:V xV — L such that

) = fln)+f(na).
fley+z) = fxy)+f(xz2),

) = Af(xy),

) = fluyA,

for all x,y,z€ V and all L € L. A sesquilinear form f is called e-hermitian (E = +1) if
flx,y) =€ef(y,x)* forall x,y € V. An E-hermitian form £ is called symmetric if * =id and
E = T1, skew symmetric if x =id and E = —1 and symplectic (or alternating) if f(x,x) =0
forallxEV.

Now let U be a subspace of an E-hermitian space (V, f). We write xLy if f(x,y) =0
and x LU if f(x,u) =0 for all u E J. The orthogonal subspace of U in V is the space
Ut ={veV :viuVu E U}. The radical of U is the space rad;U :={u € U =UNU*}.
A space (V, f) is called regular iff rad;V =0. Otherwise it is called degenerate. A vector
v € Vis called isotropicif f(v,v) =0. A subspace U is called isotropic space if it contains an
isotropic vector. Otherwise it is called anisotropic. A subspace U is singular if f{u,u’) =0
forall u,u’ EU.

A sequence ey,...,e, in (V,f) is called orthogonal iff e;Le; for i# j. A sequence
Vi,V . v, v is called hyperbolic iff £(vi,v)) = 1, f(vi,v;) = f(v},v}) =0and f(v;,»};) =0
if i #j. Two vectors x,y E V are a hyperbolic pair if f(x,x) = f(y,y) =0and f(x,y) =1.
The plane H := (x,y) is called hyperbolic plane. A space is called hyperbolic if it is the or-
thogonal sum of hyperbolic planes. If a orthogonal or a hyperbolic sequence form a basis of
V ,itis called an orthogonal basis or a symplectic basis respectively. An e-hermitian form f
is called trace-valued if for all xe V holds f(x,x) E {h+eA* :AE L}.

An isometry between two spaces (V, f1) and (V», f>) is an injective linear map 1 :V; —
V2,such that f>(xt,yT) = fi1(x,y) forall x,y E V;. The spaces (Vi, f1) and (Va, f>) are called
isometric, we write (Vy, f1) ~ (Va, f2), if there is a bijective isometry V; — V5. The bijective
isometries of a space (V, f) onto itself form the Unitary Group U(V, f).

From now on we consider only regular and trace-valued forms. If we want to emphasize
the particular form £, we write f-orthogonal, f-isotropic, f-singular, etc..

Recall that if an e-hermitian space is not symplectic, one can always find an orthogonal
basis. If the space is symplectic, it is an orthogonal sum of hyperbolic planes.

Closely related to the theory of symmetric bilinear spacesis the theory of quadratic forms.
They are equivalent concepts if the characteristic is unequal 2. Let V be a vector space over
a field K. A quadraticformis amap q :V — K with

q(hx) =Ag(x)
forallx e V,L E K such that the map b, :V xV — K,
by(x,y) = g(x+y) = q(x) = q(y),

is a bilinear form over K. The map &, is called the associated bilinearform of g. The pair
(V,q) is called quadratic space. If b is abilinear form, the map g, :V —1 K, g, (x) :=b(x,x),
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is called the associated quadraticform of b. It holds that by, (x,y) = b(x,y) + b(y,x) and
an,(x) =2q(x).

Let (V,q) be a quadratic space. A vector x E V is called isotropic if g(x) =0 and
anisotropic if g(x) # 0. Two vectors x and y are called orthogonal if b,(x,y) =0.

3.1 Statement of the problem and basic results.

Let (Vf ) be aregular trace-valued e-hermitian space over (Lx) and K a commutative sub-
field of L such that K* =K. If L is non commutative, let always Z :=Z(L) C K. % induces
an involution on K, which we also denote by . Let ¢ :L — K be a K-linear map with
o(A*) =(A)*. Since p(he) =0((c*A*)*) = @(c*A*)* =(c*@o(A*))* =o(A)c forall ¢ E K,
A €L, ¢ is two-sided K-linear. Define f/ :=@o f. Itis easy to see that (V,f’) is a regular
e-hermitian space over (K,*). Since every isometry of (V.f ) is an isometry of (V, f'), too,
one gets an embedding U(V, f) — UV, 1.
If orthogonality refers to the form £', we write xL'y, U L'W, U+, etc.. We write U L, W

ifULW and U @ W.
Lemma 27 Let U be a L-subspace of V.

(1) Forx €V holds thatx L'U iff x LU.

(2) It holds that UL = U~ Inparticular U is f-singular iff U is f'-singular and U is
f-regular iff U is f'-regular.

Proof. see [20, p.285] Lemma 4.1 O
Lemma 28 Let W be a f’-singular K-subspace of V. Then
(1) comp, W <rad;W.
(2) If W is maximal f'-singular in LW, then comp, W =rad;W
In particular comp, W is f-singular.
Proof. see [20, p.285] Lemma 4.1 ]

Lemma 29 Let W be f’-singular and let X be a K-subspace of W. If there is a f-regular
L-subspace U of V such that X C U and dimg U = 2dimg X, then there exists another K-
subspace Y of V such that W =X _1;Y. Inparticular Y =U+ NW is such a subspace.

Proof. Since V = U1, U, itis enough to show that W < X +(WNU"). Let W 3 x = x| +x2,
x1 €U and x; € UL, Then xL'X, since W is f’-singular and x, L X, since X C U. This yields
x11/X, that is x; E UNXL. We now show that U NnX* =X. Obviously it holds that
X <UNXY. Since U is f'-regular, we have

dimg XX MU =dimg U — dimg X = dimg X.

Therefore, equality follows by dimensional reasons. This implies x; E X. O

For a K-subspace W we denote by R(W) :={f(w,W):w € W} the set of all elements of
L which are represented by f|w.
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Lemma30 Let W he a f’-singular K-suhspace and let R(W)Nkerg =0. Then W is f-
singular T one of thefollowing conditions holds:

(1) = =id and f is not symplectic.

(2) L is commutative and there is a £ € K with {* =~ or {* =+ 1 in characteristic 2
respectively.

(3) L is not commutative and there isa { € Z with {* =—{ or {* ={ * 1in characteristic
2 respectively.

Proof. In all cases we can by ""Hilbert 90" suppose that e = 1. For all x € W it holds that
f(x,x) =0. Then foranyy € W holds 0 = f(x+y,x+y) = f(x,y) + f(y,x), that is f(x,y) =
—~f(y,x). Case (1) is clear. In (2)there exists € K with {* =~ if charK # 2. Thus
0=f(x+LCy,x+8y) =—2Lf(x,y), hence f(x,y) =0. If charK =2, there exists {* =L +1
and V\;e ggt similarly f{(x,y) =0. The proof of (3) is the same with L € Z. This yields
flx,y) =0. O

4 The Hermitean Case: Quadratic Extensioiis

In this section we consider extensions with [L : K] = 2. If L is not commutative, it is a
quaternion algebra over the center Z of L. The basic difference to the symplectic case is that
in the general situation f(w,w), w € V ,may be different froni zero. Since W is f’-singular,
we must investigate the set R(W) Nkero. In general not much is known about R(W). We
have R(W) C LT if f is [-hermitian and R(W) C L~ if f is (—1)-hermitian. For this reason
we consider the sets ST :=L*" Nkerg and S~ :=L" Nker@. Note that S~ is defined only for
characteristic unequal 2.

Recall that if * is a nontrivial involution on the field K, then K|K™ is a separable quadratic
extension and x € Gal(K|K™). Without loss we can suppose that K =K*(n) and n* = —n if
charK # 2andm* =n+1ifcharK =2,

4.1 Lemmas and proof of Theorem 4

If L is commutative, three cases can occur: * =id, = # id with L* =K and = # id with
L* # K. In the first case clearly Lt nkerg =ker®. So ker¢ = Ka is possible for any a E L.
If x # id, LT is afield and L|L™ is a separable quadratic extension.

If L* =K, we can suppose that L =K @& K& with &* =—E if charL # 2 and £* =& + 1if
charL =2.

Lemma 31 IfL is commutative und Lt =K, thefollowing holds:
(1) St =0and S~ =KE& if charK # 2.
(2) $t =K ifchar K =2,

Proof. (i) —¢(§) =@(=§) =¢(&") =(p(§) that is ker¢p =KE&.
(2)0(8) =) =0(&") =0(&) To(1), that is kere =K. O
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If L* # K, it holds that Kt =L*NK. K™ is a field with [K:K*] =2. Choose & E L™
such that L =K & K&. By “Hilbert 90" we can suppose that 7 is 1-hermitian.

Lemma 32 If L is commutative and L™ # K, itholds that St =Kto. a€c KT @ KTE

Proof. Let char K # 2. Pick j E K \ K" with n* =—m. Write K =K~ @ K*n. Let ¢(1) =
x+yn € K. Now (1) = ¢(1*) = ¢(1)* yields y = 0. In the same way follows ¢(§) =x€ K™.
Then it holds that z — x& € ker @. The proof for char K =2 is the same with n* =n +1. 0O

If L is non commutative, L is a yuaternion algebra over Z.

Lemma 33 For every maximal subfield K of a quaternion algebra L there exists a Z-basis
{,M,EmE} of Lwith K ={1,m)7 and

() M?>=a€eZ& =becZandné =—E&nifcharZ #£ 2,
(Q n>+n=aEZ &> =bEZand nE =&n+& ifcharZ =2 and K|Z is separable
() W’ =a€Z 2T =be ZandnE =En+n ifcharZ =2 and K|Z i not separable.

Proof.
Se: [33.p. 300, p. 312]. O

We call a basis like in the previous lemma a standard basis of L. In the following we
always choose such a basis if L is not commutative.

Lemma 34 Let L be a quaternion algebra over Z and /et K|Z be separable. Then (§,n&)} =

Proof. First we consider tlie case charK # 2. Supposen* = x+yn, x,y € Z. Since (n*)* =
(?)* =a* € Z, follows x2 F2xyn +y?a € Z. Then x =0, for y =0 leads to the contradiction
n* € Z. This yields 1* =yn. From n =n™* =yy*n one gets vv* = 1. Then the following
holds:

*

g =En) =0En)" =(-mE)" ==&y =-Enyy" =~-&n.
Let&* :=p+qn+ré+snE p.g,rns € Z. Then

nE* = pn+qga+mE+saf = —E'n = —(pn+ga+rEn+smén)

This implies p =¢ =0 and we get (n&)* =&*"* = (r& +sm&)ym = —ym& —syal. This
proves (E,nE)Y; = (£,mE)y. | ﬁ

The case char K = 2 is similar: From (n*)? +1* € Z follows x* +y*(a+1) +x+)n € Z.
Theny =i. Sincen =n** =x+x* *n, x =x*. We have

g =En")" =G +&n)* =Ex+nE+E)" =1 +E N +&" =
=x& tEx+EntE =g +En
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NE* = pn+qn’ +mM&+sm°g and & = pn +qn’ + M& + &+ sn°E + smé.

One gets & = rE+sm&. Thisimplies &)* = (1€ +smE) (N +x) = rEn+sm&n + &+ sm&.
Since &n =ng & and nén = (02 tN)E =k, it holds that (NE)* € (€, nE)z. O

Lemma 35 LetL be aquaternion algebra over Z. Then there is astandardbasis {1,1,&,m&}
of L such that:

(1) Lt =(1,m,&)z and L~ =(n&) if » is orthogonal, K C L' and K|Z separable.

(2) LY =(1,EnE)z andL™ =(n)z if x isorthogonal and K ¢ L*. K|Z is always separa-
ble.

(3) LT =z and L~ =(n,E,nE)z if » is symplectic. char K =2 is notpossible in this case.

(4) If = is unitary and K|Z separable, it holds that L* =ZT @ ZtTn@ ZTE®Z né |
charK #2. IfcharK =2, one has LY =Z* ®Z O ZTEDZT M+ 0)E, where { € Z
with {* =0+ 1

Proof. Let {1,n,p,mp} be an arbitrary standard basis of L. Choose & E L* \ K and let
E =x+yn+zp+mp, x,y,z,¢t E Z. If K|Z is separable, we have zp+mp E L by 34,

(1) Without loss let LT 3 & = zp+mp. If char K # 2, nE =n(zp+mp) =—zpn—mpn =
—&n and &2 =22p? +zpnp Tzmp? T2npnp E Z. If charK =2, we have n =n(zp +
mp) =z(pn+p) +m(pn+p) =En+& and & =2%p* +zrpnp+zmp’ +r'npnp =2p +z
(pn+mp) p+°n Mp+p) p=2"p* +21p” +1> (> +M) p* € Z.

(2) Since x|k equals the nontrivial automorphism of Gal(K|Z), we have n* = —m if
charK # 2 and m* =n+ 1if charK =2. In particular K|Z is separable. Like in (1) one
proves that {i,n,&,n&} is a standard basis.

(3) Since in characteristic 2 always L™ = 3, we must have char K # 2 in this case. LT =Z
is clear. Like in (2) one gets n* = —m. Every vector in L™ has the form xn +zp +mp with
x,2,t € Z. Sincexn € L™ and dimz L~ =3, & :=zp +tnp is also in L™, The rest of the proof
is like (1).

(4) We show that we can supposen* =m. Let {1,0,...}be an arbitrary standard basis.
If char K # 2, we have 6* =yc withy € Z and yy* =i (see proof of 34). By "Hilbert 90”
there is u € Z with y =u*u~!. Withm :=u*c we are done. If char K =2, we have 0 =0+ x
with x € Z and x +x* =0 (see proof of 34). Since Z|Z" is separable, there exists { € Z with
¢* =CF 1. Thenm :=c+x{ is fixed under *. Like in (1) follows & € L*. O

Lemma 36 For 0# & ER(W)Nker@ holds @ E N; (K).

Proof. Let f(w,w) =a. Then for all k € K holds f(kw,kw) € ker¢ =Ka. Hence kok* =ca,
c € K. Since k and k* are arbitrary, we get aK =Ka. O

Lemma 37 If R(W)Nkerp # O, kerg = K or kero =KE&. If K|Z is not separable, only
ker¢ = K i possible.
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Proof. Since N; (K)/K = Gal(K|Z), we have Gal(K|Z) = Z/2Z if K|Z is separable. Oth-
erwise Gal(K|Z) is trivial. In the separable case it is easy to prove that & E N; (K), hence
N; (K) = KUKE, O

Now we suppose that we have ker@ = K or ker¢ = K&. But not always these two cases
can occur as the next lemma shows.

Lemma38 (1) *isorthogonal and K C L™ ker¢ =K¢& if K|Z is separable and ker¢ =K
if K|Z is not separable.

(2) = isorthogonal and K ¢ L% ker¢p =KE.
(3) x is symplectic: ker =KE,
(4) * is unitary: ker¢ =K or kergp =KE,

Proof. (1) If char K # 2, it holds that —p(n&) = o((M&)*) =e(M&)* =e(nE). Thusn E
kero and hence ker¢ =K&. If charK = 2 and K|Z is separable we have o(ng) = @((n&)*)
=(&n) =e(M&) +o(&). Hence @(&) =0. In the non separable case @(n&) = @((M&)*) =
o(En) = n& +¢(n) holds. Hence (n) =

(2)By 35L+ (1,€,m&)z. Supposekero =K. Since@(Lt) =KT =Z anddimz L' =3,
there are two Z-independent vectors in L™ Mker@. But this is impossible, since KNL* =Z.

(3)By 35 L~ =(n,&,m&)z. Since (L") =K~ =2Zn and dimz L~ = 3, the assumption
ker@ =K provides a contradiction as in (2).

(4) Here is nothing to prove. O

Proof of Theorem 4. (a) Let vy,...,v, be a L-basis of comp, W. By 28 comp,W is
f-singular. Thus there exists a hyperbolic sequence vi,v},...,y, v, in (V,f). By 29 we
have W =comp; W LY for a suitable K-subspace Y of W. So without loss we can suppose
comp, W =0.

(b) Let W =rad;W @Y with Y < V. By 28 and 16 it holds that W =rad;W & Y,
hence W =rad/W.L,Y. Let {uy,...,us} be a K-basis of rad;W. Since rad;W is a K-
substructure, uy,...,u are linear independent over L (13). Then there exists a hyperbolic
sequence u,u}, ... ug,uy in (Vf). Sowithout loss let radsW =0.

(c) Suppose there is w; € W such that f(w;,w;) =0. Since rad/W =0, there exists
%) E W such that f(w;,X) # 0. We can suppose that f{w;,%) =a. If f(¥;,%) =0, define
x1 :=X;. Otherwise f(¥,%) =ca, ¢ EK and f(%,%) =A+¢€A*, A E L, since f is trace-
valued. Define

X1 = —ha—1W1 + Xi.
Then f(x;,x;) =—A—€e\* +A+er* =0. Letw| :=(a")"'x;. Then (w;,w)) is a hyperbolic
pair. If x; € W, by 29 we have

W = (Wl ,a*W/] >KJ‘LY>

for a suitable K-subspace Y of W, since (wy,x|)x is maximal f'-singular in the hyperbolic
(thus regular) L-subspace (w;,w}).. By induction we get

W = (w ,(X*W/I>KLL. .._LL<Wf,OL*W;>KJ_LWA,
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where Wy is a K-subspace of W which contains no f-isotropic vector.

It remains to investigate the conditions for x; to be in W. Since W is a K-substructure and
F1, w1 EW,x EW holds iff o) E K. This is always the case when the characteristic is odd,
since A = —%f(.%l ,X1) = %coc. Now consider the cases in characteristic 2. Lety:= f(x;,%1).

If L is commutative and *|x # id, then K|K™ is separable. Hence there is a { E K such
that * =+ 1. with & := {y follows A+A* =y and Aoe™) =c{ E K. Let now L be non
commutative. Note that o E N; (K) (36) if there exists v EW with f(v,v) # 0. If « is or-
thogonal, K C L and K|Z separable, then ker¢ = K& (38) that isa =& and L™ = (1,1,E)x
(35). Hence y =c& with ¢ € Z, since f is trace-valued. Moreover, (n&)* =&n =n&+&.
With A :=cné& follows A FA* =cE and A& ! =en € K. If * is orthogonal and K ¢ L', we
have Lt = (1,&, &)k (35) aiid ker¢p =KE (38). An easy calculation shows A +A* E K for
all A E L. Since f is trace-valued. we have f(%,%) E KNKE =0. Hence x; EW. In char-
acteristic 2 there are no symplectic involutions. If % is unitary, Z|Z* is separable and there is
{ E Z suchthat {* =£+ 1. With A :={y follows x; € W.

It remains to consider the cases (A) and (B). In both cases it holds that ker¢p =K and
x|k =id (31 and 38). Suppose there is y; E W such that f(y;,y;) =0. As above there is
z1 € W such that f(y1,21) = 1. If f(z1,21) # 0, we have f(z3,z1) =A+A*. In order to find
a vector 71 E (y1,{1)k such that (v1,r;) is a hyperbolic pair take r; :=Ay; tz, as above. But
then it must hold that A € K and we get the contradiction f(z;,z1) = 0.

(d) If Wy # O, pick 0 # e; € W4. Since {¢|)g is maximal f’-singular in the f-regular
L-subspace {¢1),., the assertion follows by induction as in (c). O

4.2 Qrbitsof f’-singular suhspaces.

We define the f-type tp,(W) of W to be the 5-tuple (m,s5,7,p. ). A necessary condition for
two subspaces W and W’ to be in the same orbit under U(V, f) is tp(W) =tp,(W’). In
general, however, this condition is not sufficient. Let W; be the subspace generated by all
f-isotropic vectors of W,

g

A R W PP
(Wi, 0w, w0 W kL (v, )k

and let

Wi :={(21,.--,2p,€1,- . )k

We have comp;, W <rad;W < Wy and.if p =0, W =W, L, W,.

Lctnow p+ r =0. Then two f”-singular subspaces W and W’ are in the same orbit under
UV, f)iff tp, (W) =tp,(W'). Forif tp, (W) =tp,(W’), every isometry ¢ : W — W’ can be
extended to an isometry Z € U(V, f). This, for example, occurs in the symplectic case [20].
Let v :=wi(V, f) and V' :=wi(V, f'). A necessary and sufficient condition for (m,s,7,0,0)
to be the f-type of a subspace is m +s5+t <V. For then dim; LW =m+s+2t < and
dimgW =2m +s+2; < V. Forall d > 0 let N; be the number of orbits of d-dimensional
K-subspaces if p +r =0. To simplify our notation we define N; :=0if d <O0. If p+r =0,
we have 0 < d < 2v and the following holds [20]
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i-
<L2J2+2> if 0<d<v, and
= d|n T
(sz;r“\)—(d ;Hrl if v<d<2v.

For the number of orbits we get
N=|{m+s+t<v:ms € NU{0}}| =

Now consider the general case where p +r >0 If two subspaces W and W" are in the
same orbit under U(V, f), they must have the same type and the spaces

uagLe .- Li(yp,zpdxLifen) kLo ... Lile )k
and

OhadkLe LoV 2)kLife )k Lo .. Li(e )k

must be isometric. Recall that ker¢ = Ko Without loss we can assume that o =a or
o = —o respectively. By defining £ :=f/, o' we get a map

Wy xWy —> K

5y o fa)a

—1

An easy calculation show that £ is a I-hermitian formover (K, +oc). whereo € Gal(K|Z}
(putZ =K if L is commutative). Moreover, two p + r-dimensional anisotropic subspaces W
and W, are in the same orbit under U (V, F)iff the induced forms £ and £ are isometric over
(K% o00). The problem to decide whether two subspaces are in the same orbit leads to the
classification of hermitian forms over fields. Since very little is known about the case of
general fields, we are able to treat this problem only for some special fields.

Before we do so, let us consider how the form £ depends on L and . The following table
gives an overview:

Proof of the Table. See 31 and 32 in the commutative case and 35 and 38 in the non
commutative case.

If L is commutative, L = (1,&)x. Obviously we have here ¢ =id.

*x =id. Since ST =K and §~ =0, r >0 isonly possible if j is symmetric. IncharK # 2
it holds that ¢; EK and £ is a symmetric bilinear form over K. Since in charK = 2 always
a;o. =A+ A =0, the situation r >0 cannot occur in this case.

x #id and K =L*. If charK # 2, we have ST =0 and S~ =KE&. Thus r > O is only
possible if f is a (—1)-hermitian form. Then ¢; € K and £ is symmetric. In cliarK =2 is
symmetric but non trace-valued (case(A)).

* #id and K #£ L™, It suffices to consider 1-hermitian forms. In all cases it holds that
St =K*a,whereoo =z+xE, z,x €K*. Thea;arein K+ and £ is a non symmetric form over
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Table 1:

* LY charK K|Z f

=id 72 symmetric, trace-valued
#1id K=Lt #£2 symmetric, trace-valued
#id K=Lt =2 symmetric, non trace-valued
#id K#£LT #£2 non symmetric, trace-valued
#id K#£Lt = non symmetric, trace-valued
orthogonal KcC L™ #2 non symmetric, trace-valued
orthogonal KcCLt =2 separabel non symmetric, trace-valued
orthogonal KcLt =2 non separabel  symmetric, non trace-valued
orthogonal K¢ Lt #2 symmetric, trace-valued
symplectic #2 symmetric, trace-valued
unitary #2 non symmetric, trace-valued
unitary =2 separabel non symmetric, trace-valued
unitary =2 non separabel  non symmetric, trace-valued

(K *). In characteristic 2 we have K =K+ & K*1, wheren* =n *1. Then a; =am +(am)*,
hence £ is trace-valued.

Now let L be non commutative, that is L =(1,1,&,n&)z.

* orthogonal and K C L*. If charK # 2, we have ST =Z& and §~ =Zn&. Theg; are in
Z and @ E {€,nE}. Hence 0 # id. Since *|x =id, f is a non symmetric form over (K,o).

If charK =2, we have ST =Z& if K|Z is separable. Like in the odd characteristic case one
gets a non symmetric form f over (K,0). Since K =Z@2Zn and n°® =n+ 1, the form f is
trace-valued. If K|Z is not separable, £ symmetric but non trace-valued (case (B)).

x orthogonal and K ¢ L*. We have ST =K& and S~ =0. The a; are in K and *|x = 0.
Hence f is symmetric. In characteristic 2 we have always r = O (see the proof of Theorem
4(c)).

* symplectic. This case occurs only if charK # 2. We have S* =0and §~™ =K&. The a;
are in K and *|¢ =o. Thus 7 is symmetric.

* uUnitary. It suffices to consider 1-hermitian forms. If charK # 2, we have St =Z* ¢
Z¥n =K% orSt =Z*E£®Z . In the first case £ is a non symmetric form over (K *). In
the second case let a; = bj +bi2n and a; =bl, +bi,n, by, b}y EZT and by, b}, EZ~. Then

bin&+boné = Y aij(bi &+ biyn&)aj;.
J

Multiplication from the right by £~ yields

bii+bon =Y a;; (], +bian)(a;;)°.
I

Let F be the fixed field of the involution %o 0. Since xo 0 # id, we have [K:F]=2. Since
ZTCFandZ M CF,F=Z"®&Z 1. Hence f is a non symmetric form over (K %0 0).
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The case char K =2 is not essentially different: if X|Z is separable, the cases ker¢ =K and
ker® = K& can occur. In the first case we have ST =ZT ®Z*tn =K. In the second case
we have St =ZTE@Z*t ({+n)E CEZ and {* =+ 1. Like in odd characteristics we
get that f is a non symmetric Form over (K ) or over (K x 00) respectively. Since a; E K
implies (a; E K, a; = (a; T (a;)* or a; = {a; F(La;)*° respectively. Thus £ in both cases
in trace-valued. If K{Z is not separable, we have ker ¢ =K, hence St =K. Since there is a
§ E Z with * = T1, the form f is trace-valued and non symmetric over (K ). 0

We have seen that f is either a symmetric or non symmetric form over K. Now let R,
be the number of orbits of d-dimensional f'-singular subspacesif p + r > 0. Recall that N,
denotes the number of orbits if p +r =0. In order to calculate R; one has to solve two
problems: On the one hand we must investigate how many forms f can be realized, given
an e-hermitian space (V, f) and a subspace W. On the other hand one must know which of
these forms are isometric. For convenience suppose p =0. Let Wy :=LW; = (e] ...,e;)L
and let V =W, @ W, where Wé =(es+1,...,en)L. Then every r-dimensional subspace W’
has theform (6]6] + X (W’), b ,6,-6,»-'-/\’,-(W/)>K with 8,‘ S {0, 1} and xi(W’) = Z’;-:hq 7\.,‘(,'6\,‘,
i=1,...,r. LetL=KodKp (B =1if a¢K). If at least one subspace W exist with
f~lai,...,a], then (V,f) ~ [a10,...,a,0, ayp1004 b1 1B, ...,a,00+ b,P]. Then we have
for all basis vectors of W’

f(Biei T, 8t ) =80t Y MijlajotbB)A;.

Jj=r+1

In order for a subspace W* with a form f ~a.,,...,a.] to be realized, given a subspace W
with f ~ [al,...,a,], the equation

n
aﬁ»(x =38;a;0.+ Z }\,,'j(aja“"bjB)}b;}'
j=r+1
must be solvable over §.for i =1,...,r. Very little is known yet about the problem under
which conditions this holds true for the general case. However, every form can be realized
if Wy contains a hyperbolic sequence yi,y},...,y,, .. With x; ==y +y§, Y € L one gets
Sflei+xi, e;+x;) =a;00+7y+7". Since we consider only trace-valued forms, we have g;o. and
dloce {htxr* 1A € L}, and the equation a;0. = ajo +y-+7¥* can be solved.

Since in general we cannot decide which forms can be realized, we are only able to give
an upper limit for the number of orbits. In the following we consider some special fields.
The invariants of a form f we use for classification are the dimension dim(f), the determi-
nant det(f), the signature sig(f) and the Hasse-invariant s(f). Recall that s(f) denotes the
equivalence class of the Hasse-algebra S(f) :=®;; (@;q;), where f ~ [al,..,a,]. Here
(oy,01;) denotes the quaternion algebra with standard basis {1,m,&,m&} such that n? = oy
and &’ =a,.

Let K be a field with characteristic unequal 2. If every 3-dimensional symmetric bilinear
space over K is isotropic, the forms over K are completely classified by their dimension
and determinant [33, p. 38]. If every 5-dimensional symrnetric bilinear space over K is
isotropic, the forms over K are completely classified by their dimension, determinant and
Hasse-invariant [33, p. 91].
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For a quadratic form ¢ in characteristic 2 we use two other invariants. These are the
Clifford-invariant ¢(g) which is the equivalence class of the Clifford-algebra C(g) in the
Brauergroup {33, p. 333] and the Arf-invariant A(q) [33, p. 340].

Let 2 :V X V— K be a hermitian form over a field K with nontrivial involution *. Let
k :=K". Then K =k(n), where k(1)|k i
chark # 2 andm? +m =:a € k if char k = 2. By defining g, (x) :=h(x,x) we get canonically
a quadratic form ¢, :V — k. A theorem of Jacobson {26, p. 115] says:

(i) A hermitian form % over K is isotropic iff ¢, is isotropic over k.

(2) Two herrnitian forms iy and k- are isometric over K iff g4, and ¢y, are isometric over
k.

The following relations hold for the invariants of %z and ¢, [23, p. 261 ff], [33, p. 350]:

dim(gy) = 2dim(h)
det((]},) — ( )dlm(h)
s(qgn) = (—a.det(h)),
sig(qn) = 25|g(h).
c(gn) = (a,det(h)) and
Algy) = dim(h)a.

Above we have shown that £ is either a syrnmetric bilinear form over K or a herrnitian forrn
over K|k. We keep the notation K* =k. For simplicity let K :=k if f is symrnetric.

k is quadratically closed, chark # 2. Here f must be symmetric, since a quadratically
closed field cannot have a quadratic extension field. Every 2-dimensional space is isotropic,
thus T ~ [1] and tpr(W) = (m,s,11). Hence there are N, orbits if r =0 and N,_; orbits if
r =1 and we have

Ry <Ng+Ng-i.

For example, quadratically closed fields k occur if L is the real quaternion skew field H =
RORiBRjHRij, k =C and x the involution which fixes i and j.

k is real closed, chark # 2. Recall that a field is called real if —1 is not a sum of squares. A
real field is called real closed if no proper algebraic extension field is real. If f is symmetric,
every indefinite form with dim(f) > 2 is isotropic. Hence f ~ [1,...,1]or f ~ [-1,...,—1].
We get

d
Ri<Nygt2Y Ny,
r=I
If is non symmetric, K is algebraically closed and every indefinite form is isotropic. Thus
f~Ti, . 0jor f~[~1,...,~1]. Since without loss we can take a = —1, we have q5 ~
..., |]0rq ~[=1,...,—1] ’
k is cl ﬁmreﬁeld chark # 2. Every 3-dimensional quadratic form over a finite field is
isotropic and there are exactly two non isometric anisotropic quadratic forms {33, p. 39].
Hence, if f is symmetric, we have exactly two anisotropic forrns for r =i and » =2. Th

Ry <Ng+2Ny—1 +2Ny-2.
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Let now f be non symmetric. Since every 3-dimensional form gy s isotropic, Wy contains
an jsotropic vector if r > 1. Hence » < 1 and since the dimension is the only invariant in this
case, we get

Ry <Ngj+ Ny

k is a local field, chark # 2. By a local field we mean a finite extension of the p-adic
numbers @, or the field of Laurent series F,((X)). Let k denote the residue class field of k.
Recall that for the number g of square classes of k holds g =4 if char k # 2 and g =2/% @! jf
chark = 2. Herek is a finite extension of @ [33, p. 217}. Moreover, there is up io isomorphy
only one non split quaternion algebra over k. This allows us to replace the Hasse-invariant
by the Hasse-symbol, which we also denote by s. If f is a symmetric bilinear form with
diagonal representation [ai, .., o], the Hasse-symbol is the product s(f) =TT;; s(c;,;),
where s(c, B) is the Hilbert-symbol defined by

‘ B 1 if (o,p) splits
s(o, B) —{ —1 if (o,P) not splits.

Every 5-dimensional form over a local field is isotropic and there is up to isometry exactly
one anisotropic 4-dimensional form [33, p. 217]. Therefore, forms over local fields can be
classified by their diinension, determinant and Hasse-symbol. Any combination of these three
invariants is possible except when dim =1 or dim =2 and det E —k%. Then s = (det, —1)
[25, p. 171]. Let f be symmetric. Since any 5-dimensional form is isotropic, we have r < 4.
If r =4, there is only one anisotropic form. If » = 3, the invariants det and s are independent.
Since s = =1, the number of orbitsis < 2gN,_s for r =3. If r =2, we have s = (det, —1)
if det € —k. Hence the number of orbits is < (2g—1) Ny, forr=2. If r = 1, we have
s = (det, —1). Thus here the number of orbits is < gN, . For the number of all orhits we
get
Ry <Ng+gNs1+ (28 —1)Ny2+2¢Ng3+Ny4.

If 1is non symmetric, every 5-dimensional form gy 1s isotropic. Hence r < 2. The only
invariants are dim(f) and det(f), since s(q;) = (—a,det(f)). For non symmetric forms the
determinant is an element of k/ Ny (K). Since for local fields k /Ny (K) = Gal(K|k) [24, p
315], we have |/'</NK;,((K)! =2 and hence we get

Ry <Ng+2(Ng-1 +Na—2).

k is a global field, chark # 2. A global field is a finite extension of Q or a finite extension
of F,(X). The completions of a global field at all discrete valuations are the local fields.
Symmetric bilinear forms over global fields are isometric iff the corresponding forms at each
valuation are isometric. This is the famous local-global principle of Hasse and Minkowski
[33, p. 223]. If fis symmetric, the invariants are the dimension, the determinant, the Hasse-
symbols at each non archimedean valuation and the signatures at each archimedean valuation.
If 1is non symmetric, the Hasse-symbols are completely determined by the determinant.
Since the number of square classes is not finite in general, the number of orbits does not have
to be finite either. We give an example in which infinitely many orbits occur:

Consider the quaternion algebra L = (—1,—1)g. L is a skew field with center Z =Q.
Let {1,m,E,nE} be the corresponding standard basis and let K :=Q(n). By (4) we have
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St =QE&. Let (Vf)be a2-dimensional hermitian vector space over L and let f ~ [I,1] for a
L-basis {e] o). Leta,p EL with @ =a; +azn +a3E+am and B =b; Than Thi& +biné,
aihi €Q (i=1,...,4). For V> w :=ae; TBe; holds f(w,w) =ao* + pp*. Since for all
AMEL,A=x +xzn +x3& +x4nE, holds AA* = xf _xg _x§ +)Q21 +2 {x1x2 —x3%4) M +2
(x1x3 + x2x4)E, we get

FOv.w) =2(a} + a3+ b} + BR)E,

if we choose a) = a3, ay = a4, by = b3 and by = by. Thus f(w,w) € ST for any ay,a,,b,b>.
We show that there are infinitely many orbits of such subspaces.

By a theorem of Hilbert and Siegel [31] every positive element of Q can be written as a
sum of four squares. Pick two prlmes P, q E 3(mod4). There exist mﬁmtely many primes of
this kind. Choose w and w' :=(d] +“le amm&)er +(b) +byn +b’n bimE) e such that

fww)=2pt  and  f(w',w') =24¢.

If the K-subspaces Kw and Kw' are isometric, we must have f(w,w) = f(cw’,cw’) for some
¢ E K. Now we show that this is impossible.
Suppose there is such a c. Then 2p€ =c(2¢&)c*, hence

2
p=Nkglc)a  or  p=(ci+ciyg

if c = cy+com, c1,c2 € Q. Both ¢; and ¢, must be different from zero. For instance if ¢; =0,
follows

52 =qr2
ifci =%, nsEQ, (r,s) =1.Thus g|s and hence s =m; g™, (m1,q)=1,n1 #0andr =myp™,
(my,p) =1, ny # 0. Thus we have

m%q2n]- 1 _ m,.p2nz 1
This yields g|m;, hence g|r which contradicts (r,s) = I.
Without loss let ¢y and ¢y be positive. Let ci =:—: with r;,s; ENand (r;,s) = 1,i=1,2.
We get

—to

(}’1‘?2)2 + (ras1 )2
(SISZ)z

This yields gls;s2, hence s; =m ;g™ and s, =myq"? with (m;,q) = 1and n; >0 for at least
one i. Now we have

S
=

2
_n.n_
= 2 _
q s 5

—t2

E rl m2q2n7 47 m2q2n1
q~ mzmzqz(n,+nz) ’
or equivalently
pm2m2q2(n| +np)—1 __ r2m§q2m +r m2q2n1 (1)

ny # ny, ny <nmy, say, multiplication of (1) by g=2" yields g|r2m?. This contradicts
(r2,m;) = 1. Let now be ny =n; =:n. Thus (1) becomes

pmimbg* = = Pmb + rim? (2)
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This is equivalent to

mi (pmiq® ™" — %) =rpma.
Since (my,r;) = 1, we have m|mz. In the same way we get m;|m, hence m; =my =:m.
Finally we have the equation

which contradicts the following theorem from elementary number theory: a natural number
n is a sum of two squares in N iff in the decomposition of »n the exponent of each prime p
with p = 3(mod4) is even [31].

Fields of characteristic 2. First let us exclude the cases (A) and (B). Hence p =0 and f
is always non symmetric. Recall that a field F in characteristic 2 is called perfect if ¥ =F’,
Regular quadratic forms over perfect fields are completely classified by the dimension and
the Arf-invariant [33, p. 342]. In particular finite fields are perfect. If [F :F?] =2, dim(qg),
A(g) and c(q) are a complete set of invariants for a regular quadratic form 4. [F:F?%] =2
holds for algebraic function fields and for local fields [1,p. 167].

k is a finite field, char = 2. If k is finite, r < 1 must hold, since we have, as in odd char-
acteristics, dim(qz) =2 dim(f) and g7 is isotropic if dim(g7) > 3. Since the Arf-invariant
A(gy) is completely determined by dim(f), we get

Ry <Ny+Ny_y.

Local and global fields,char = 2. Local and global fields in characteristic 2 are C-fields.
Recall that a field is called C;-field if for every homogeneous polynomial P of degree d
in n > d' variables the equation P(Xj,...,X,) =0 has a nontrivial solution. Therefore, 5-
dimensional forms are isotropic [1, p. 164], hence r < 2. The invariants of g 7 are dim(gy),

A(le) and c(q7). These are completely determined by dim(f) and det(f). Since det(f) €
k/Niy(K) and [k/Ng i (K)| =2, it holds that

Rg <Ng+2(Ny-1 +Ng-2)

Now we tum to the cases (A) and (B). Only here p # 0 is possible and f is always a non
trace-valued symmetric form.

Finite fields, (A)and (B).If K is finite, it is a perfect field. Then every equation of the
form cX? T4Y? =0 has a nontrivial solution over K. Thus p+r < landf ~[1]if p+r =1.
We have Ny orbitsif p =» =0, N, orbitsif r =1 and Ny_; orbitsif p = 1. For the number
of ali orbits we get

Ry <Ng+Nj-1+Ng-.

Local and global fields, (A)and (B).Since every 5-dimensional form is isotropic, we
have p+ r < 4. For local and global fields in characteristic 2 it holds that [K: k%] =2. A
simple calculation shows that |K /K?| =ee. Thus infinitely many orbits are possible. This we
want to illustrate by the following example: Let V :=(e,e»); and f ~ [1,k] with k E K\K?.
Let W :=W(p,q) :=(pe) +qe2)k, p,q E K. Two subspaces W and W’ :=W (p’,¢') are in
the same orbit iff the corresponding forms f and f' lie in the same square-class of K. But
the forms f can assume values in every square-class of K, since f(pe; +qe2, ey +qe2)
=p?+kg* and K =K? @ kK>,
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5 The Hermitean Case: Cubic Extensions

In this section we consider the case [L:K] = 3. If L is commutative, the involution * is
either the identity or it holds that K ¢ L*, hence [K : K] = 2. Recall that a central simple
algebra has exponent 2 iff it admits an involution of the first kind [32, p. 232]. ThusifL
is non commutative, * must be a unitary involution. In both the conimutative and the non
commutative case it suffices to consider 1-hermitian forms.

If L is commutative, there ism € L™ \ K. Thus {1,m,n?} is a K-basis of L with n* =n.
In the non commutative case one can find a K-basis {1,m,m?} of L such thatn € N; (K) and
n® =a€ Z Since N;(K) =K@ Kn® Kn? and n* is contained in the normalizer, too, we
have * =cn orn* =dn?, ¢,d E K. For this whole section {1,m,1?} shall be a K-basis of L
as above. Furthermore we fix ¢, 3 € L such that ker@ = (¢, )x. Observe that ker® is both
a left- and right vector space, since ¢ :L — K is two-sided K-linear. Moreover, we have
ker@ = (ker@)*.

5.1 Lemmas and proof of Theorem5

The next lemma shows that in the non commutative case not every selection of o and {3 is
possible.

Lemma 39 IfL is non commutative, thenker@ = (1,M)x, ker@ = (1,n?)x orker¢ = (n,n*)x.

Proof. Since ker¢ = (o, B)x is both a K-right vector space and a K-left vector space for all
k € K, ak = pa. TP and Bk =ro. 5B, p,q, 1.5 € K. Without loss we can assume that o =1,
n.n%, 1+6m or 1+ cn? for some b,c € K.

Let B:= x+yn +zn% Then Bk =kx+k%yn +2k% N2 = ro+ sx + syn + s> Leto = 1.
Without loss we can suppose thatx =0. Ify =0o0rz =0, then B € {n,n?}. Sowe takey # 0
and z # 0. Cornparing coefficients yields yk' =sy and k% =sz. But this is only possible for
k EZ. In the same way follow the assertions for o =m and o =n2

If o = 1 4 bn without loss we can suppose that z # 0. If ok = po. T¢P, then g =0. Thus
k+ bk®n = p T pbn. This yieldsp =k and k € Z. If o = 1Fcn?, we get in the same way
thatk EZ. a

We shall apply frequently the following simple lemma:

Lemma 40 Let W be a f'-singular subspace of V and letx € W. Then x! meets every 3-
dirnensional K-subspace of W non trivially.

We now consider the special subspaces mentioned in the introduction.
Lemma4l Let W be a f’-singular subspace. Then comp, W & W> is f-singular.

Proof. It suffices to proof this lemma for vectors contained in W, since comp, W C radsW.

;
By 19 we have W, = @ (e;,ne;)x. We show that the inner products of the basis vectors
i=1

vanish. Let A :=f(e;,e;). Then A,nA,An* and nAn* are contained in kere. If A # 0, we
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have ker¢ = (A,MA)x =: U. The space U is both a left- and a right-vector space over L.
Since An* and nAn* E U, the space U is invariant under multiplication by (n*)? from the
right, too. Let 0 # u e U and u =p +¢gn* +r(n*)2. Then up =up Fugn™ +ur(n*)?. Since
every summand lies in U, also uu E U. Note that {1,n*,(n")?} is a K-basis of L, too. Thus
up € U forall g € L. This yields the contradiction uL C U. O

Lemma 42 Let W be a f’-singular simple triangular subspace and x € W. Let T C W be a
unique simple triangular subspace containing X and Y C W an arbitrary simple triangular
subspace. Thenx LY iff T LY.

Proof. Let T = (x,v,nx+n’y)x. Since by 40 y-NY # 0, there are vectors u, v such that
Y =(u,vnu+nv)x and f(y,u) =0. Let p :=f(y,v). In ker¢ are contained: p, f(y,mu +
n2v) =p(?)*, fFx+n?y,v) =np and f(Mx+n2y,Mu+n%v) =02pM*)*. If p # 0, p and
n?p form a basis of ker @. Then ker is invariant under multiplication by (n?)* =(n*)> and
n* =L (m*)?(n*)? from the right. Like in 41 we get p =0. O

Lemma43 Let T :={x,y,nx+n>y)k be a f'-singular simple triangular subspace.
(D If f(x.x) = f(y,y) =0, then f(x,y) =0.
(@) If f(x.y) = f(v,y) =0, then f(x,x) =0.
(3) If f(x,y) = f(x,x) =0, then f(y,y) =0.

Proof. (1) Let A :=f(x,y). In kero are contained: A, f{x,nx+n%) =A(M*)2, fy,nx+
n%y) =A*n* and f(nx Tn2y.nx+n2y) =ni(n*)? Tn°A*n*. Note that if y € ker @, then
Y € ker @. If L is commutative, we have n E L*. Hence A,mA and %A € ker ¢. This yields
A=0.

Suppose now L is non commutative. Here ker@ = (1,1)x, kerg = (1,m?)x or kero =
(M,n?)k. Suppose kerg = (1,1m)x. Then A= p+4mn, p,q € K, hence \A = p°n +¢°n° € ker
¢. This yields¢ =0and A E K. Recall that n* =¢n orn* =dn?. We getkere > A(n*)? =
Ace®n? orkerg 3 (NA)* =A*dn?. This implies & = 0. The other cases are proved similar.

(2) Let A :=f(x,x). Then A,mA and nAn* € ker@. If L is commutative, nAn* =n2A,
hence A =0. The non commutative case works as in (1).

(3) like (2). O

Corollary 44 A f-degenerate f'-singular simple triangular subspace T & also f-singular.

Proof of Theorem 5. In the proof we need that both {I,af ! Ba~!} and
{1.B Yo, 07 !B} is a K-left basis of L. This is clear for the commutative case. For the
non commutative case by 39 we can choose @ and P such that this is true. Note that in char-
acteristic 2 a trace-valued symmetric bilinear form is symplectic. Thus we can assume that
char K # 2 when * =id.

(a) By 28 it holds that comp; W =rad;W if W is maximal f’-singular.

(b) Without loss we can suppose that tp(W) =(0,r,s,t). Choose w; E W with tpy, () =
2. By 41 we have f(w;,w;) =0. Sincerad;W =0, there is w|, EW such that f(\;,w}) # 0.
Choose wy E Lw; such that f(wy,w|) = 1. Since f(Lw; NW, W) C ker@ = Ka.g KP, follows

WQLVTH = <(XW|,BW|)K.
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If already £ (W), w|) =0, define w} :=w/. Otherwise f(},W)) =L +h*A € L. Choose
wi i=—hwy +W).

Then (wi,w}) is a hyperbolic pair. It remains to show that w} € W. If charK # 2, we
have h = %f(w’,,wl). Since f(w},W)) € ker¢, there are p,q € K such that A = pou+ ¢f.
Hence w| = —(po. T gB)w; + W, € W, because (owy,Bwi)x C W. We now show that in
characteristic 2, too, his contained in ker ¢. Then follows analogously that w} € W. Without
loss let = # id. Then there is £ € K (if L is commutative) or { € Z (if L is non commutative)
such that * = F1. Let f(W),%,) =:v. Now yE S* and Ky C kero imply {y E ker¢.
Defining A :=Cywe have A+ A* =Cy+Cy+y=1.

Since (0w Bwi,w) )k is maximal f'-singular in the hyperbolic L-subspace (w1, w})r, 29
yields W = (awy,Bwy,w) )k LY for a suitable K-subspace Y of W. Then tp(Y) = (0,r —
1,s,¢ — 1) and by induction we getW =W, 4L, W’'. In particular r <t.

(c) Without loss let tp(W) =(0,0,s,t"), where ¢’ :=t —r. By 42 and 43 follows that
rad W5 is triangular. Let Wy =Ws L rad;W;. Then Ws is f-regular and triangular. W5 is max-
imal f’-singular in the f-regular L-subspace LW, since dimg W3 =3(s — j) and dimg LW5 =
6(s — j). Thus 29 yields W =W LY for a suitable K-subspace Y of W. SinceradsWs <Y,
there is a subspace W, such that Y =rad;Ws &, W,. Then W, is a K-substructure with
dimg W4’ =t If rade3_LLW‘{, then l‘adeV3 < rade =0.

Without loss suppose that W5 is f-regular. We have a decomposition

Wy =@DT with T; = (%, 5i,n% + 1’5k

i=1

Let T} ...T;, say, be f-regular and Ty, ...T; not f-regular. Moreover, choose the decom-
position such that k is minimal. By 44 T, ...T; are f-singular. For i =1,...,k holds
T; = (u;,vi,nu; +n?v;) k. By 43 (2) either f(u;,u;) # 0 or f(v;,v;) # 0. Since T; is maximal
f'-singular in the f-regular subspace L7;, by 29 we get W8 =Ty L. . Lo Ti Lp(Di_yy Ti).

Consider now the f-singular 7;. Let T := (¥, 7,n¥+n>y)x be such a subspace. Choose
o*x € T.Since {1,B*(o*) ", a*(B*) '} is a K-right basis of L ({1,0." !B, o~} isleftbasis),
by 22 there is exactly one B*y € T such that

T:= (0" x,B*y, B x+ 0" y)k.

There is a simple triangular subspace T’ such that £(T,T’) # 0, otherwise it would hold that
T CradyWs =0. By 23 we have LT NLT' =0. By 40 there exist nonzero vectors x’,y' E T"
such that f(y,x') =0 = f{x,)'). Hence 42 implies f(x,x’) # 0. Thus

[l 0kx)
FO B x+ary)

f(X,x)a E Koa®Kp and
fx)B E KaoKp.

This yields

f(' %) E(K®KBo )N (Ko~ & K) =K,
since {1,Bo~!, '} is @ K-left basis of L, too. As we consider only 1-hermitian forms we
can suppose f(x,x') = 1= f(x,x) and analogously f(y,y') = 1= f(,y). Sincex’ and y/
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are linear independent over L and 7" is f-singular, we get a hyperbolic sequence x,x",y,y’.
Now T @& T’ is maximal f'-singular in the hyperbolic L-subspace LT ® LT’ = (x,x',y,y')r.
Hence there is a triangular subspace Y < Wi such that W = (T &, T') L Y with tp(Y) =
(0,0,5—k—2,0). Byinduction weget W = (7, ®. T{) L. ... L (T; &, T/), wheres = k+21.

It remains to normalize 7': By 20 (2) T" has a basis of the form {x’, ¥,y +38y'}, where
{1,7,0} is a K-right basis of L. Then

flpd +8/,a*x) = YREKoaDKB — YEKSKBa™! and
fOd +8Y,p*y) = PeKkadKkp = deKGKap™'.

Thus for suitable p,q,7,s € K
(pFgBo ) +(rtsap )y ET.

Then there is ¢ € K such that

7 =Bo ¥ —cop~Y ET.

Since X*,y" and 2’ are linear independent over K, 77 = (x',y',Z') k. We get
T T = (okx, By, Prx+ o' y)x & (¢, ¥, o 1’ —caf™ 'y )k.

Now
f(Z B x+ary) =Bo'B—cop o€ Ko® Kp.
With A :=Bo~! and multiplication by o~ from the right we get

A —cEKL® KA.
Hence there are b,d E K such that
A —c=br+d\?

If L is commutative, then ¢ :NL|K([30r1), since the minimal polynomial of A has degree 3.
If L is non commutative, wecanassume withoutloss that {o,, B} € {{1,n},{1,n*},{n,n?}}.
Then Bor™! =n or Bar~! =n? respectively. Thus we have ¢ =a or ¢ =a?.

(d) follows from (b). O

5.2 Orbits of f'-singular subspaces

We define the f-type tp (W) of W in the cubic case to be the 6-tuple
tp,(W) :=(m,rk,1, j,t 7).

LetW =W, &, Wo &, Ws & Wy and W =W, &, W @ W3 @, Wy be in the same orbit under
U(V, f). Then there is an isometry T : W — W . Since T preserves the GL-type, we have by
Theorem 2 that (W) &1 Ws @, W3). =W @1 Wy &1 W3. By 41 the subspaces W; &, W» and
W, @, W, are f-singular. Thus by Witt’s cancelation theorem LW; and L3 are isometric. This
yields rad W5 =rad;Ws. From this follows that if two subspaces are in the same orbit under
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U(V, 1), they must have the same f -type. Like in the quadratic case this condition is not
sufficient. Moreover there must be an isometry W L (rad ;W5 5, W;) — W{L; (rad, W &,
w)).

We now discuss the question when two subspaces of the same type are in the same orbit.
Let U := W1, (rad;Ws &, W) and U :=Wj 1 (rad, W5 &, W}). Since U is f’-singular,
flu E Koo KB. Define f, to be the a-component and fg to be the B-component of fy,
that is fo(u,v) = p and fa(u,v) =¢q if f(u,v) = pa+¢gB. First must be shown whether
Jo fp :U x U — K are hermitian forms at all. We have to show that there exist involutions
i-and & on K such that fo(u,kv) = fo(u,v)k" and fa(u,kv) = fa(u,v)k* forall u,v EU and
k E K. We consider only f;, since it will be the same for f5. Let f(u,v) = pa. +4B. Then
folu, kv) = pok* = p(ak*o~")a. Therefore we must show whether ihe map k — ok*o.™!
is an involution on K. Obviously this is the case when L is commutative. Thus here we have
T =1 =x|g. The same is true in the non commutative caseif a=1. If a # 1 we can assume
a =n or a =n2 hence gk* =4*°n and n2k* =k*%n>2. There are the cases n* =cn and
n* =dn?, ¢,d E K. In the first case we have (k°)* =(k*)"2 and (k°)* =(k*)°. In the second
case it holds that (k°)* = (k*)° and (k"z)* = (k*)"l for all k € K. Thus forn* =en we
have k(20 = (((k*)9)*)° = ((k%°)*)® = k% = k and (k!)(*°®) = [(*°0)k(*0) for all k,] € K.
Hence % 0 0 is an involution. In the same way one shows that x o 6% is an involution. If
n* =dn?, then k*°9)* = ((k%)**)° =k°". Since not for all k € K holds that k%" =k, 0o is
no involution. In the same way follows that x o is no involution.

Since in the non commutative case not both @ and [ equal 1, the maps f,, and fg are only
hermitian forms if n* =cn. In order to proceed as in the quadratic case, we suppose this to
be the case. Since U (and U) in general contains triangular subspaces, we cannot conclude
like in the quadratic case that U and U are in the same orbit iff £ and fp are simultaneously
isometric (over K) to fi, and fg. But this is the case if both U and U are K-substructures.
However, in general the forms fo and fg (and fo. and fg) may be isotropic and are not given
in diagonal form, since K-substructures in the cubic case in general cannot be diagonalized
over K.

If R(W)Nkero = 0, then W is f-singular by 30. If this is the case for all subspaces, the
number of orbits is finite and independent of the underlying fields. We now consider two
further special cases: Let n be odd. Denote by v the Witt-index of (V, f) and by v the Witt-
index of (V, f/). We can assume without loss that comp, W = 0. If v* is maximal, that is if
V' =3n/2, itholds that W =W+, since W C W+ and dimg V = dimg W tdimg W', From
WL c W follows W+ c comp, W, hence Wt =0. Since V = LW LW, we have V = LW.
The equations

dim; LW r+2s+t n and
dimgW = 2r+3s+t = 3n/2,

yield » =t. Thus W, =0 and hence rad;W; =0. Moreover, if v is maximal, that is v =n/2,
we have V =r+ 21 Sincen/2 =r+s, follows s =2/, hencc k =0. Then all simple triangular
subspaces of W are f-singular. Thus the condition tps(W) =tps (6')is sufficient for W and
W to be in the same orbit under U (V f).



Action of classical groups on varieties associared with skew field extensions 275

6 The Herinitean Case: Extensions Of Higher Degree

In this section we consider skew field extensions L|K with [L: K] =s > 4. We show that the
number of orbits of f’-singular K-subspaces is infinite provided the Witt-index of (V, f) is
greater than zero and K is infinite. To us no counterexample is known when the Witt-index
of (V. f) equals zero. Qur conjecture is that in this case, too, the number of orbits is always
infinite. However, this cannot be proved by the methods used to prove Theorem 6. We give
an example that illustrates that there may occur infinitely many orbits when wi(V, f) =0.

Proof of Theorern 6. Let W be a 2-dimensional K-subspace of L. The map ¢ :L — K
induces via ¢ :L x L — K, ¢(at, B) :=¢(o3*) aregular I-hermitian form over K. Then there
is an unique (s—2)-dimensional K-subspace W’ of L with ¢(W,W’) =0.

First suppose that the Witt-index of (V, f) equals 1. Let (e,¢’) be a hyperbolic pair in
(V,f). The space X :=We@ W’e’ is f’-singular and contained in a maximal f’-singular
subspace U. Since dimg/{e, e’} =2 dimg X, by 29 follows U =X 1Y for a K-subspace Y
of U. The space Y is f-anisotropic, for if Y contained a f-isotropic vector y the space {e, V),
would be f-singular which contradicts the assumption wi(V,f ) =

Let W be another 2-dimensional K-subspace of L and W’ the unique (s —2)-dimensional
K-subspace such that o(W,W’') =0. Let X :=WeaW'e. Then X 1,¥ and U :=X L,V is
maximal f’-singular. We have LU = Li? and if T is an isometry in (V, f) with Ut =0, T is
an isometry in (LU, f), too. Thus we can suppose V =LU. Let {y;,...,y,} be a maximal
L-independent setin Y. Then {e & ,yi,...,y; } is aL-basis of V. Let

et

oe +Pe’ + 2 pv; €U and
J=1

.
€1 = vYe+de'+ ) 65y, €U
J=1

Now oe =0 (y=0) impliesp; =0 (o, =0)forj=1,...,r,since Y is f-anisotropic. Not
both o and y are zero, otherwise we would have the contradiction 1= f(e,e’) = f(et,€'1) =
f(Be',Fe’) =0.
Since .
(We)r = (Wae+... = We+... and
Wet = (Wye+... = We+...,

either Wo, =W or W'y =W, where Yy # 0 is possible only if s =4 for dimensional reasons.
Since by Theorem 3 the number of orbits of 2-dimensional K-subspaces is infinite, there are
infinitely many orbits of maximal f’-singular K-subspaces.

Suppose now wi(V,f) =m > 1and let e;.¢|,...,em, €, be a hyperbolic sequence in
(V,F) LetX :=(We,&W'e}) Ly ... L (We,,®W'e),) and)? (Wel aW'e, VL. L (We,®
V“V’ein). As above there is a K-subspace Y such that U :=X_1;Y and U :=X1,Y are maximal
f-singular. Lett€ U(LU, f) and let {y1,...,y,} be as above. Let

m r
et = Z(X,e,—i-B, z Meﬁ and
= =i
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m S

a4t = Z(Yi@i + 8iel) + Z pjy; € 0.

=1 j=1

As above we get that not all o; and y; can vanish and in the same way follows that there are
infinitely many orbits. 0

Note that in the proof we cannot use Witt’s cancelation theorem to conclude that the
spacesX and X are f-isometric, because f is aform over L, but X and X are K-subspaces. The
following example illustrates that there may occur infinitely many orbits when wi(V, f) =0:

Let L be an infinite field and char L # 2. Let {I,n,n?,n*} be a K-basis of L such that
kero ={1.,n,n?}, o(n?) = Land n* =a EK. Let ¢ be as above. Then wi(L,$) =2. This is
clear, since the space (1,n)x is ¢-singular.

Moreover, for all ¢ € K the space W(c) :=(1+cn?,n —cn’)k is ¢-singular, since

o(1+en?, 1 +en?) o(1+2em* + ™) 0,
@(i+cni,n—cni) oM+’ —en’ +c’n’) = 0 and
om-—en’n—en’) = on?-2em* tcin®) = 0.

We now show that there is an infinite sequence (c;)e; in K such that W(c;) and W(c;) are not
in the same orbit under . if i # j . We need the following easy lemma, see [28, p. 129]:

Lemma 45 Let K be an infinite field and P(X,Y) a nonzero polynomial over K. Then there
is an infinite sequence (a,),e; in K such thatfor all i,j € | holds P(a;,a;) #0ifi #j.

We suppose that the spaces W (c) and W (d) are in the same orbit under L. Then there are
A€ L and p,q,r,s € K such that

1t = p(1+an?) tg(n-dn’) and
M=—em)r = r(1+dn?)+sm—dn?).

Elimination of A yields

0 = p +dn3 —CT]3 —acdn) +61(T]2 —ad —ac +acdn2)
= (i tan? +en? tacd) —s(m Ten® —dn® —acan).

We get the four equations

ga(c td)tr(1+acd) = 0, (1
p(1 —acd) —s(! —ncd) = 0, (2)
g(l+acd) —r(c+d) = 0. (3)
p(d—c) Fsd—-c) = 0. “)

First suppose ¢ =r =0. Then either p or s must be different from zero. Since d # c, froin
(4)follows that s =—p. Then (2) yields

2p(l —acd) =0,
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By 45 there exists an infinite sequence (ci) such that i —ac;c; # 0. Hence there are infinitely
many orbits.

Now letg =0and r # 0. Then (1) and (3)yield I —ac* =0. Hencea = . Sincen* =a,
we have 12 ==L, This is a contradiction, since n? ¢ K. For g # 0 and r =0 follows in the
same way thatn? E K.

It remains to consider the case g 0 and r # 0. Now 1 +acd =0 iffc +d =0. In this
case we get as above the contradiction 2 € K. Thus both 1+acd and ¢ +d are different from
zero. From (1) and (3) follows

a(ctd)? +(1+acad)® =o.

By 45 we get that there are infinitely many orbits.
Now let {ey,...,e,} be a L-basis of V and let f ~ [i,...,1]. Then all subspaces of the
form
Uc) ;=1 ,W(c)e;

aremaximal f’-singular. If U(c) is in the same orbit as U (d), there is A E L such that W (c)A =
W(d). Since there is an infinite sequence (ci) such that W (c;)A # W(c;) forall L € Lif i # j,
there are infinitely many orbits.
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