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ON THE p-STRESS ENERGY TENSOR AND ITS APPLICATIONS
TAE HO KANG, TAE WAN KIM

Abstract. We define the p-stress energy tensor and obtain a monotonicity inequality and
Liouville-type theorem for p-harmonic maps.

1 Introduction

Let f:(M,g) — (N,h) be a smooth map between Riemannian manifolds with metrics g and
h respectively. Then its energy density e( f) : M — R is defined by

N N,
E(f) T 2|df‘ y

where | -| denotes the Hilbert-Schmidt norm of the differential d f of f, which is the differen-
tial 1-form with values in the induced vector bundle f~!'TN(TN = the tangent bundle of N)
over M. A.H. Taub suggested that the stress energy tensor, which is defined by

Sei=e(f)g—f"h

should be useful in the theory of harmonic maps(see [1]), where f*h denotes a pull-back
2-tensor field by f, which 1s symmetric and semi-positive. Indeed, recent developments have
confirmed Taub’s prediction (cf.[1,4,5]).

In this note, we define the p-stress energy tensor of f and show that it 1s closely related
to the theory of p-harmonic maps.

2 Preliminaries

Let (M,g) and (N,h) be Riemannian manifolds of dimension m and n respectively. For a
smooth map f: (M,g) — (N,h) and each p € [2,o0), the p-energy density e,(f) and the
p-energy E,(f) of f are respectively defined by

1
ep(f) = ;]dﬂ‘”,

Ep(f) = [ ep(f)dve,

where dv, is the volume element of M. The p-energy E,(f) may be infinite, but when M is
compact, it has to be finite. We call a symmetric 2-tensor S}

Sp=ep(f)g—ldfI" > f*h
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the p-stress energy tensor, which 1s a natural generalization of the stress energy tensor S¢. A
smooth map f 1s said to be p-harmonic 1if it 1s a critical point of p-energy tunctional, that 1s,

dEp (fr)
dt

= ()
1=()

for any one-parameter family of maps f, : M — N with fy = f. Note that 2-harmonic maps are
harmonic maps by definition. We denote by V and 'V the Levi-Civita connections of M and
N respectively. Let V denotes the induced connection on the induced vector bundle f~!'TN

from ¥V and f. For a local orthonormal frame field {e;}, on M, we define the p-tension

field T,r;r(f] of f by i=1

,(f) =30 Ve (Jdf1P2df (e) = |df1P2d f(Vee,) 2.1
—2:’;][ (ldfP2d))en).

where V is the induced connection on the vector bundle 7*M & f~!' TN. In the case of p = 2,
T,(f) 1s nothing but the tension field t(f). The first variation formula (cf.[3]) for a smooth
map f : M — N is given by

dE,(f;)
dt

— —‘/+ h(V,‘EF.(f))di{qj
M

|l
-

!

where V ;= ¢ f" If o may be viewed as a vector field in N along f, thatis, V € T(f_'TN)(:the

set of SI]’lGG[h cross-sections of £~ !'TN). Therefore a smooth map f : M — N is a p-harmonic
map if and only if the p-tension field t,(f) = 0. In the sequel we use the same notation V
to denote different connections on different bundles and use summation conventions, namely
summing up repeated indices over the range of indices unless otherwise stated.

3 Some properties of the p-stress energy tensor

In this section, we calculate the divergence of S} and obtain two important integral formu-
las, which are useful to study monotonicity inequalities and Liouville-type theorems for p-
harmonic maps. First of all, we have

Theorem 1 The p-stress energy tensor Sy of any smooth map [ : (M,g) — (N,h) has diver-
gence

divSy = — < 1,(f),df >, 3.1

where d hffff denotes the divergence r,gf'Sm_;;
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Proof. Choose a local orthonormal frame field {¢;}"

i=1
V. ejlx =0. Forany X € T.M and at the point x
@divS)(X) = (VoS)(enX)
Ve (Sr)(ei, X) —Srlei, Ve, X)
= V., [Lldf1Pg(e,X) — [df|"2h( fuei, £.X)]
— | L1df1Pg(e Ve X) — dfI72h(frei, £V X))

= |df|"h(Vx feei, frei) = (V{:,-Idf'l”jz)h(ﬁehf;)f )
—|df|P2h(V,, frei, fX) +|dfIP 20 frei, Ve X)

~[df 177 h( fueir (Vod ))(X) + £V, X)
= —h((Veldf172) fuei +|df172Ve fuei, £.X)

= —h(Ve(ldfP2df)(e). £.X)
= —h(Ty(f),df(X)).

near an arbitrary point x € M with

The following Corollary 3.2 and 3.3 follows immediately tfrom Theorem 3.1.
Corollary 2 Any p-harmonic map satisfies the p-conservation law ,i.e., d fvﬁf = ().

Corollary 3 Let f: (M,g) — (N,h) be a Riemannian submersion. Then [ satisfies the p-
conservation law if and only if { is p-harmonic map.

A smooth map [ : (M,g) — (N,h) is called a weakly conformal if there exists a function
A on M such that f*h = A%g. In case of A being constant, f is called a homothetic map.

Proposition 4 Suppose [ : (M,g) — (N,h) is a smooth map with rank one at least. Then
Sy =01ifand only if dimM = m = p and [ is weakly conformal.

Proof. Assume that §; = 0. Then we have
o I . N2
$,=0 = Lldfirg = [dfP-2fh
A B I L L
= Sldf|P =df|f

= ’”f;*”\df\ﬁ — ().

This means that m = p. Also we have from S; = 0
l ]
~ldf’g=f"h
p

which implies that f is weakly conformal by putting }';\d f F —: A*. Conversely, assume that

f*h = A*g for some function A on M. Then we obtain A% = % So, we get f*h = -“iilhg,
Substituting these into Sy, we have

e L ] . -

S = ldrg—ldfir2 .

= Ly AM(m—p)g.

I

Therefore S; = 0 if m = p. L]
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Proposition 5 IfdimM =m > pand f: (M,g) — (N,h) is a weakly conformal map, then f
is homothetic if and only if it satisfies the p-conservation law (i.e., divSs = 0).

iy

Proof. Choose a local orthonormal frame field {e;}", near an arbitrary point x € M with
Ve.ejlx = 0. Under the assumption that f is weakly conformal, the equation (3.2) holds. If f

1s homothetic(i.e., A is constant), then the divergence of f ¢ at x 1s given by

—~ 1 1—2
(divSp)(X) = =m"T A (m— p)(V.,g)(e1,X) =0
| p
for any tangent vector X € T,M. That is, f satisfies the p- conservation law. Conversely, we
also obtain from (3.2)
0 =(divSp)(X) =LmT (m—p)g(e;, X) Ve
= ﬁm’ﬂl—“(m— p)Vx A,

which gives VxA” = 0. Thus A is constant.

Proposition 6 [f the support of a vector field X on M (=: supp(X)) is compact, then

22
e

/(dfvg_;‘)(X)dU§+/ {S{,VX > db’g:U.
M M

Furthermore, if D is a compact domain in M with its smooth boundary oD, then

fa.’) Eﬁ(f)g(xi”) d"*’g — . ;:JD |df|'”:2h(fof*H) dvg 34
+ I (divS) (X)dvg + f < 7, VX > dvg. -

where N is a unit vector field normal to the hypersuface dD of D, VX is a 2-tensor field defined
by VX(Y,Z) := g(VyX,Z) for any vector fields Y and Z on M and < -,- > denotes the inner
product on 2-tensor fields.

Proof. Let X be any vector field on M. Then we have

div(ep(£)X) = (Veep(N)e(X,ei) +ep(f)e(VeX,e) 3.5
= Vxep(f) +ep(f) < VX, g >, |

where {¢;}, is a local orthonormal frame field near a point x € M with V,.¢;|, = 0. Note

that at x

VXE!J(JC) = |\df ”_ZH(VXJF*Ehf*EE)
df1P"h((Vedf)(X), feei)
— df FHE[VE;-h(f*X:f*EE) _h(f;#Xavﬁf*f’i) 36
—g(V X, e;)h(feej, feei)] ‘
= |df|P P [div(h(f:X, feei)er) — h(f. X, T(f))
— < VX, f*h >|,

where T( f) denotes the tension field of f.
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Substituting (3.6) into (3.5), we obtain

divie,(H)X) = |df|P2div(h(f.X, feei)ei) — |dfIP72h(£.X,T(f))

+ < VX, Sldf|Pg —|dfIP=2f*h >

df|P~2div(h(f.X, feei)er) = |[df|P~*h(£X,T(f))

+ < VX,S¢ >

= |df|P-2div(h(f.X, feei)er) = h(£.X, V. (|dfI7~2d f)(e:))
+VeldfI”h(f. X, frer)+ < VX, 5 >
div(|df|P2h(f. X, feei)ei) — h(fX,T,(f))

+ < VX,57>.

3.7

If supp(X) is compact, integrating both sides of (3.7), then using Green’s theorem and
Theorem 3.1 we have the integral formula (3.3).

For the proof of the second formula (3.4) we take a local orthonormal frame field {e¢; }"
of M along dD such that ¢;,---,¢,_; are tangent to dD and n = ¢,, is normal to dD. By
Green's theorem

dflr’Xd‘u’,;:f g(Xaﬂ)dVg:
D ' aD

integrating (3.7) again over D gives the formula (3.4). ]

4 A monotonicity inequality and Liouville-type theorem for p-harmonic maps

In this section, using the integral formulas (3.3) and (3.4), we shall prove a monotonicity
inequality and Liouville-type theorem for p-harmonic maps. The proofs are based on those
for harmonic maps due to Y.L.X1([4,5]).

Theorem 7 Let (M,g) be an m-dimensional Riemannian manifold, and Bg(x) its geodesic
ball with radius & and centered at x € M. Suppose that the distance from a point xo € M to
its cut locus and the boundary of M is at least one. If f : (M,g) — (N,h) is a p-harmonic
map, then for any x € B% (xg) and 0 <o <p < %

ECﬂGGﬁJ—FH/ E’F(f)dug E Eﬂ*ﬁppp—lllf E;;(f)dlf’g, 41
Bg(x) Bp(x)

where C is a constant depending on m and A is a constant depending only on the bounds of
the sectional curvature in By(xp).

Proof. Let r be the distance function in B 1 (x) from x, and % the unit radial vector field. Let

ol

X=E0)ra.

where &(r) will be chosen later. Let us derive (4.1) by using (3.3).
Choose a local orthonormal frame field { ¢, % Hoo=1,---,m—1). Then

, 0
VoX=(Er+d)s.
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and

VEJ{.IX — grviﬂ U‘|
=é}"[§;‘( ;;ni,g)ar'l'g(vfnﬂ E')FB]
= E:,F‘HE.E'S(F')(ff[;uf”ﬁ)eﬂa

where Hess(-) stands for the Hessian operator.
If the sectional curvature in B (xg) lies in {«, b, then, by using Hessian comparison theo-

rem, 1.e.,
V |PIF(\/|blr) < Hess(r)(eo,eq) < \/|alF(\/|a|r) 4.2

for each o, where

vercot(y/cr), ¢ >0,

cirF clr) = I, ¢ =0,
Vel (Vlelr)

v —crcoth(y/—cr), ¢ <0,

and
lelrF (Vielr) = 1| < ra 43
we have
divX :g(V£X1%)+£fvcﬂuX:€u) 4 4
> '+ &+ E(m—1)/TolrF (\/[blr),
and

< f*h, VX >=  h(f.eq, f{f )g(Ve, X, fi’ﬁ)
+h(fﬂjf$m)g(V1fth)
SrHess(r)(eq. ep)h(freq, frep)
Efﬁ*ih( "{]r T)
Erh(freq, frea)\/|alF (\/]alr) 4.5
HEr+eh(f 2S5 )
= &rldf|*\/]alF(y/|alr) -I—Erh(f-ﬂ fﬁ%)
+a{l—r \a|F ( \air)}h(}‘* 2, fr m)

On the other hand, the formula (3.3) and the definition of §; show that

|

VAN

0= [y, <87, VX > dv,
= Jupldfl’ < g, VX > dv, 4.6
— [y ldf]P2 < f*h, VX > dv,.

The first equality follows from the assumption that f 1s p-harmonic.
Substituting (4.4) and (4.5) into (4.6) yields

0> fu ['dfi’”gff'" (p—m)|dfI1PE+ \df\*”&(mm 1){mrF(\/mr) ~1}
2

+pe {1 = VIalrF (/T Y 17 - per] . 2| a2
—p&{1 —/lalrF(\/]alr)} | £ [\aw—?]du




On the p-stress energy tensor and its applications 241

Noting (4.3), we have

— [y ldfIPE rdvy + (p—m) [, |df1PEdv,

2 5
+Hm+p—1)A [y |ff.ﬂ‘”f‘~id1{s: > “.]:w pSr|fag:| ldf1P“dvg 4.7
— [y P& = /a|rF(y/|alr)} 17 2dv,,.

Choose a smooth function

1, forre|0,1],
o) = { 0, forze[l+g o0),

and ¢’ <0, where € > 0 is a sufficently small number. For r € [G,p] set

Then 3 l
1o (&) = —r8i(n), &= /(2 )
and

Eor =0 (;)r<{|}( )( te)=E(1 +6)T.

Substituting these formulas into (4.7) gives

8

Too E,ﬂdﬂfdvg p—m)/ g-[\dflf”fhﬁjLCTA/ ctld f|Pdv, > 0,

where C = (1 +¢€)(m+ p — 1), which means that

a y—ni ‘ = }
o ( At /M Celd f rh-'ﬁ) > ().

Thus we complete the proof. L]

Theorem 8 Let M be a Cartan-Hadamard manifold (i.e., complete simply-connected Rie-
mannian manifold of nonpositive sectional curvature) whose sectional curvature varies in d
small range (the precise range will be seen in the proof), and f a p-harmonic map from M
into any Riemannian manifold N with finite p-energy. If dimM = m > p, then f has to be
constant.

Proof. Let D = Bg(xg) be a geodesic ball of radius R and centered at xy. Its boundary dBg(xp)
1s the geodesic sphere. Obviously, the square of the distance function from xg in Bg(xg) is
smooth. Let % denote the unit radial vector field which 1s also the unit normal vector field n

to dBr(xg). Choosing X = r 9 in the formula (3.4), we have

Jr
I::}H;,g 't'{}} {Jf](f)g(xn) dvﬁf a ]{'}H 1” ‘d»f ‘;J_Eh(l‘ X f*n)drﬁf
= rE]HH Re (f) d”y - .I;ZHH,-;:[:AI}]IR‘E!J(IF °/ ?(}(mﬁl— fe3 o ) d"ﬂ 4.8

VA

-rt"}HH{.l'n] R{?P(f.) ‘dv}; .
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On the other hand,
0
Yyt =
Ve X =1V, 2
= rHess(r)(eq,ep)eg,
divX = 14rHess(r)(ey,eq),
where {em 2 o ] is a local orthonormal frame field on Bg(xp). Thus,

;'I(f*f?nf*f'r) (V“X Ef)
:FHE'-‘H( )(EEI € )h(f E’D’:nf#fjﬁ)‘l_;?( *'} }f*a})

and
<S;/ VX >= <e,(fg—I|df" > f*h, VX >
= ¢,(f) <& VX > —|df|P~* < f*h,VX >
f-’*’;:( fldivX —|df|"~ h(fees, fre)8(Ve, X er)
ep(f)|1 +Hess(r)(eq,eq)]

—[d |72 |rHess(r)(eq, ep)h( fueos foep) +

!

where s,t € {1,---,m} and e, = %

4.9

az]

We consider cases when the sectional curvature K of the domain manifold satisfies one

of the following conditions;

(1) —a* <K< —b*<0, a,b are positive constant,

(2) — 1fr3 < K <0, A is another constant.

Case (1). By using Hessian comparison theorem (4.2), (4.9) becomes

<Sp, VX >> ;];}df\f} [l + (m—1)(br) cath'(br)]

—df1P2||fo 2|+ (ar) coth(ar)h(fuca, fuco)]
- %|dfl!’*'3 [|df\2{l + (m — 1)(br) coth(br) 0 |°
—plar) coth(ar)h(fueo, fuea)

;;I il “[ plar)coth(ar)h( fieq, freq) —
+{h(freq foea) +
Lid f|P-2 [{ |+ (m — 1)(br) coth(br)
—plar)coth(ar) }h( fieq, freq)

+{1+ (m—1)(br)coth(br) —

?

|

A i+ - l}(br)mth(br)}]

4.11

> Ldf7=2{{1 + rcoth(br) (b(m — 1)~—;m)}h(f;ea.,f*ea>
' 2
+m=p)|f | ]
> 2ldf|r
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where 0 > 0, provided b(m — 1) — pa > 0. Thus we have

Bg(xp) Brlxp) |

Theretore combining this with (3.4) and (4.8) gives

R/ ep(f)dvg >0 ep(f)dvy.
JOBR{xq)

J Brixp)

If the p-energy density e,(f) does not vanish identically, then there exists Ry > 0 such
that for R > Ry,

f ep(f)dve > C,
Br(xo)

where C is a positive constant. Hence

oC
EJ ;(_f;’dl’]r :E T .
~[33H[-m] f i R

This implies that
Iuepfldvy = [y dr féB,.(.n,} ep(fdvg
2 J;Z dr f&ﬂ,-(_rﬂ.) ep(f)dv,
> I, C Iy — oo,

.
which contradicts the finiteness of the p-energy. Therefore f has to be constant.
Case(2). If the sectional curvature K satisfies K > — 4 then, by Hessian comparison

| _ R
theorem (see [2]), 1.e.,

~ |2

1
—(g—drodr) < Hess(r) < =(g—dr®dr),
r

where B = 5 + (I+4A)%,weget

2

I —

<S§p,VX > >2df)r—|df|"~

= % df p—2 -m}dﬂz —p

= 11df|P=2| (m~ p) fj"}j—
> 0ep(f) -

1. 2| = Bldf1P-2h( fucas fuca)
f*‘,% = th(f*Eﬂ:f*E{I)}
4 (m = pB)h(frea freo)]

for some constant 6 > 0. Hence, for the proof of the rest part, we can argue as that of Case
(1).

Theretore we complete the proof.
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