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THE SUBMANIFOLDS X,, OF THE MANIFOLD xg - MEX,
I. THE INDUCED CONNECTION ON X, OF xg — MEX,

KYUNG TAE CHUNG, MI SOOK OH, JUNG MI KO

Abstract. An Einstein’s connection which takes the form (2.33) is called an *g-ME-connec-
tion. Recently, Chung and et al ([1 5], 1993 ) introduced a new manifold, called an n-dimensio-
nal * g-ME-manifold(denoted by *g-MEX,). The manifold *g—MEX,, is a generalized n-
dimensional Riemannian manifold X,, on which the differential geometric structure is imposed
by the unified field tensor * g™ m satisfying certain conditions through the * g—ME-connection.
In the following series of two papers, we investigate the submanifold X,,, of " g—MEX,,:

I. The induced connection on X,, of *g-MEX,,

II. The generalized fundamental equations on X, of *g-MEX,,
In this paper, Part I of the series, we present a brief introduction of n-dimensional ~g-unified
field theory, the C-nonholonomic frame of reference in X,, at points of X,,, and the manifold
*e-MEX,. And then, we introduce the generalized coefficients of the second fundamental
form of X,, and prove a necessary and sufficient condition for the induced connection on X,
of *g-MEX,, to be a *g-ME-connection. Our subsequent paper, Part Il of the series, deals
with the generalized fundamental equations on X, of *-MEX,,, such as the generalized Gauss
formulae, the generalized Weingarten equations, and the Gauss-Codazzi equations.

1 Introduction

In Appendix II to his last book Einstein ([18],1950) proposed a new unified field theory that
would include both gravitation and electromagnetism. Although the intent of this theory is
physical, its exposition 1s mainly geometrical. It may be characterized as a set of geometri-
cal postulates in Xy, Hlavaty ([19],1957) gave its mathematical foundation for the first time.
Since then Hlavaty and number of mathematicians contributed for the development of this
theory and obtained many geometrical consequences of these postulates.

Generalizing X4 to n-dimensional generalized Riemannian manitold X,,, n-dimensional
generalization of this theory, so called Einstein’s n-dimensional unified field theory (denoted
by n-g-UFT hereafter), had been attempted by Wrede ([23],1958) and Mishra ([21], 1959).
On the other hand, corresponding to n — g—UFT, Chung ([1], 1963) introduced a new unified
field theory, called Einstein’s n-dimensional * g-unified field theory (denoted by n —* g-UFT
hereafter). This theory is more useful than n — g-UFT in some physical aspects. Chung and
et al obtained many results concerning this theory ([2]-[5], 1968-1983; [4],1981; [9],1988;
[16][17];1998), particulary proving that n —* g-UFT is equivalent to n — g-UFT so far as the
classes and indices of inertia are concerned ([6],1985).

Recently, Chung and et al ([7],1987) introduced a very interesting manifold, called n-
dimensional SE-manifold (denoted by SEX,, hereafter), imposing the semi-symmetric con-
dition to the Einstein’s connection of X,,, and displayed a unique representation of the n-
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dimensional Einstein’s connection in a beautiful and surveyable form in terms of g;,. Many
results concerning SEX,, have been obtained since then ([8],1988; [10]-[14],1989-1991).

An Einstein’s connection which takes the form (2.33) is called a *¢g-ME-connection. Re-
cently, Chung and et al ([15],1993) introduced a new manifold, called an n-dimensional *g-
ME-manifold (denoted by *g-MEX,,). The manifold *¢g-MEX,, is a generaliwed n dimen-
sional Riemannian manifold X,,, on which the differential geometric structure is imposed
by the unified field tensor *g"V satisfying the present conditions through the *g—MEX,,-
connection (see above Definition (2.11) for the words “the present conditions™). In the fol-
lowing series of two papers, we 1nvestigate the submanifolds X, of *g-MEX,;:

1. The induced connection on X,,, of "g-MEX,,
II. The generalized fundamental equations on X, of *g-MEX,,

In this paper, Part [ of the series, we present a brief introduction of n-dimensional *g-
unified field theory, the C-nonholonomic frame of reference in X, at points of X,,,. and the
manifold *g-MEX,,. And then, we introduce the generalized coefficients of the second funda-
mental form of X,, and prove a necessary and sufficient condition for the induced connection
on X,, of "g-MEX, to be a *g-ME-connection. Our subsequent paper, Part II of the series,
deals with the generalized fundamental equations on X,,, of *g-MEX,,, such as the generalized
Gauss formulae, the generalized Weingarten equations, and the Gauss-Codazzi equations.

2 Preliminaries

This section 1s a brief collection of basic concepts, notations, and results, which are needed
in our subsequent considerations. It consists of three subsections; the first subsection (2) is
mostly due to [1], the second subsection (b) due to [10], and the third subsection (c¢) due to

[15].

(a) n-dimensional *g-unified field theory. Corresponding to the Einstein’s n-g-UFT!,
our n —" g-UFT, initiated by Chung ([1], 1963), is based on the following three principles.

Principle A.  Let X,, be an n-dimensional generalized Riemannian manifold referred to
. . . . ! .
a real coordinate system x", which obeys the coordinate transformation x¥ — x¥ for which

det(gf) £0 2.1
CA

In n-g-UFT the manifold X, is endowed with a real nonsymmetric tensor g2, Which may be
ad inta 3 : : 2
decomposed into its symmetric part Ay, and skew-symmetric part k), ,

& = Myt Ky 2.2a

where
g = der(gly) 75 O:r [] = det (hl,u) # 0 2.2b

'Hlavaty characterized Einstein’s 4-dimensional unified field theory 4-g-UFT as a set of geometrical postulates
in X4 for the first time [19] and gave its mathematical foandation.

*Throughout the present paper, Greek indices are used for the holonomic components of tensors in X,;. They take
the values 1,2,..., and follow the summation convention. We also assume that n > 1 in this paper.

—
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In n-*g-UFT the algebraic structure on X,, is imposed by the basic real tensor *g™ defined by

* lef * VA '
gV = g gt =) 2.3

It may be also decomposed into its symmetric part *#*Y and skew-symmetric part *k* -

:e:g?w __* h?w _1._=+= kl‘u oy

Since det(*h™) # 0, we may define a unique tensor “hy,, by
# : ?t..-"l-" d_Ef v
Iy W L8 2.5

In n-*g-UFT we use both *h™ and *hy,, as tensors for raising and/or lowering indices of all
tensors defined in X, in the usual manner. We then have

T kPO *h?blj *h.uﬁﬂ *3}4; — *gpﬁ *hhp *hﬁﬁ 2.6a

soO that
‘O = Mg+ 2.6b

Principle B.  The differential geometric structure on X,, is imposed by the tensor *g*
by means of a connection FL defined by a system of equations 3

Dy, * g™ = —28uoH * g 2.7a

Here D¢ denotes the symbol of the covariant derivative with respect to F;;u and §,," is the
torsion tensor of T’;’bﬂ* Under certain conditions the system (2.7) admits a unique solution
FL. A connection satisfying (2.7a) 1s called an Einstein’s connection in n-*g-UFT.

Principle C.  In order to obtain *g”V involved in the solution for I“Lf certain conditions
are imposed. These conditions may be condensed to

S dt S =0, Rup) = a[}uY;:L], Rypy =0 2.8

where Y, is an arbitrary vector, and R, " together with R, and Vi, are the curvature tensors

of X, defined by
vV def

vV v L
Rowr. = 2000, Ty o) + T [ Ty ")) 2.9
def def
Rpl - Rmyla:f Vm,u - Rmyntm 2.10
In the following remark, we summarize the main differences between n-g-UFT and n-"g-
UFT.
3Hlavaty ([19]) proved that system (2.7a) i1s equivalent to

Do g = 2Swu" &t 2.7b
which 1s also equivalent to the original Einstein’s equations

amglp_-r%mg[m_r?up g:ﬁ.&:[} 2'?‘:
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n—g—UFT . .
Remark 1 /n ‘f , the algebraic structure on X,, is imposed by the tensor
n—"g—UFT
the tensor Ay, and its inverse tensor 7Y -
‘f’}“ﬁv , and e . ) are used for raising and/or
g the tensor *A2™" and its inverse tensor hay,

lowering the indices of tensors in X,, . On the other hand, the differential geometric structure
Humn—g—UFT

*oMinn—*¢g —UFT
(2.7b)
(2.7a)

on X, is imposed by { through the Einstein’s connection T{H satisfy-

: 2.7b _ : . . .
ing { ( ) . Therefore, if the system { admits a unique solution, the connection

(2.7a)

v . g nn—g—UFT o (2.7b)
Flp will be expressed in terms (}f{ £V in 5 — ‘o _UFT in virtue of (2.74) -

The following quantities are frequently used in our further considerations:

‘g=det("gy,), “b=det("hy,), “t=det("ky,) 2.11a
o8 L, Tt
h h
0, ifniseven ‘
““{ I, ifnisodd 21l
KP — *k[ﬂilul #kﬂiﬂz o '*kﬂp}upi (p =0,1,2,-- ) 2.11d
V=8, Py ="k VY, (p=12,) 2.11e

Using these notations we may prove the following two theorems.

Theorem 2 The following relations hold in X,, ([4]):

{p}*klp = (—1)? [F)*kﬁh (p=0,1,2,--) 2.12a
Ko=1, K,=Tkifniseven, and K,=0 ifpisodd 2.12b
n—0
g= Y K, 2.12¢
s=0
n—Qg
S K" =0 2.12d
s=0

Here and in what follows, the index s is assumed to take the values 0,2,4,--- in the specified
range.
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Theorem 3 If the system (2.7) admits a solution I'L , it must be of the form ([1])

l;; {l,u} +S?'..y *Uul,u 2.13

where *{ fy} are the Christoffel symbols defined by *hy,, and

U= 5p0" "h” + 8780 "k — SP) "kp 2.14

(b) The C-nonholonomic frame of reference in n-*g-UFT.

This subsection deals with a brief introduction of the concept, the C-nonholonomic frame
of reference in X, at points of its submanifold X,,, m < n, in n-*g-UFT. It is based on the
symbols and results of [15].

Agreement 4  In our further considerations in the present paper, we use the following
types of indices:

(a) Small Greek indices o.,P,Y,- -+, running from 1 to n and used for the holonomic compo-
nents of tensors in X,,.

(b) Capital Roman indices A,B,C,---, running from 1 to n and used for the C-nonholonomic
components of tensors in X, at points of X,,.

(c) Small Roman italic indices i, j,k,--- with the exception of x,y and z, running from 1 to
m(< n).

(d) Small Roman italic indices x,y and z, running from m+ 1 to n.

The summation convention is operative with respect to each set of the above indices within
their range, with the exception of x,y and z.

Let X,,, be a submanifold of X,, defined by a system of sufficiently differentiable equations
},‘h’ :yv(xltjxm) 2.].5

where the matrix of derivatives BY = %i, is of rank m. At each point of X, there exists the

first set {BY,N} } of n linearly mdependem non-null vectors. The m vectors B are tangential
to X,,, and n — m vectors NV are normals to X,,, and mutually orthogonal. That is,

*hap BENP =0, “hogNONP =0 for x#y 2.16a

The process of determining the set {NY} is not unique unless m = n — 1. However, we may
choose their magnitudes such that

*hap NENP = g, 2.16b

where €, = +1 or — 1 according as the left-hand sides of (2.16b) 1s positive or negative. Put

BY, if A=i=1,---,m
oV i ' ? : 2.17
Ea { Ny, if A=x=m+1,---,n
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Corresponding to the first set {E) } of » linearly independent vectors, there exists a unique
second set {E“} of linearly independent vectors at points of X,, such that

ELEY =98], ELEY =354 2.18
Putting |
B: f A=i=1,---.m
H: Al , 3
£a {Ni it A=x=m+1,---,n 219

we note that the vectors Bi and Ny are also tangential and normal respectively to X, in virtue
of Theorem (2.6).

Now, we are ready to introduce the following concept of C-nonholonomic frame of refer-
ence and induced tensors.

Definition S  The set E; and EX will be referred to as the C-nonholonomic frame of ref-
erence in X, at points of X,,. This frame gives rise to C-nonholonomic components of ten-
sors in X, if T}E " are holonomic components of a tensor in X,, then at points of X, its

C-nonholonomic components Té"_:j‘ are defined by
T4 =T Eg--Ep--- 2.20a
In particular, the quantities

Tl =18 BB 2.200

are components of a tensor in Xy, and are called the components of the induced tensor of T)""
on X,, of X,.

In virtue of (2.18), an easy inspection shows that

T =T§ EN---E}-- 2.21

The following theorems are consequences of the powerful C-nonholonomic frame of ref-
erence.

Theorem 6 The tensors B}, E,N;,N{, and

B) =B, B! 2.22

are involved in the following identities:
ByBY =8, NyN}=8&, B,NJ}=NyB}=0 2.23
5 = BS "y " h 2.24a

BY = BL *h"**h;; 2.24b



The submanifolds X,, of the manifold xg — MEX, 219

*hY*BL =*h'BY, *hyBY="h;;B] 2.25
By =38 — > Ny Ny 2.26a

By No = By Ny' =0 2.26b

BYB., =B,, BYBY=B), BBY=B8) 2.26¢

Theorem 7 At each points of X,,, a vector X, of X, may be expressed as the sum of two
vectors X; By and 3 X, Ny, the former tangential to X,, and the latter normal to X,. That is
X

Xp, =X B\ + ) X Ny 2.27a
X
or equivalently |
XV=X'BY+) X*N; 2.27b
X
where
Xi=XuBY, Xi=XoN% Xyi=¢£X" 2.28a
X'=X*B,, X*=X“Ni 2.28b

Furthermore, X;(X') are components of a tangent vector relative to the transformations of
X, while X, (X*) is invariant relative to the transformations of X,, and X,,.

Theorem 8 The induced tensor *g;; of *gy, may be given by

$gu —— *&IB B?’ BE-; 2.29a
where its symmetric part “h;; and skew-symmetric part *k;; are
*hij = *hap B BY, *kij = *kap BY B 2.29b
so that
“gij = "hij+ ki 2.30

In this paper, we restrict our considerations to submanifolds for which the following con-
dition holds:
DEI(*}IH) #0 2.31

In virtue of the condition (2.31), we may define a unique inverse tensor *hik of *hi; by
* «71k __ ok
hij"h™ = O ; 2.32

It has been shown that *#* is the induced tensor *#* of *h*. That is, *h** = *h* Therefore,
the tensors *h;; and *h" may be used for raising and/or lowering indices of the induced
tensors in X, in the usual manner.

(¢) The manifold *g-MEX,, in n-*g-UFT. All results and symbols in this subsection
are based on [ 15).
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Definition 9  An Einstein’s connection F‘}Lu of the form
— {l,u} +28\"r g;:LFXv 2.33

or a non-null vector Xy, is called a * g-ME-connection in n-*g-UFT, and X, _the corresponding
A g
*g-ME-vector.

In the following theorem, we need the tensor A;,, defined by

Apy & —n*gru+ g 2.34

Since this tensor 1s of rank n, there exists a unique tensor BM satisfying

v _ A
Ay, B v_A”le —SE 2.35

Theorem 10 (a) If X,, admits a *g-ME-connection I‘"{P , it must be of the form (2.13), where

(b) A necessary and sufficient condition for the system (2.7a) to admit exactly one *g-
ME-connection FLI of the form (2.33) is that the tensor field *g™ satisfies the following
condition

Vo'ky, = 2(*hm{l *gP]B — *hp “kp)Co B 2.37
If this condition is satisfied, then
){%‘r — CD.', B[I"v' 238
where
C, =V 2.39

Hence, if (2.37) is satisfied, there always exists a unique *g-ME-connection I'y y in our
n-*g-UFT. In virtue of (2.33) and (2.38), this connection may be written as

= o} +2(8 *hyp — gy 8y)Co B 2.40

The situation that the conditions (2.31) and (2.37) are imposed on the unified field tensor
*g‘ﬂw are described in this paper by the words "under the present conditions”.

Definition 11  An n-dimensional generalized Riemannian manifold X,,, on which the dif-
ferential geometric structure is imposed by the tensor *g" under the present conditions by
means of the unique *g—ME-connection given by (2.40), is called an n-dimensional * g-ME-

manifold and denoted by * g-MEX,,.
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3 The induced connection on X,, of “"¢g-MEX,,

This section 1s devoted to the investigations of the induced connection of the *g-ME-connec-
tion imposed on a submanifold X,, of “g-MEX,, together with the generalized coefficients
€27, of the second fundamental form of X, with emphasis on the proof of Theorem 17, in
which we prove a necessary and sufficient condition for the induced connection of X, in
*¢ — MEX, to be a *g — ME-connection. The convenient and powerful C-nonholonomic
frame of reference in *g — MEX,, at points of X,, will be employed throughout the present
section. Particularly, we note in virtue of Definition 11 that under the present conditions the
*g¢ — ME-connection of a given g — MEX, is unique.

Definition 12 [f l"”?uu s a connection on a general X,,, the connection Fk defined by

B& 5 B) B";‘ a BT aZyﬂf
I T

Iy =By B""' I o
7B+ Yoo ox/ ax-‘ayf

e (3.1)

is called the induced connection of I’L on X, of X,.

The following Theorem 1s an immediate consequence of Definition (3.1).

Theorem 13 (a) The torsion tensor S; jk of the induced connection I'“fj is the induced tensor
of the torsion tensor Sy,," of I“L . That is

Si;* = SopY BY B! B 3.2

(b) The induced connection *{i} of *{ .} is the Christoffel symbols defined by *hij.
That is,
*{;f;} — %*hkp(af*hjp —I"aj*hfp_ap*hij) 3.3

Proof. The statement (a) 1s a direct consequence of (3.1). Using (2.5), (2.21), (2.23), (2.25),
and (2.27b), the statement (b) may be proved as in the following way:
The right-hand side of (3.3)=

_ %*hkp [B;x an:(*hﬁe BE BE) —I-BE 85(“‘%5 BEBE) — BE BE(* ﬂﬁB@Bﬁ)]

= S (*hP BE)(Bﬂ*th + 0" hoe — dg™hog ) B} BB +*has B3 (B, *HP)
_Bk(#:{aB}BlIB _|_BT) — {u}

Theorem 14 The vector Dj; B in X, is normal to X,, and may be given by

o pl X oL
DS B} = ZQ; N 3.4
where Djf is the symbolic vector of the generalized covariant derivative with respect to x's.

Hence
ij — —(Df} B?)N& 3.5
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Proof. In virtue of (2.23) and (3.1), multiplication of By to both sides of

DS BY = B%: +T% B} BY —T%; BY 3.6

gives (D} Bi')Bg = 0. This proves that Dj,' B is normal to X,,,, and hence we have (3.4). The
relation (3.5) follows from (3.4) in virtue of (2.23).

The tensors £2;; will be called the generalized coefficients of the second fundamental form
of Xom.

Theorem 15 The coefficients Q‘;Fj have the following representations:
(a) The tensor ij is the induced tensor of DE Ng, on Xy, of Xy, That is,

Q; = (Dy NX)BY B 3.7
(b) On X, of *g-MEX,, the coefficients Q}’Fj may be given by
QEzAE—ZEIXx*gH 3.8
where
Af; = (VgN2)BY BY 3.9

are the generalized coefficients of the second fundamental form with respect to *{L} Here

Vg denotes the symbolic vector of the covariant derivative with respect to *{fﬂ}.

Proof. In virtue of (2.23), we first note that

0 = 0;(BYNZ) = BY N + (9gN2) BY B 3.10
Using (3.5), (3.6) and (3.10), our assertion (3.7) follows as in the following way:
— B Y X
Qf; =—(Bf;+Tg, B; B —Brﬁfj BY)NZ
_ X X Y
= —ij. N} — 1“‘[53’[?,}\!{1 B Bj
= (DpN3)B% B

On the other hand, making use of (2.33), (3.9), (3.4), (2.28a) and (2.29a), the representation
(3.8) may be obtained from (3.7) as:

X X Y X B

Qfj = (dpNg + Lo Ny)BY B

= [0pNg + (*{ J } +20% Xp — 2 "gop XV)N; | BY B
~2%gij(XTNy)

— 28, Xx " gij

X
,A!I
i

In virtue of Theorem 15, we note that the coefficients A}; are symmetric, while the coef-
ficients £2; are not.

Now, we are ready to prove the following two important theorems.
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Theorem 16 On X, of "g-MEX,, the induced connection T’:Fj of the *g- ME-connection F’LE
is of the form
Ly ="{;;} + 28} X; — 27 g;; X* 51

where X; is the induced vector of X,

Proof. Substituting (2.33) into (3.1) and making use of (2.21), the representation (3.11) may
be obtained as 1n the following way:

Ty = B B+ () + 280 o~ 2o XY ]
= B(BY,+*{ Jy }BY B%) + 2(8, B BY) (xp BY)
~2(*gqp B BY) (X7 B)
="{;} +28( X; —27g;; X!

Theorem 17 On X,, of *g-MEX,, the induced connection F‘:-‘j of the unique ~g-ME-connec-
fion I";;u is a *g-ME-connection if and only if the following conditions hold:

8\ X7 —*hi X, + 8 k) X" — 2 @*f, (x7) = 0 3.12a
Virki = 2(8) *ky) X" —*k X, + &) X)) 3.12b

Proof. Invirtue of Theorem 16, we first note that on X;,, of *g-MEX,, the induced connection
of the *g-ME-connection is of the form (3.11). Suppose that it is an Einstein’s connection on
X,,. Then, 1n virtue of (2.7)a, we have

Dk#gt'j — """ZSkhJ #gﬁl 313
Substituting (3.11) into the left-hand side of (3.13), we have
Dkzi:gij :ak*gfj*l_rﬁ;kfghj"krik*gih
= 0" gV + (*{ y } +2680, Xk — 2% g X')* " +

. L 3.14a
+({ 2 +28) X — 2% g XU )* g™
=V ki 4% gl X; — 48\ X 4 4 %I XT — 4@ li x 1]
In virtue of (2.36) and Theorem 13(a), the right-hand side of (3.13) may be written as
~28ul *gh = —zl(zafk.xh] ~2 fkkh Xf)(fh“‘* + *kih)
= 28] (*kp! X" — X7) +2* g X;+ 5.140

+4(* ket — @ kX
Consequently, substitution of (3.14) into (3.13) gives
Virkil =2 (8, X —"g! Xic+ 8] "kt X4 — 201k x|
= 2(8) X7 — ki X + 8 *ky) X7 +2(8 X7 — 3.15
—*hiT Xy + 8 *hy,) XM — D i x )

The conditions (3.12) immediately follow from (3.15). Conversely, suppose that the con-
ditions (3.12) hold. Then, since V;*h" = 0, we have (3.13) in virtue of (3.14) and (3.15).
Hence, the induced connection F;I‘J 1s Einstein.
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