Note di Matematica Vol. 18 -n. 2, 165-173 (1998)

GEODESIC REFLECTIONS AND ALMOST PARA-HERMITIAN STRUCTURES
RAMON VAZQUEZ-LORENZO!

Abstract. Characterizations of locally symmetric para—Hermitian manifolds and para-
complex space forms are derived by means of geodesic reflections. Also, an application
to (J* = 1)-structures is given.

1 Introduction

In understanding the geometry of a manifold the study of its curvature naturally appears as the
basic tool. Centering our attention in general pseudo—Riemannian manifolds, and pointing
out those with a simple curvature tensor, we must consider manifolds with constant curvature
and, more generally, locally symmetric manifolds.

The initial Euclidean notion of a reflection with respect to a point or a linear subspace has
motivated the definition of the geodesic reflection with respect to a submanifold in pseudo-
Riemannian geometry, and special classes of pseudo—Riemannian manifolds have been char-
acterized using them. We refer to [2], [7], [10] for results in the Riemannian and pseudo—
Riemannian setting and for further references. The aim of this paper is to analyse the behavior
of geodesic reflections when there exists an almost para—Hermitian structure on the manifold,
deriving characterizations for some curvature properties following the directions marked in
the previous references.

The paper 1s organized as follows. In section 2 we recall some basic notions on para—
Kéhler manifolds and, more generally, on almost para~Hermitian manifolds, and we briefly
describe some properties about geodesic reflections on pseudo—-Riemannian manifolds we
will need in the other sections. In §3 we obtain a characterization of locally symmetric para—
Hermitian manifolds by means of geodesic reflections with respect to points (cf. Theorem
1). In §4 the constancy of the paraholomorphic sectional curvature of para—Kéhler manifolds
1s treated, deriving a criteria by means of geodesic reflections with respect to paraholomor-
phic surfaces (cf. Theorem 4). Finally, in §5 we apply the characterizations obtained in the
previous sections to derive similar results for e-metric (J* = 1)-manifolds.

2 Preliminaries

In this section we will recall some basic definitions and known results we will use in what
follows. From now on, (M, g) will denote a pseudo—Riemannian manifold, V its Levi Civita
connection and R the curvature tensor taken with the sign convention R(X,Y) = [Vx,Vy| —
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Vix y}- For any given nondegenerate planc T = ({X,Y }), that is, g(X,X)g(¥,Y) — g(X, Y)? #
0, the sectional curvature is defined by

R(X,Y,X.,Y)

Kir) = ,
) ) S[X:X)g(y:y}—g(xry)z

where R(X,Y,Z W) = g(R(X,Y)Z,W).

2.1 Para-Kihler manifolds

A para—Kihler manifold is a symplectic manifold (M, Q) locally diffeomorphic to a product
of Lagrangian submanifolds. Generalizing this definition, an almost para-Hermitian man-
ifold is an almost symplectic manifold (M,€2) whose tangent bundle splits into a Whitney
sum of Lagrangian subbundles TM = L& L. Induced by this decomposition, an almost para-
complex structure J is defined by J = ®; — 1/, where 1, (resp., 7;/) is the projection of the
tangent bundle into L (resp., L').

Since both L and L' are Lagrangian, it follows that Q(J/X,JY) = —Q(X,Y) and thus,
g(X,Y) =Q(X,JY) is a pseudo—Riemannian metric on M satisfying

g(JX,JY) = —g(X.Y). (1)

From now on, attending to their pseudo—Riemannian structure, we will refer to the triple
(M,g,J) as an almost para—Hermitian manifold. Note that the Kahler condition is now ex-
pressed by the parallelizability of the paracomplex structure, VJ = (). (We refer to [1], [5].
|8} for more information and further references on para—Hermitian geometry. See [3] for a
survey).

2.2 Geodesic reflections

Let (M,g) be an n—dimensional pseudo—Riemannian manifold and N a nondegenerate g
dimensional topologically embedded submanifold. The geodesic reflection @y with respect
to the submanifoid N is defined in a neighborhood of the zero section of the normal bundle v
where expy 1s a diffeomorphism by

On @ p = expy(r§) — ¢(p) = expy(—rE), (2)

where exp, denotes the exponential map of the normal bundle. Note that, if N reduces to a

point, the geodesic reflection becomes the geodesic symmetry with respect to such a point.
To derive an analytic description for @y we shall use adapted systems of Fermi coor-

dinates, which will play a fundamental role in what follows. We briefly describe such co-

ordinates as follows. Let m € N and consider {E;,...,E,} a local orthonormal frame field
such that {E,, ..., E,, } are tangent to the submanifold and {E,,+1,...,E,} are normal vector

fields of N. Let (y',...,y") be a system of coordinates in a neighborhood of m in N such

that — (m) = E;(m), i = 1,...,n9. The Fermi coordinates (x!,...,x"), centered in m, with

oy
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respect to (y',...,y™) and {Ey,...,E,} are defined by

n

X exXpPy E thﬁ =y, 1=1.....n0,
B=ngy+1
n
x| expy 2 IBEB = 14 a=no+1,...,n.
B=ng+1
Note that when N reduces to the point m, then (x',...,x") are nothing but normal coor-

dinates. Also note that, considering the Fermi coordinates introduced above, the geodesic
refiection is now expressed by

(!, .. 270 Xt ) s (L K, L ), (3)

We refer to [10] for a method to write power series expansions of the compoenents in a
Fermi coordinate system of any tensor field along a normal geodesic to N. In what follows,
we will make use of some of such expansions without computing them explicitly (see also
[71).

We finish this section by recalling some properties of geodesic reflections. If J is an
almost paracomplex structure on M, @y is called paraholomorphic if (Qy)coJ =J o (Qn)s
and symplectic if it satisfies (Qy)*Q = Q, where €2 denotes the Kihler 2—form. Also, @y is
called isometric if (Qy)*g = g. {See [2] for more information on isometric and symplectic
geodesic reflections with respect to points and submanifolds in Riemanmian geometry, and
[ 7] tor the pseudo—-Riemannian case).

3 Locally symmetric para~-Hermitian manifolds

Among the classes of pseudo—-Riemannian mantfolds, an interesting one 1s that of symmetric
spaces. Moreover, if the manifold is assumed to be equipped with an additional structure,
such kind of manifoids may be further specialize. In this sense, Kaneyuki and Kozai intro-
duced 1n [8] the class of para—Hermitian symmetric spaces as those almost para—Hermitian
manifolds with isometric and paraholomorphic geodesic symmetries. (See also [4] for a clas-
sification of para—Hermitian homogeneous structures).

In what follows we will obtain a characterization of locally symmetric para-Hermitian
manifolds by means of the geodesic symmetries, which will show the existence of a certain
redundancy in the previous definition.

Theorem 1 Let (M*",g,J) be an almost para—Hermitian manifold. The following conditions
are equivalent:

i) (M,g,J) is locally symmetric para—Hermitian.
ii) The local geodesic symmetries are paraholomorphic.

iti) The local geodesic symmetries are symplectic.
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Proof. First, one easily gets that if the manifold is locally symmetric para—Hermttlan then
both ii) and iii) are satisfied.

To show that condition ii) implies i), let us consider an orthonormal basis of 7,,M {e;,.. .,
€nylntls---r€m}t = {6, €2,...,en,JE,Jer, ..., Je, }, where € is any unit vector in T,,M. Let
Y(r) = exp,(rE) be the geodesic with initial conditions ¥(0) = m, Y(0) = &, and take the as-
sociated geodesic symmetry given by Sy, (exp,(rG)) = expn(—rE). Since S, is paraholomor-
phic, in the following power series expansion for the components of the almost paracomplex
structure J,

J(r) = —{Qcg®}(m)—r{gVeQic}(m)+0(r*), a=2,...,2n,
J{?(Y(F)) — {ngfb}(m) + r{ngvg‘Qi‘a}(m) + O(rz)} ﬂ}b — 2:! RPN
the coefficients of r must vanish. Moreover, V;;Q“ = 0 and VeQ, = —VeQy,. Then, it

follows that VQJ = 0 for all nonnull vectors &. Now, this condition can be extended for null
vectors, and so (M, g,J) is a para—Kihler manifold. In this case, we have

cd l Ca I
RA) =~ —r { €6 R + getaR 0, D ()

| 1
. { 125 “VeRee ee + EcEavﬁRie Eea QIC} (m) +0(r*),

where a=2,...,2n and &; = g(e;, e;). Again the coefficient of > must be zero, which implies

1 1
{—Eavgﬁge eje + 6En+1€anRe;JE;§e Q) n—l—l} (m) =

Then, VeRg, e =0fora=2,...,2n, and taken a = n+ 1 we get

VeRejeese =0 (4)

for all nonnull vectors &.
If we suppose iii), proceeding in the same way and using the power series expansions

Qua(Y(r)) = Qia(m) +rVeQia(m) +0(r*),
Qab(Y(r)) = Qg (m) + rvﬁﬂab (m) + O(FZ):
it follows that (M, g,J) is a para—Kihler manifold. In this case, we obtain the expression

rﬁ 3
Q1a(¥(r)) = Qialm) + = Ree e (m) + IZVgRge ese(m) +O(r*),

and since S,, is symplectic the coefficient of 7 must vanish. Therefore, we get VeRg, 5 =0,
fora=2,...,2n, from which again (4) holds.

Now, the proot finishes considering (4) and the following lemma.
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Lemma 2 Let (M,g,J) be a para—Kdihler manifold. Then (M,g,J) is locally symmetric if
and only if

VxRxixxix =0, (5)

for all unit spacelike vectors X.

Proof. Let X and Y be unit tangent vectors, X being spacelike. We consider the vector
Z = hX +uY, where Ay = 1 if g(X,Y) =0 and Ao = g(X,Y) ™! in other case, u € (0,1).

-
A

Therefore, Z is a spacelike vector and considering the coefficient of u* in (5) it follows that

VxRysvyry +4VyRysyysy =0, (6)

and replacing Y by JY in this expression we get

VxRysyysy +4V,yRxysvy = 0. (7)

Now, using the second Bianchi identity (7) becomes

S5VxRysyysy —4VyRxyyysy =0, (8)

and, from (6) and (8) it follows Vx Ry yy v = O for all unit vectors X, Y, X spacelike. Finally,
after a straightforward calculation (similar to the above), it is obtained that VxRyyxy = O for
all unit vectors X and Y, X spacelike, which shows that (M, g) is locally symmetric in virtue
of [7, Lemma 2.1].

4 Paracomplex space forms

Since the curvature tensor of a pseudo-Riemannian manifold with constant sectional curva-
ture ¢ is given by R(X,Y)Z = c{g(X,Z)Y — g(Y,Z)X }, it follows that in the particular case of
para—Kéhler manifolds, the constancy of the sectional curvature implies that ¢ = 0. This fact
motivates the definition of the paraholomorphic sectional curvature, H, as the restriction of
the sectional curvature to nondegenerate paraholomorphic planes, 1.e., planes which remain
invariant under the action of the paracomplex structure J (see [5]).

Para—Kahler manifolds of constant paraholomorphic sectional curvature are locally sym-
metric. Moreover, in the nonflat case, they are irreducible spaces and thus, if complete
and simply connected, they correspond to the symmetric space SL(n+ 1,R)/(SL(n,R) + R),
therefore being the simplest examples of para—Hermitian symmetric spaces.

An algebraic characterization of the constancy of the paraholomorphic sectional curvature
in terms of the Jacobi operators can be stated as follows

Theorem 3 [1, Thm.3.1] Let (M, g,J) be a connected para—Kcihler manifold. It is a space of
constant paraholomorphic sectional curvature if and only if

Ry (JX) ~ JX, for all vectors X, (9)

where Ry = R(-,X)X is the Jacobi operator associated to X and ~ means “is proportional

a

o .
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Next, the purpose of this section is to obtain a geometric interpretation of (9) as follows

Theorem 4 Let (M**,g,J) be a para—Hermitian manifold, with n > 2. Then it is a para-
complex space form if and only if the geodesic reflections with respect to any nondegenerate
paraholomorphic surface is symplectic.

Proof. First of all note that since J 1s a paracomplex structure on M, it is possible to construct
a system of coordinates with paraholomorphic changes of coordinates (see [8]). As a con-
sequence, for each point m € M and any two—dimensional paracomplex subspace V C T,,M
there exists a paraholomorphic surface S passing through m with tangent space 7,,S = V.

Now, let § be a nondegenerate paracomplex surface passing through a point m € M. Let
(x! ... ,x"*) be a system of Fermi coordinates in a neighborhood of m where the exponential
map of the normal bundle is a diffeomorphism, and consider the analytic expression (3) for
the geodesic refiection ¢g. Therefore, @g is symplectic if and only if

Qij(p) = Cij(9s(p)), Qia(p) = —Qia(@s(P)), Qar(P) = Qa(@s(p)),  (10)
where i, j € {1,2} and a,b € {3,...,2n}.

Let p = exp,(rE) = y(r) be a point in a nonnull geodesic normal to S, and specialize
the system of Fermi coordinates so that af_ﬂ (y(r)) = y(r). Now, one has the power series
expansion

Qna(p) = Qona(m) +rg(E, (Vg])ﬁ};) (m) + O(rz)z

and considering the third condition in (10), it follows that (V¢J)& is tangent to S for each unit
& normal to S. Since dim M > 6 and considering a nondegenerate paracomplex surface S’
passing through m and normal to S and &, it follows as before that (V¢J)E is tangent to §’, and
thus (VeJ)§ = 0. This shows that (M,g,J) is a nearly para—Kahler manifold and therefore
para—Kdhler since it is para—Hermitian by assumption (see [3] for a classification of almost
para—Hermitian manifolds).

Next, we consider the power series expansion

Qia(p) = Qig(m)+rg(JE,, T(E)E; —"LE)E;)(m)
. {*éR;EaajEf — —;—Rggfagﬂ} (Iﬂ) +- O(rg),

where T'(§) denotes the shape operator of S (g(T(§)X,Y) = —g(B(X,Y),&), B being the sec-
ond fundamental form), and "L(£) is the operator defined by "L(£)X = V&. Once again using
(10) it follows that the coefficient of 7% vanishes, and for a = 2n— 1 we get R(E,JE,E, JE;) =0,
condition equivalent to the constancy of the paraholomorphic sectional curvature of the para—
Kéhler manifold M as we stated in Theorem 3.

To prove the converse, we solve the Jacobi equation using the fact that if the paraholomor-
phic sectional curvature of the para—Kihler manifold M is constant, say c, then its curvature
tensor 18 given by

RX,Y)Z = 3 {g(X,2)Y —g(Y,Z)X + g(X,JZ)JY

—g(Y,JZ)JX +2g(X,JY)JZ}.
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Taking ¢ > 0 (for ¢ < 0 or ¢ = 0 1s similar), proceeding as in [2], we obtain the following
EXpressions:

Q,((r) = (i) Q;5(m)

2
(™) sr@RITER)
2n—2 )
+ 2, g(LE)F, F)g("UE)F;, Fs)Qxs ¢ (m),
t,5=3 y

u

- (—mf‘-—/_——) iizg(ﬂé)ﬁ,ﬂ)ﬁmf (m),

Qi (Y(7)) r \/C )

|

2
Qb (Y(r)) :2 (jgsinrzﬁ) Qgp(m),
\/Lgm(n/a ('L(E)Fi(m),JE)g(JE, JE),

Qﬁn,ﬂ ('Y( ?’}) - % %SIH(F\/_)QQH a (H’I)

where y(r) = exp,(r€) is an spacelike geodesic (for a timelike geodesic, we just replace
trigonometric functions by hyperbolic ones).
In any case, we get that the geodesic reflection is symplectic along any geodesic, and

so the geodesic reflection with respect to each nondegenerate paraholomorphic surface is
symplectic.

92?”( (f”))

Remark 5§ Note that the previous theorem remains valid in dimension four, provided that the
manifold is para—Kahler.

Remark 6 Since a para—Hermitian manifold admits a coordinate system consisting of para-
holomorphic functions, for any 2—-dimensional paraholomorphic subspace V of the tangent
space T;,M there exists a paraholomorphic surface § passing through m with 7,,§ = V. At
this moment, the authors do not know if such condition can be stated for general almost
para—Hermitian manifolds.

5 Application to (J* = 1)-structures

An e—metric (J* = 1)-manifold is a pseudo-Riemannian manifold (M",g) endowed with a
(1,1)-tensor field J such that J* = 1, and satisfying g(X,JY) + g(JX,Y) = 0 (g is said to be
adapted in the electromagnetic sense metric). Note that the characteristic polynomial of J
is given by (x* — 1)"(x?> +1)%, 2r + 2s = n, and thus, the eigenvalues —1 and +1 define two
distributions, D, and D . respectively. We will say that a J-invariant subspace contained
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in D, (resp., D) 1s complex (resp., paracomplex). Further, the Kéhler condition (VJ = 0)
means that the manifold is locally a product of a Kahler and a para—Kiahler manifold. (We
refer to [5] and the references therein for more information on e—metric manifolds). Next,

combining the results in [7] with those of previous sections, we have the following:

Theorem 7 Let (M,g,J) be an e-metric (J* = 1)—manifold. Then the following conditions
are equivalent:

i) (M,g,J) is locally the product of a locally symmetric Hermitian manifold and a locally
symmetric para—Hermitian manifold.

i1) The local geodesic symmetries are J-preserving maps.

iit) The local geodesic symmetries are symplectic.

Theorem 8 Let (M,g,J) be an integrable e-metric (J* = 1)—manifold with characteristic
polynomial (x* —1)"(x* 4+ 1)%, r > 4. Then it is a Kdhler manifold of constant J—holomorphic
curvature if and only if the local geodesic reflections with respect to any nondegenerate com-
plex and paracomplex surface are symplectic.
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