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FIXED POINTS IN RELATIONAL ALGEBRA

S. LEONESI, S. TULIPANI

Abstract. The relational algebra system for queries on databases is surveyed. By the use
of partial isomorphisms the limited expressive power of this formalism is established. Then,
the fixed point operation is added to build new relations as solutions of particular systems
of formulas. Moreover, the search for solutions is related to the usual logic programming
machinery.

1 Introduction.

According to the model proposed by Codd 1n the early 1970s (see [Co70], [Co72]), a database
can be viewed as a coliection of relations on a fixed finite domain. The query languages devel-
oped in this framework (see [Ma83], [Ul82]) are based on the relational algebra operations of
union, intersection, difference, Cartesian product, projection and selection; these operations
enable to compute new relations from the basic stored relations. However, some significant
relation constructions do not fit in this schema. Among them is the transitive closure R*, of
a given relation R, which cannot be computed in a uniform way with mere operations of the
relational algebra (see §5). The relation R* can be built by the minimum fixed point of a
suitable set-operator.

Given a set S, a fixed point of a function f: S — Sis a x € § such that f(x) = x. Such
points arose for functions defined on topological spaces and in partially ordered sets [Bi79];
significant applications were given to Analysis, to Topology and to Computer Science.

Here we consider fixed points of functions, called also operators,

F:P(S)— P(S),

defined on a given set §; our purpose 1s to use fixed points for building relations.

The main aim of this paper 1s to present the relational algebra together with the fixed point
operations. A relational structure 4 = (A,R1,R»,...,R;) is given by a basic set A, called also
domain, and a k—tuple of relations. For all 1 < i <k, each R; has a given number »; of ar-
guments; this means that R; C A", in set notations. The sequence of non-negative integers
(ny,n2,...,n;) will be called signature of the structure 4. Instead of considering only the
relational algebra on a single structure 4, we are concerned with relational formulas in order
to define relations in a uniform way on the whole class DBg of all the finite structures of a
fixed signature G = (ny,n7,...,n). The relational formulas allow to think of a database not
only as a collection of facts, but also as a set of rules for deducing new facts by means of
calculation; the answer to a query on a database may require a deduction computation (see
[GM84], [Ul82], [Da75]) rather than a simple retrieval of stored information. The expressive
power of formulas based on the mere relational algebra 1s inadequate for relational queries;
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here we present an extension of this formalism by introducing certain systems of formulas,
called triangular systems. Such systems define in a uniform way suitable relations on ev-
ery given member of DBg; thus, a query language for deductive databases can be based on
triangular systems of formulas.

Finally, we will point out how to reduce the computation for the solution of special tr1-
angular systems, where the difference operation is not present, to the resolution of a goal in
logic programming.

2 Fixed Points.

In this section we consider fixed points of special functions, called also operators, which are
defined on the power set of a given set.

2.1. Definition. Let S be a set and F : P(S) — P(S) be a function. We say that the operator
F is monotone if for all X C Y C S it follows F(X) C F(Y). We say that F is continuous if

for every sequence {X;}, py of subsets of S suchthatX; CX, C--- CX, C---itis

F (Ux) = LHJF(X”).

2.2. Remarks.

a) If F 1s continuous, then F 1s monotone. To this end let us consider X,Y € P(S) such
that

XCY; (1)
then (1) is a particular increasing sequence; hence, by the continuity of F, it follows
F(Y)=F(XUY)=F(X)UF(Y);
this means that F(X) C F(Y).

b) The other direction 1s not always true. We give a counterexample of a monotone F
which is not continuous. Let us consider the operator F : P(IN) — P(IN) defined, for
X C N by

oy | N if X 1s infinite
F(X) = { 0  if X is finite.

Clearly, F' i1s monotone. Let us take, now, the sequence {X,}, . such that X, is the
(finite) interval [0,n]. Then | J, X, = N, hence F (|J,X,) = N. But, U, .y F(X:) =0
since every X, 1s finite. This proves that £ is not continuous.
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2.3. Definitions.

a) Let F : P(S) — P(S) be given. A set X € P(S) is said to be fixed point for F if
F(X) = X. Moreover, a fixed point Xy will be said minimum fixed point for F if for
every other fixed point X; € P(S) itis Xy C X].

b) X is said to be pre-fixed point for F if F(X) C X.

¢) X is said to be post-fixed point for F if X C F(X). O]

Now, let us recall a classic result by Tarski [TaS5] which was previously proved in a
particular case by Knaster [Kn28].

2.4. Theorem. Let F : P(S) — P(S) be a monotone operator. Then F has a minimum fixed
point My and a maximum fixed point M ; moreover,

(@) Mo=N{X:F(X)CX}=N{X:F(X)=X]
() My =U{X:X CF(X)}=U{X:F(X)=X}.

Proof. (a). Let L ={X : F(X) C X} and define

Mg:ﬂL. (1)

First we prove that My € L. For every X € L it is My C X by the definition of M. Then, by
the monotony of F, F(My) C F(X) CX forevery X € L. Therefore,

F(Mo) C (L= My (2)

which means that My € L. Now, again by monotony, F (F(My)) C F(My). This means that
F(My) € L. Therefore, by (1) we have that

My C F(My). (3)

Thus, by (2) and (3), it follows that My is a fixed point for F. Finally, define M}, = N{X :
F(X)=X}. Since My is a fixed point, we have that My C My. On the other hand, {X : F(X) =
X} C{X :F(X) C X} which implies that My C M{,. Thus, My = M),

(b). The proof is quite analogous to the previous one.

Observe that the previous theorem guarantees the existence of the minimum fixed point
for a monotone operator, however it does not give a method to determine it. The next lemma
and its corollary indicate how to compute effectively the minimum fixed point for continuous
operators.

2.5. Lemma. Let F : P(S) — P(S) be a continuous, hence monotone, operator. Then, for
every post-fixed point J for F there exists a minimum fixed point J, for F such that J C J.
Moreover,
Jo = U F™(J )?
ne IN
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where FO(J) = J and, inductively, F"*1(J) = F(F*(J)) for everyn € N.

Proof. First observe that F°(J) =J C F(J) = F!(J). Hence, by the monotony of F and by
induction we get F"(J) C F"*1(J) for every n € IN. Now, by the continuity of F, it follows

FUo)=F | |J F'"()) | = |J F"™'(J) = Jo: (1)
ne N ne N

Therefore J, 1s a fixed point containing J. Finally, let I be any fixed point for F, such that
J CI; hence, F D(J) = J CI. Then, by F(I) = I, by the monotony of F and by induction
we get F(J) C I for every n € N. Therefore, J, = J,, F"(J) C I. This proves that J;, is the
minimum fixed point for ¥ which contains J.

2.6. Corollary. Let F : P(S) — P(S) be a continuous operator. Then there exists the mini-
mum fixed point Mgy for F'; moreover,

My= ] F"(0).
ne IN

Proof. Since 0 is clearly a post-fixed point for F, the result follows from Lemma 2.5.

2.7. Examples.
1) Let G =(G,-,”" 1) be a group and F : P(G) — P(G) be the operator defined by

AN

FX)=XU{a-b:a,beX}U{a ' :aeX}u{l}.

Then F 1s continuous. Observe that every fixed point for F' is a subgroup of G and
viceversa.

2) Let F: P(IN) — P(IN) be defined by
F(X)={n+2:neX}U{0}.
Then F is continuous; the minimum fixed point 1s the set of even numbers.
3) Leta € N be given and F : P(IN) — P(IN) be defined by
FX)={a-b:becX}U{l}.
Then F is continuous; the minimum fixed point is the set of powers of a.
4) Let F : P(IN?) — P(IN?) be defined by
F(X)={(n,n-b):(n—1,b) e X} U{(0,1)}.

Then F is continuous; the minimum fixed point is the graph of the function n — n! for
ne N.
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5) Let S be a Euclidean space and F : P(S) — P(S) be defined by
F(X)={yeS:3p,qe X, suchthat yé€[p,q|}

where [p, g| denotes the closed segment delimited by the points p, g. Then F is contin-
uous; its fixed points are all the convex subsets of §.

6) Let (S,R) be a graph, where S is the vertex set and R is the adjacency relation. Let
F:P(S) — P(S) be defined by

F(X)={beS:3a€X, (a,b) € R}.

Then F is continuous; the fixed points for F are the empty set and the subgraphs which
are union of connected components of (S,R).

3 Relational Algebra

A database is a collection of more or less permanent data which can be stored, retrieved or
elaborated by the computer. The need for efficiently managing large amounts of data and for
helping the user to conceptualize the organization of the database, the data must be structured
along a certain database—model. A database model consists basically of two features:

1. A mathematical notation to represent data and connections between them;

2. A collection of operations on data to describe queries and other managements.

In our treatment we will take into consideration the relational model proposed by Codd (see
[Co70], Co72]) in the early 1970s. This paradigm not only allows to retrieve stored relations
but enables the computation of new relations which can be described by a collection of opera-
tions on the basic stored relations. The formalism is called relational algebra; on this schema
various query languages were designed to recover information efficiently.

(Given a positive integer n, an n-ary relation R over a set A, set-theoretically speaking, is a
subset R C A”. The number # 1s called arity or number of arguments of R; it will be denoted
by ar(R). If ay,a2,...,a, is a sequence belonging to R, we will write Raa; - - - a, or shortly
R rather than using the set-theoretic notation (¢;,az,...,a,) € R.

3.1. Definition. A relational structure 4 is a sequence (A,Ry,R2,...,R;) where A is a set,
called domain or basic set, and Ry,R>,...,R; are relations on A. The sequence (ny,715,...,1;)
of arities of R}, Ry, ..., Ry, respectively, is called the signature of 4. When the domain A 1s
finite the structure A4 will be called relatioral database. [

Often databases are dinamical structures where a priort not all the elements of A are
known. Therefore, it is convenient to fix aiso a sequence ci,c2,...,cr € A of elements whose
name appear in the query languages. For technical simplification we will avoid the use of
constants; the treatment with them 1is substantially identical.

3.2. Definition. Given a relational structure A4, the relational algebra generated by A4, in
notation Rel(4), is defined as the minimal collection of relations over A such that:
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1) the relations R,R>,...,Ry are in Rel(A4); they will be called basic relations.

2) Rel(A) is closed under the Boolean operations of union U and difference \. Namely, if
R,S € Rel(A) have the same arity, or in other words R C A" and S C A”, then

RUS € Rel(A4) , R\SERel(A).

3) Rel(A) is closed under Cartesian product. Namely, if R,S € Rel(4) and R C A", S C
A™ then
RxS€Rel(A) and ar(RxS)=n+m.

4) Rel(A4) is closed under projections. This means that, for every n € N, for every R €
Rel(A4) such that R C A" and every J = {i},ip,...,ix} C{1,...,n} where i} < i) <
.+« < iy, the relation P;(R) C A* is in Rel(4). This relation is the image of R under the
projection map P : A" — A* defined by

PJ(aI}QZ}* - :ﬂn) — (ﬂf] }afg:f"':ﬂik)‘

5) Rel(A) is closed under the selection operations Ci, fori,j € N and i < j; here C;R is
defined, when j < ar(R) = n, by

C;Ralag---an if and only if (Rajaz---a, and ag=aj)

In other words Cf} returns the intersection K of R with the subset of A", hyperplane,
defined by the equation x; = x;. The Figure 1 pictures an example with n = 2.

A
X9

Figure 1
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3.3. Remarks.

1)

2)

3)

Note that the operation of intersection can be defined by the difference. In fact, if R, S
have the same arity, then

RNS =R\ (R\S).

Furthermore, all the Boolean operations can be performed in the relational algebra.

Observe that it is sufficient that Rel(4) be closed only for the projections from A" —
A""1, for every n > 1. Each such projection deletes a coordinate. In fact, for every
1 < i< n, we may consider the projection w; : A” — A"~ ! defined by

Eg(ﬂ],...,ﬂg,...:an) —— (ﬂh...:,ag_l,ﬁg+1,...,ﬂ”).

It is easy to prove that, given R C A™ and Py : A" — A* defined as in 3.2.4, the relation
P;(R) can be obtained from R by applying the n — k projections 7;, for every i & J.
From now on, we will use only the projections 7; defined above.

As we said before, here we do not make use of constants. They can be used to have
additional selection operations. In fact, every ¢ € A defines operations & on Rel(4)
which are defined for every R of arity n > i and every i by

€ Rajay---a, ifandonlyif (Rajaz---a, and a;=c).

In other words the operation € selects the subset K of A", hyperplane, defined by the
equation x; = ¢. The Figure 2 pictures an example with n = 2.

A
%)

Figure 2
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4) The composition operation R o § between two binary relations is defined by
(RoS)ab ifandonlyif (dc€A: Rac and Scb).

Such operation can be obtained by the other operations already considered. In fact we

have
RoS§ = ?IQTC:;‘;%(R X S)

4 Relational formulas

The reader might have realized that the relations 1n the relational algebra
RE!(A,Ri ,Ri_}: ‘“uo ,Rk)

are the interpretations of the first order logic formulas built on the equality symbol = and
on the atomic formulas which correspond to the symbols which interpret the basic relations
Ri,Ry,...,Ry. In fact, the operations U, N, \ correspond to the Boolean connectives V, A, —
and the projections corresponds to the existential quantification; this correspondence will be
understood better after the Definition 4.4. Here we consider, rather than the symbolism of first
order formulas, the quite analogous symbolism of relational formulas. The use of formulas
to represent relations i1s usetul to formulate queries and to treat collections of databases on

the same signature.

4.1. Definition. We call relational language Ls for a signature ¢ = (ny,ns,...,n;) the fol-
lowing set of symbols:

1) {P,P>,...,P}, which are said symbols for the basic relations.

2) U, N, \, x, m;, § forevery i, j € IN with i < j.

Now, we will define the set of formulas in the language Ls. Each formula F is associated
with an arity that we denote ar(F).

4.2 Definition The set of formulas of signature ¢ = (n;,%2,...,n;) is the minimum set of
strings on the symbols of Ls such that:

1) Every P; is a formula and ar(P;) = n;, for 1 <i < n. These are called also atomic
formulas.

2) If F, G are formulas of arity n then (FUG), (FNG), (F\ G) are formulas of arity n.

3) If F, G are formulas of arity m and n, respectively, then (F X G) is a formula of arity
m =+ n.
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4) If F 1s a formula of arity n > 0 then ; F 1s a formula of arity n — 1, forevery 1 <i < n;
moreover, ' F is a formula of arity n, forevery 1 <i < j <n.

Note that it is possible to write formulas without parenthesis after a stipulation of a prece-
dence in the symbols; this guarantees uniqueness of readability. [

4.3. Definition. Let DB4 denote the class of all finite structures of signature ; let n be an
integer n > 0. We will call n-ary global relation, or query, on DB4 any function Q defined on

DB such that

1) O maps every 4 € DBy on a relation Og C A", In case n = 0, Q4 is a Boolean value
(true or false) and O is said Boolean global relation.

2) Q is invariant for isomorphism. This means that, for every isomorphism f: 4 — B
with 4, B € DBs and for every a;,a>,...,a, € A",

Qaaiaz---a, ifandonlyif Q@ f(ai) - f(an).

4.4. Definition. Every relational formula F of arity » in the signature ¢ defines a global n-ary
relation on DBg. The map associated with F 1s

4> FA,

where F” is defined by induction according to the Definition 4.2 of F. In more details
we have:

1) FA =R;, if F is the atomic formula P; for some 1 < i < k.

2) FA = Ffq UF_ﬁ, if F is the formula Fi U F>.

3) FA = F\ F*,if F is the formula F \ B.

4) FA = Flﬁ X 1'72"_‘1't if F is the formula Fy X F>.

5) (m;F)?, when ar(F) = n > 0 is the n — 1-ary relation defined by
(:F) ayay - aiaivy -+ - ap if and only if

db € A such that F'ﬂﬂlﬂg ceegibajyr - ay,.

Observe that for n = 1 we have that (7t F)? is true if F? is not empty and false other-
wise; in other words 1 /' defines a Boolean global relation.

6) (C?F)'ﬂ*alag .-+ ay if and only if (¢; = a; and FPajaz - - ay).
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All the symbols U, \, X are interpreted in the corresponding set-theoretic operation. We did
not give the interpretation for the symbol M since, as we saw in 1) of 3.3, such an operation
can be defined by \. Moreover, we remark that every relation in Rel(4), defined in 3.2, is
the interpretation of a suitable relational formula. However, two different formulas F, G may

have the same interpretation in some structure A4 and different interpretation in some other
structure B; namely, F? = G? and F? # G2,

5 Expressive power of relational formulas

As we have seen, every relational formula on a given signature ¢ determines a global relation
on the class of relational structures of signature ¢. So, the set of formulas can be thought
as a general query language for a database DBg. The complexity of answer time grows with
the dimension of the formula F'; a detailed analysis could establish that the complexity grows
faster when the projection symbols in F increase.

Now, we will prove that there exist important global relations which are not definable
by any relational formula (Proposition 5.2). Let us consider a signature ¢ with at least an
arity of value 2; so, let P be a binary symbol in L. Given 4 € DBy, let us denote by R the
interpretation P of P in 4. Then, we consider the map T on DB defined by

T:4—R" (1)
where R* denote the transitive closure of the relation R. The relation R* is defined by

R*xy ifandonlyif dndzg,...,d2, x=20,y=2s, Rzi—175, for i=1,...,n.

R*=[JR"

n>1

Hence, we have

where R" is the composition “o” of R with itself n times; in other words R" 1s defined
inductively by

R'=R and R*''=RoR".
Since the domain A is finite there exist K € IN, not greater than the cardinality of A, such that
R* = R. However, such &, dependent on 4, may be not bounded when A4 ranges in DBs. For

this reason a relational formula which represents the global relation 7 may not exist. Before
proving this fact we give an example.

5.1. Example. Let 4, for n € IN, n > 0, be a structure on the domain A, = {0,1,...,n} with
the binary relation, called R,,, of successor. Namely,

RH:{(.:'—],E): lgfgn}
Then we have

(0,1) ER,
(0,2) € R? since  (0,1) € Ry, (1,2) €R,

n

|
(0,3) € R? since  (0,2) € R?, (2,3) €R,

n

(0,n) eR"  since (0O,n—1)€ R, (n—1,n) €R,
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With a similar proof we have that

Ri={(i,)): 0<i< j<n} =R}

But R"_, # R} since (0,n) ¢ R" 1.
Now we prove a proposition which delimits the expressive power of the relational formu-

las.

5.2 Proposition. Let ¢ be a signature with at least a binary symbol, say P. Let T be the
global relation over DB determined by the transitive closure of P. In other words, for every
A € DBg

T: 4w TC(PH)

where TC(P?) denotes the transitive closure of the binary relation P?. Then there exist no
relational formula F of signature ¢ such that F* = TC(P?) for every A € DBs. Before

the proof of this proposition we need the notion of partial isomorphism and two auxiliary
lemmas.

5.3. Definition. Let 4, B be structures with same signature ¢ and basic sets A, B respectively.
A partial isomorphism from A to B is a one-to-one map f from a subset of A, denoted by
dom(f), and a subset of B, denoted by range( f), such that, for every basic relation P € Lg
and every aj,as,...,a, € dom(f),

P*aiay---a, ifandonlyif PZf(a;)--- flay). (1)

A partial isomorphism g extends f if dom(f) C dom(g) and f(x) = g(x) for every x €
dom( f); in other words, the graph of g contains the graph of f.

Let I,,[,—1,...,1p be a family of non empty sets of partial isomorphisms from 4 to B.
We say that the family has the back and forth property if for every 0 < k < m and every

fel:

(forth) Ya € A, a & dom(f), dg € I,_1, g extends f and a € dom(g);

(back) Vb € B, b & range(f), Jh € I, g extends f and b € range(h).

Note that the property back for f is the property forth for the inverse partial isomorphism f
from B to A.

Now the following lemma points out the convenience of the notion of partial isomor-
phism. For every relational formula F, we will denote by pr(F') the number of projection
symbols 7t; in F.

5.4. Lemma. Let 4, B be structures of DBs and F be a formula of arity s in the signature
c. Assume that pr(F) < m, for some m € N, and there exists a family I, 1,—1,...,Iy of
partial isomorphisms from A to ‘B with the back and forth property. Then, for every f € I,
andd@ € A®, b € BS such that f : @+ b, i.e. flaj))=b;¥Vi=1,...,s, it follows

FAG ifandonlyif FZ®b (1)
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Proof. By reduction to absurdum, assume that the thesis is false. Then, there is a suitable
instance of (1) which 1s false. Among such counterexamples take those for which m 18 min-
imum and in these choose one in which the number of all operations in F 1S minimum; we
denote {{F such number. Thus, since (1) 1s falsified by F', we may assume that

FAG istrueand F%b isfalse . (2)

In the symmetrical case the proof is analogous by changing A4 for B and the isomorphism f
for f~1. Now we distinguish several cases and we find an absurdum.

Case 1: {F = 0. Then F is a some basic relation symbol, say P. Since f is a partial isomor-
phism and f : @ — b we have

PG ifand only if PZb.

This contradicts (2).

Case 2: F = F; x F,, where % is among U, \, X. Then we have that §{F] < §F and §{F> < {iF.
Hence (1) is true for /] and F> by the choice of F. In other words

F'G ifandonlyif FZ%b, F@ ifandonlyif FPZb. (3)

So, by the Definition 4.4, for the interpretation of U, \, X, the statements in (3) imply that
(1) 1s true for F. This again contradicts (2).

Case 3: F is C;G for some G. Since {G < #F we have that (1) is true for . This contradicts
(2) since a; = a; if and only if b; = bj; in fact, f is a partial isomorphism and f : @ — b.

Case 4: F 1s ;G for some G. We have that the arity of Gis s > 1 and 1 <i < s; moreover,
pr(G) <m—1. By (2) there is ¢ € A such that

Gﬂﬂl...a;_lfﬂf+1...ﬂ5. (4)

Now, by the extension property there exists g € I, extending f and such that ¢ € Dom(g).
Hence
g.dy...dj—1CAjy1...45 = b1 ...bj_]dbf_|_] ...bg

and by (4) and the choice of F we have
G®bi,...bi_1dbiyy...bs

since pr(G) < m— 1. This implies that F B} is true which again contradicts (2).
Thus, in every case the negation of the thesis takes to contradiction.
Now, for every n € IN, n > 0 let G, be the cycle graph of length n. In other words
G, = (An,E,) where A, = {0,1,...,n— 1} and

E,={(,i+1), (+1i):0<i<n-1}u{n—-1,0), (0,n—1)}.

We denote by G W Gy, the graph which 1s the disjoint union of the cycle Gy and the cycle Gy,.
Then, we have the following
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5.5. Lemma. For every m € N and all integers n,k,h > 2™ there exists a family I,,, C I,,_1 C
... C Iy C Iy of partial isomorphisms from G, to Gy & Gy, with the back and forth property.

Proof. LetA = {ag,a1,...,az,-1} be the set of vertexes of Gy, and B= {bg,by,...,bx_,}, C=
{co,c1,...,cn—1 } be the vertexes of Gy and G, respectively, where A, B and C are pairwise
disjoints sets. Let W be a set contained either in A or in BUC, we call bridge-walk for W any
walk xg,x7,...,x; where s > 1, xg € W, x; € W and x; € W for every 0 < i < s.

Now, for every 0 < k < m we define a set I of partial isomorphisms from G, to G ¥ G,
as follows:

f € Iy it and only if f is a partial isomorphism with non-empty domain and

a) Every bridge-walk xg,x1,...,x, for dom(f) has length s > 2.
b) Every bridge-walk yo,y1,...,vs for range(f) has length s > 2*.

From the definition of the family {I; } it follows that 7,, C I,,_; C ... C I} C Ij; moreover,
every set Iy 1s non-empty. In fact, fy € I, where

fo:ag > bg fo:a, —co (1)

fo

Figure 3

This follows from the fact that the only possible bridge-walk for dom(f) is ag,ai,...,a,-1,
ap,-..,a2,—1,ap and the only bridges-walks for range(f) are by,b;,...,by_1,bp and cg, ¢y,
...» Ck—1, Cp; all of them have length greater than 2",

Now, we prove that the family {/; }; has the back and forth extension property. Let 0 < k <
m, f € Iy and x € A, such that x & dom(f), be fixed. Take a € dom(f) with minimum distance
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from x; we call distance between two vertexes the minimum length of walks which join them.
Then there exists a bridge-walk xo,x1,...,Xg4,...,%, 10 the cycle Ga,, where xo = a, x; = x,
r> 1, x, € dom(f) and x; & dom(f) for every 0 < i < r. So, recalling that f € I; and the
condition a) in the definition of I, we have r > 2.

f(a)
r Y1

Mo -/

!
X
1 Y

Figure 4

Since, by definition, partial isomorphisms preserve adjacencies, at least one between the
two neighbours of f(a), call it y;, is not in range(f), otherwise also the neighbour x; of
a would be in dom(f). Then there exists a bridge-walk f(a) = yo,y1,...,¥s = d where
d € range(f); possibly d = f(a) since we are in a cycle. Moreover, by condition b) in
the definition of I, we have s > 2*. Now, we distinguish two cases.

Case 1: g < 2!, Then g < s. So, let g be extension of f where

dom(g) = dom(f)U{x1,x2,...,%4}

and g(x;) = y; for 1 <i < g. The mapping g is a partial isomorphism since it preserves
adjacencies. Moreover, x,, ..., X, is the only bridge-walk for dom(g) and not for dom(f), and
Yg,---,Ys 1 the only bridge-walk for range(g) and not for range(f). Then, g € I} since
s —q and r — g are both > 271,

Case 2: g > 2%¥~!. Then, by the choice of x, also r — g > 2¥~1. So, let g be an extension of f
where

dom(g) =dom(f)U{x} and g(x) = yy-1.

Observe that the unique bridge-walks for dom(g), which were not already for dom(f), are
X0,X1,..-,%g and xg, ..., x,; similarly the unique bridge-walks for range(g) and not range( f)
are y1,y2,- - - Yok—1 and yok ,...,ys. Therefore, also in this case, g € Iy_;. This concludes the

proof of the forth property for the family {Jx }o<x<m; we omit the proof of the back property
which is quite analogous.

Finally, we go back to the

Proof of Proposition 5.2. Let us assume by absurdum that the global relation determined by
the transitive closure, on the class of finite structures with a binary relation, be definable by
some formula F. Let m = pr(F) be the number of projection in F. Then, fix n,k,A > 2™ and,
by the Lemma 5.5, a family 7,, C I,,,_; C --- C Iy of partial isomorphism between G5, and
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G W Gy,. Moreover, let fo € 1, be defined as in (1) of Lemma 5.5, 1.e.

fo :ao— bo, fo 1 an — co;

see figure 3. Then, by Lemma 5.4, we would have

Gay,

F “apa, ifandonlyif F

{Gji lﬂﬂ!’ )
1 b(}CU .

But, this is a contradiction since ag, a, are joined by a walk and by, cg are not connected. So,
F cannot define the transitive closure in both (3,, and G & Gy,.

6 Relational formulas and fixed point.

In the previous section we proved that the global relation of transitive closure cannot be
defined by a relational formula. However, this global relation can be obtained as fixed point

as follows.

6.1 Example. Let A be a set, R a binary relation on A. Consider the operator
T : P(A*) - P(A?)

defined by T(S) = RU(SoR). Then, it is easy to see that 7 is continuous. Therefore, by
Lemma 2.5, there exists the minimum fixed point for 7. This 1s the minimum transitive
relation containing R. In fact, by iterating 7', for § = @ we get

To=0, T,=T0) =R, Th=T(R)=RU(RoR)=RUR?,...,

n
Y M U(RD-*-DR)‘
| i — times

Then the minimum fixed point for 7" is

i— t1mes

The previous example shows that the transitive closure can be obtained as a fixed point of
an operator defined by a relational algebra formula. Now, we add the fixed point operation to
extend the class of relational formulas in order to define new global relations on the database
DB. To this end we need to enrich the language Ls by countably many symbols

2
Yl]:'yﬂla'“?ylz:'yﬂ:'“11/:;"' (1)

which we intend to interpret on relations; Y,? will be interpreted on a relation of arity x.
To simplify notation we will use symbols X,Y,Z, ... Xj,... in place of symbols in (1). Such
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symbols are said also relational variables; on the contrary the symbols P;, P, ..., P, of Ls for
the basic relation, are also said relational constants. Let X;,X5,...,X, be relational variable
symbols of given arity, we call formula in the language L5 U{X1,X2,...,X,} any relational
formula built as in the Definition 4.2 on the relation symbols P, Ps,.... P, X1, Xs,...,X,.

6.2 Definition. We call triangular system of relational formulas in a given signature G any

system
X1 =K
o (1)
Xr — Fr

where, forevery i = 1,2,...,r, each F; is a formula in the language Ls U {X;,X5,...,X;}, and
the difference operator “\ ” is not in front of the relational variable X;.
Given a structure 4 = (A,,Piﬂ,Pf ..... Pf) in DB, we say that the system (1) has solution

o L)

in A4 1f there exist relations S1,52,...,S5, where §; has the same arity as X;, and §; = F}ﬂ*, for
everyi=1,2,...,r. The value Ffﬂ* of the formula F; 1s computed in the structure

A" = (A:*Piﬂsz? '*:wasl ;925 - :Sf—-l)‘

A solution S1,S>,...,S, will be said minimal if for any other solution 57, 55,...,S, it follows
S;C S, foreveryi=1,2,...,r.

The following proposition shows that we may extend the class of global relations de-
finable by a relational formula to the larger class of global relations definable by triangular
systems of relational formulas.

6.3 Proposition. A friangular system of relational formulas in a signature ¢ has a unique
minimal solution in every structure 4 of DBg.

Proof. Let us consider a triangular system, as in Definition 6.2, in a signature ¢ and let
A= (A,Pl,P,...,P) be in DB;. The result will be proved by induction on the number
of equations in the system. In other words, given a minimal solution §;,5;,...,S5;-1 of the
first i — 1 equations, we build §; such that S1,5,,...,5;-1,5; is a minimal solution of the first
i equations, forevery 1 <i<v.

Assume first i = 1. The formula F; may contain at most X; among the relational variables
{X0,X1,...,X,}; let s be the arity of X;. Then the formula Fj, thought as function of X,
determines a map

Fi:P(A%) = P(A%),

which 1s a monotone operator since the difference operator is not in front of X;. Observe that
all the operations,

(X,Y) = XNY, (X,Y) > XUY, (X,Y) > X xY, X »m;X, X = /X,

but the difference, are monotone in each component; in fact, they determine continuous op-
erators. Then, by the Theorem 2.4, there exists a unique minimal fixed point, say it .S;, which
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solves the equation X; = F; in 4. Now, let §1,85,...,5;_1 be a solution of the first i — 1 equa-
tions for i > 1. Then we may consider the structure 4’ = (A, P, Py*, ... P/ S0, S1,...,Si-1),
and we may think the relational vanables Xy, X1,...,X;—; in the system as relational constants

with interpretation in 4’ given by S1,...,Si_1, respectively. Thus, as before we may compute
S; in A" such that S1,S>,...,S;-1,S; is a minimal solution of the first i equations.

6.4 Definition. A global relation Q, defined on the class DBg, 1s said to be definable in the
relational algebra with minimum fixed point if there exists a triangular system of relational
formulas as in (1) such that, for every 4 € DBy it is Qg = X;* where X{1,X5',..., X is a
minimal solution of the system in 4.

6.5 Remarks.

1) The class of global relations definable by triangular systems extends the class of queries
definable by relational formulas. In fact, the global relation defined by the formula
F can also be defined by the system with the single equation X = F, where X is a
relational variable of the same arity as F.

2) The transitive closure with respect to a binary symbol P of Ls is definable on DB by
the single equation

X=PU(PoX)

or more precisely
X =PUnym3{3(P x X)

which is written with only symbols in Ls U {X }; remember Remark 4) in 3.3.

We close this section by discussing how the computation of a minimal solution for a
triangular system where the difference does not appear can be carried out 1n logic program.
We give a brief outline assuming that the reader be acquainted with the main notions.

We recall that a Horn logic program (see [L187]) H P is a finite list of clauses of the form

A{-“Bl,Bg,...:Bm (1)

where A,B1, B>, ..., B, are atomic formulas. Each atomic formula is interpreted as a relation
and each clause 1s interpreted as a sentence where the individual variables are universally
quantified. Since a atomic formula is of the form P(t,1,...,t;) where P is a relation symbol,
the clauses in (1) assert that if certain relations among certain elements are true then also some
other relations are true. When m == 0 the clause 1s an assertion without condition of the form
P(t1,t2,...,t;). In this case the clause is called unitary; namely, the unitary clauses codify
relations.
A goal in a logic program H P is a clause of the form

— G1,Ga,...,Gpy. (2)

Its role is to establish if the sentence 3% (G| A--- AG,,) is or not logic consequence of H P.
Here, we are interested in case m = 1 and the goal has no variables. More precisely we
consider a structure 4 = (A, P{*,P5',...,P) in a signature ¢ and we enrich ¢ to obtain a



208 S. Leonesi, S. Tulipani

signature ¢ 4 with a constant symbol for every element of 4; for every a € 4 we denote with
the same symbol the element a and its name which 1s a constant in G 4. For every triangular
system and every A4 we are going to build a finite set of clauses, a program, in G 4 of the form
HPUD(A) where H P is a suitable set of clauses in the signature 6 4 and D(4) is the set of
all the unitary clauses without variables which are true in 4, i.e. D(A4) is the set

P(d)+ for i=1,2,...,.n and & suchthat P’ holdsin 4.

The clauses of D(A4) codify the database 4 and the clauses in H P are emploied to deduce
new relations. If R is a relation symbol in # P, not necessarily of the signature of 4, we may
ask if R(d) is a logic consequence of AP UD(A). This is true if and only if R(d) is true in
the minimal Herbrand model of P U D(4). But this fact, by well-known theory of logic
programming, can be tested by building the resolution tree for the goal < R(a) with respect
to the program H‘PU D(A4). Moreover, this can be done mechanically in one of the usual
computer implementation of logic programming (see [L187]).

The next Proposition asserts how logic programs can be used to solve triangular systems
of relational formulas.

6.6 Proposition. Let S be a triangular system of relational formulas in the language Ls U
{X1,X2,...,X,} and the difference symbol “\” is not present in S. Then, it is possible to
build a logic program H ‘P in the first-order language with relation symbols {P;,P,,..., Py,
X1,X5,...,X,} such that, for every structure A of signature &, the program H P UD(A) has
the minimal model

a* = (AP PS,.. PRLXTL XS, X (3)

where XﬁXf, ..., X7 is the minimal solution of S in 4. Hence, as consequence we have
that, for testing if X;*(d) is true, it is sufficient to run the goal +— X;(d@) in the logic program
HPUD(A).

Proof. Let .S be a triangular system as defined in (1) of 6.2 where the difference symbol *\”
does not appear. We say that an equation X = F is simple if the formula F 1s in one of the
following forms:

a) P, a basic relation symbol;

b) YNZ, where ar(Y) = ar(Z) = n;

¢) YUZ, where ar(Y) = ar(Z) = n;

d) Y xZ, where ar(Y)=m, ar(Z) = n;

e) m;Y, wherear(Y)=n>1 and 1 <i<mp;
f) {iY, wherear(Y)=n and 1 <i<j<n;

with the convention that X, Y, Z range in the relational variables X;,X>,...,X, or in the rela-
tional constants Py, P,, ..., P,. Now, the procedure to build # P acts in two steps:
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1) transforms S in a triangular system S’ where every equation is simple;

2) transforms S’ in the wanted program H P.

A triangular system .S which contains only simple equations can be transformed in the pro-
gram H ‘P by replacing each equation with suitable clauses. Every relation symbol U present
in .S’ will be used also as relation symbol of the same arity in the program H P. Moreover
UL U2y Uy s V1 V2, ..V ... WLl denote distinct first order variables. Then, the proce-
dure replaces each equation X = F where F is in cases a)-f), respectively, as follows:

a) with the clause X (uy,up,...,u,) < Pluy,up, ... uy);
b) with the clause X (uy,uz,...,u,) < Y(uy,uz,...,un), Z(uy,u2,...,uy,);
¢) with the two clauses

X(uyp,up, ... uy) < Y(up,up,...,uy) and  X(up,uz,... un) < Z(uy,uz, ... uy);

d) with the clause

X(HI}HZJ--*;Hmvl:"”z':*“ﬁvm) A Y(“la”ﬁi”*wuﬂ):z(l"i:vzﬁ"'!v-’ﬂ);

E) with the clause X(ul,ugj...,unwl) — Y(H],L-iz,...,H,*_hv.:u;?...juﬂnl);
f) with the clause X (uy,un, ..., up) < YUy, up, .. Uiy .o JUj 1 Uiy Uj 1, ey ).

Now, it is easy to prove that the semantics of Horn clauses in the minimal model (see [L187])
implies that the structure 4*, defined as in (3), is the minimal model of 4 PUD(A4) for every
A € DBg;.

Finally, the procedure for transforming every triangular system S into a system 5’ of
simple equations operates inductively on each equation X = F with respect to the number of
operations which appear in F. If F is not already simple then F = F] x 5, where “ x 7 1s
a suitable operation symbol and Fj, F> are not both relational symbols. Then, the procedure

replaces the equation X = F with
X=Y1xY,, YI=F, h=FH;

where Y1,Y> are new relational variables which are not present in the formulas of the system
and have convenient arity. Repeating the routine as long as possible we get a simple system.

To clarify the procedure we consider the following

6.7. Example. Let us consider the equation

X = PUTMEE(P x X) (1)
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which defines the transitive closure of P, already met in 6.1. Then the transformation pro-
duces

X =P

X =Ty
Yy = 'n:32
Z =0T
I =PxX

The procedure for transforming triangular systems into logic programs works well also
if the difference operation appears in the system with the condition that the second member
of the difference be one of the basic relation symbol among Py, P, ..., P.. In this case the
resulting program is a DATALOG program and no more Horn (see [EF95]).
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