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FROM THE TRIALITY VIEWPOINT

LUCAS M. CHAVES, A. RIGAS

Abstract. In this note we give some elementary applications of the concept of triality to
the geometry of low dimensional manifolds. We exhibit explicit identifications between the
compact, simply connected Lie groups, relations between principal bundles over S’, a new
view of Hopf maps and expressions of the Killing - Cartan orthogonal projections from the
Lie algebra of Spin(8) onto the Lie algebra of Spin(7) and G,. Some basic material, from the
books “Spinors and Calibrations "[H] and “Compact Projective Planes” [S-B-G-H-L-S] is
repeated here for the sake of completeness.

1 TTriality

Let H be the quaternion algebra [L-M] and K the Cayley algebra defined in RE=H®H,

a C ac—db .. :
by ( b ) ( g ) = ( da -+ bz ) , where all products are quaternionic. It is well known

0 ) One can fix a basis for

K,Iz@z(é),ﬂz(é),ﬁgz(é) (E>}Wherel1jkaretheusual

orthonormal basis of the quaternions, the e;’s anticommute for [ = 7, and their square 1s
—1.

1
that K 1s a non associative division algebra with unit 1 = (

Conjugation 1n X is given by( E ) = ( i b ) Right and left multiplications define

the linear morphisms Ly (M) = om and Ry (1) = no, for o, in K, that are isometries relative
to the euclidean scalar product on R® = K, if ||a]| = 1.

Triality, first observed by Study and other algebraic geometers and formalized by Elie
Cartan [C] 1n the early 20’s, can be summarized in the following Triality Principle:

(T) For all A € SO(8) there is a unique pair, modulo common change of sign, (B,C) €
SO(8) x SO(8), such that, for all §,;m € K, A(En) = B(§)C(n), where both products are Cay-
ley multiplications.

Proof: The reflection Reg in R® = K, with respect to the hyperplane perpendicular to a unitary
§ € 7, is given by Reg(x) = —EXE. Each A € SO(8) can be written as a product of an even
number of reflections and one of the Moufang identities [Mo] is &(ab)§ = (Ea)(bE) for all
E,a,b € K . All triples (A, B,C) that satisfy (T) form a group and we can suppose that A
is a product of just two reflections A(xy) = RezRen(xy) = S(M(xy)n)S = [E(Mx)][(M)E] =

\LeLn (x)][ReRy (v)] = B(x)C(y), where B = L¢Ly,C = ReRy. To show umqueness of the pair
+(B,C), let A(.xy) B (x)C(v) = Ba(x )C'g(y) for all x,y € K . For w = B;(x),u = C{(y),
wi = (By(BT'W))(C2(C ' (1)) = B3(w)C3(u),Yu,w € K. If u =1, B3(w) = wh, where b =
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C3(1) and similarly C3(u) = au with a = B3(1). So wu = (wb)(au),Vw,u and w = u = 1
implies » = a~'. Replacing w by va we get (va)u = v(au) for all u,v € K, which implies that
a is real and therefore a = +1, b = a and (B3,C3) = £(/,1).

Recall that SO(n) is connected, but not simply connected, its fundamental group 1s 2, for
n > 3, and that its universal ( double ) covering group is denoted by Spin(n). The Triality Prin-
ciple (T) furnishes an explicit form of representing Spin(8) in SO(8) x SO(8), since A and B
determine C uniquely. Spin(8) = {(A,B,C,) € SO(8) x SO(8) x SO(8)|A(En) = B(§)C(n)
for all §,m in K}. Connectedness of Spin(8) follows by observing that the path (A;,B;,(;) €
Spin(8) with A; = Re,, O Re,, exp(tme;)» Br = Ley O Le exp(tme;) C: = Re; O R, exp(tme)> 0<r<1,
joins the point (I,—I,—1) to (I,1,I), where Re, denotes the reflection in K relative to the
hyperplane perpendicular to x and 7 is the identity element of SO(8).

A covering map Spin(8) — SO(8) is just (4,B,C) — A.

Let A be defined by A(x) = A(%).

Ea T *

Proposition 1 If (A,B,C) € Spin(8) then (C,§,A) (A,C ) (5 A.B B), (5,6‘,.5) and (B,A,E)
are also in Spin(8).

Proof: For any n € K, (T) implies A(M(nS)) = B(M)C(n3),
I P AE) = B)CME), [| 1 |> BAAE) = B@)BM)CME),
[ II* B@MA(E) =[| B(™) ||* C(M&),
B()A(E) = C(ng), since || B(®) [|=[|TT [|=[In || So, (C,B,A) € Spin(8).
The rest of the proof is completely analogous.

Observe now that the center of Spin(8) has four elements and is isomorphic to Z; X
Z». The automorphism group of Spin(8) modulo the subgroup of internal automorphisms 1s
parametrized by the group of automorphisms of Z; x Z,, that is S3, the permutation group of
three elements [L-M, pg. 55]. An explicit description of these six external automorphisms i1s
the following:

the identity id,

3(A,B,C) = (C,B,A),

©(A4,B,C) = (4,C,B),

¥(A,B,C) =108(A,B,C) = (C,A,B),

Y(A,B,C) = (B,C,A),

§ov(A,B,C) = (B,A,C).

The automorphism Y expresses all basic properties of triality and has order 3, while 0 and
T have order 2. Rigorously speaking it is this group S3 that represents the Triality Principle.

Let G, be the automorphism group of K, i.e., A is in G, iff A € SO(8) and A(EN) =
A(E)A(n), for all E,m € K. So G, can be seen as the subgroup of Spin(8) of the form
(A,A,A). As A(x) = A(1)A(x) for all x € K it follows that A(1) = 1 and it is easy to see that
A is orthogonal, so G, C O(8). In fact G»is connected and simply connected [P, pg. 310].

Lemma2 A € SO(7) & A =A.

Proof: For  =1o+m; in R-ep & Im(K), AM) =AMo—m)
=A(no) —A(M1) =A(Mo) +A(M1) =A(M).
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Proposition 3 G, is the fixed point subgroup of .

Proof: If y(A,B,C) = (A,B,C) then (A,B,C) = (A,A,A), with A € SO(7).
By Lemma 2 then (A,B,C) = (A,A,A). Obviously, ¥ fixes G».

An immediate Corollary of this is that the Killing-Cartan orthogonal projection from

———

the Lie algebra Spin(8) onto the Lie algebra E?E is given precisely by averaging over the
infinitesimal version of the subgroup of §3 generated by y. We postpone giving a precise
statement of this and its proof until §2, where we deal with infinitesimal triality. If Spin(7)
is the subgroup of Spin(8) defined by A € SO(7), observing that (I, —1,—1) is in Spin(7), its
connectedness follows as that of Spin(8), replacing e exp(tme;) by e; exp(rmes).

One can easily show now:

Proposition 4 (i) The fixed point subgroup of the automorphism T is Spin(7) defined by
Spin(7) = {(A,B,C) € Spin(8) | A(1) =1}.

(i) o fixes Y(Spin(7)).
We can define analogously the following subgroups of Spin(7),
Spin(6) = {A(e;) =e; orA € SO(6)}
Spin(5) C Spin(6) by {A(ez) = e3,1.e., A € SO(5)}
Spin(4) C Spin(5) by {A(e3) = e3,i.e.,A € SO(4)}
Spin(3) C Spin(4) by {A(es) = es4,1.e., A € SO(3)}.

Proposition 5 Spin(7) = {(A,B,B) € Spin(8)}.

Proof: (A,B,C) € Spin(7) ifand only if 1 =A(1). Forallx # 0 one has A(1) =

x |72 -B(x)C(%), i.e., B(x) = C(%), since B is orthogonal. So B = C.
An easy exercise shows A(1) = 1 < A = A. Similarly one can also show that Spin(7) —

Y(Spin(7)) = Spin(7) ~ v (Spin(7) = Y(Spin(7)) ~ ¥ (Spin(7)) = Ga.
Some classical fibrations related to Spin groups become quite simple when using the
above triality representations.

Proposition 6 The well-known principal bundle projections can be described as indicated
below:

a) Spin(7) --+ Spin(8) — §7, (A,B,C) — A(1).

b) Spin(6) --+ Spin(7) — S8, (A,B,B) — A(e1).

¢) Spin(5) --» Spin(6) — S°, (A,B,B) — Ales).

d) Spin(4) --» Spin(5) — $4, (A,B,B) — A(e3).

e) Spin(3) --» Spin(4) — S5, (A,B,B) — A(es).

f) Gy --» Spin(8) - 8" xS’,  (A,B,C) — (A(1),B(1)).

g) Gy ——» y(Spin(7)) — S, (B,A,B) — B(1).

h) Gy --+ Spin(7) = 57, (A,B,B) — B(1).

Proof: We will just show g). The rest are proven the same way.’
If B(1) =1then1=B(1)=A(1)B(1) =A(1),s0B(x) =B(x-1)
= A(x)B(1) = A(x), for all x so A = B.




158 Lucas M. Chaves, A. Rigas

2 The exceptional isomorphisms

Here we show how triality provides an explicit and unified way to all low dimensional, com-

pact, simply connected Lie group identifications. In particular,

Spin(6) = SU(4), Spin(5) = Sp(2), Spin(4) = 53 x §* and Spin(3) = 5°.
Recall that Sp(2) = {A = ( g Z ) .a,....,d € H| AXA = AA* = I}. This group is
represented in SO(8) by all matrices that commute with two given anticommuting complex
structures [Ch]. The same way SU (4) = {A € C(4) | AA* = I} is represented by all matrices
in SO(8) that anticommute with a given complex structure.

Proposition 7 The map (A,B,B) — B defines group isomorphisms between
a) Spin(6) and SU(4) C SO(8),
b) Spin(5) and Sp(2) C SO(8).

Proof: We will just show b), the proof of a) being easier along the same line.

Let (A, B,B) € Spin(6) and apply yto obtain (B,A, B) € Spin(8). So, B(ein) = A(e1)B(1)
= e1B(n), i.e., B commutes with the complex structure L, , left Cayley multiplication by
e1, and therefore B belongs to the subgroup SU(4) of SO(8) defined by L,,. Similarly, if

o

(A,B,B) is in Spin(5), B commutes with L, and L., so it belongs to the subgroup Sp(2)’ of
SO(8) defined by commuting with the pair of anticommuting complex structures L., and L,, .
It is clear that this projection is a group morphism and that if B =1 then (A,B,B) = (1,1,1).
Dimension counting shows it to be an isomorphism in each case.

The complex structures usually considered to define SU(4) and Sp(2) in SO(8) are not
related to Cayley multiplication. For example, Sp(2) is defined as all matrices in SO(8)
that commute with right quaternionic multiplication, say by ¢ € H, on H & H, that sends

| | (
( ; ) to ( Eg ) In this case the two complex structures in SO(8) can be C; \ E ) -

ai v, / a — HJ ) ad . 1a (1 -
(bi ) and(lj\ ) ) = ( bj ) In our case, L, ( b ) = ( bi ) andLEE( b ) =
( éj: ) The group O(8) acts transitively on pairs of anticommuting complex structures
in R® by conjugation with isotropy subgroup Sp(2) [P, pg.269]. For (A?B,g) e Spin(4) we

s O .
0 50(4)).11215“?6“

known [Cu, pg.144 ] that for each such A there exists a unique, modulo common sign, ordered

| | . . I, 0 | a ) (g N
pair of unit quaternions (p,qg), with A = ,1.e., A = _ ). Triaht
! 9 (0 lpﬂrzf> (ﬂ g ) 0

implies then, that B = ( ? ? )and B= ( f;f ? ) Similarly, Spin(3) will consist of
p P

all (A,B,B) in Spin(4) with A(eq) = e¢4. This implies plg = 1 or p = ¢ and Spin(3) consists

. AY
of all ( fa 0 N y , lp Y ), where [ and r stand for left and right
0 lyors 0 I, 0 1,

quaternionic multiplication. Observe that this Spin(3) is not a subgroup of G;.

have A(e3) = e3 as well as the conditions defining Spin(5), so A € (

o
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Similarly, SO(4)/Sp(1) can be identified with pairs of anticommuting complex structures
on R*. There exist, therefore, elements D € O(8) with Do L,, oDl =C;,i= 1,2. It 1s conve-
S0o4) 0
0 Iy
that is identical for L, and Cs , s = i, j remains unchanged. Let [} denote quaternionic con-
jugation in H and [;, respectively rs, s = i, j,k denote left, respectively right, quaternionic
multiplication by s. Then we have,

nient to choose D € ( ) C SO(8), so that the effect on the second H— summand

Lemma 8 ([yof) lolo(lyof) =r,s=1,]

Proof: For s =iand any a € H, (ko)™ oljo (lyoB)(a) = I (ika) = —(kika) = ik*a =
—ia = —ai = ai = ri(a). The same holds for s = ;. O]

d-!' 0
0 I
and Do Sp(2) oD™! = Sp(2). A similar consideration identifies B of (A,B,B) € Sp(2)
with an element of SU(4).

Corollary 9 Ifd =103 € O(4) and D = ( ) then DolL, oD™! =C, s = 1,2

3 Relations with Hopf maps

The group Sp(2) is the total space of an $°— principal bundle over 7 by projecting, say, on
the first column, S>---Sp(2) — S7 and in this case S° acts from the right as the subgroup

19 , = 1. We will translate this bundle to a Spin(5) setting and then look at
0 ¢ q p g

some of the consequences.

The map @ : $° x > — G, defined by ®(p, g) ( z ) = ( gz; ) determines an inclu-

sion of SO(4) = (S° x $°)/Z, in G, as a subgroup, (S0(4),G,) is a symmetric pair [C-R1].
If S; = @®(1 x§%) = 53, then Sg C Spin(5).

Proposition 10 We have the principal S*- bundle S3 - -- Spin(5) — S7, with n(A, B, B) = B(1).

Proof: We must show that the action of Sg is compatible with the projection v . If B(1) = 1,
then B(1) = 1 too and A(x) = B(x)B(1) = B(1)B(x), so (A,B,B) = (A,A,A) € G,. Since

Aley) = e; and A(ey) = e9, it follows that A(e3) = e3 and so A lives in ( fa 0 ) ) C
) a Vv _ [ 4d - r —VX \ — VX _
SO(8). SG,A( 7 ) ( A'(b) ) for some A" € SO(4). But ( 0 ) .——A( 0 )

A(<2>(f)) :A(g)A( S):(S&’(x) ) ( 3f(y) >:(aﬂ’@)ﬁ’(x)

Sy — AoV AT _ TEw\ — Al a y_ [ 4 3
and yx = A’(y)A'(x). Lety=1,A"(x) =A"(1)x, A ( ) ) = ( A'(1)b ) €S,
The projection on the second column of Sp(2), corresponding to the action of Sf? =

ST x 1) = {( g (1} ) || p|] =1} =5, again from the right, is also a principal S°—
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bundle over S” and one may combine these two, together with the classical Hopf projection
h: S’ — 5% to obtain the following commutative diagram

% $°
. o
$ ... Sp(2) — 8
T }  —uoh
$ . 8 — §
h
Diagram 1.

Here 7’ is the second column projection, all solid arrows are principal S° - bundle projec-

tions, A S - ||a_|\2~ ”bH2 is the classical Hopf map and —14 is the antipodal ma
b )T\ 24 Pl mapane — P g

of $*. By abuse of notation we write —A for —14 0 . The commutativity of this diagram is pre-
cisely the characterization of S p(2) as all 2 x 2 quaternionic matrices with A¥A =1 = AAX.
The compositions 4 ot and —k o= result in the bundle projection Spin(4) ---Sp(2) — S*,

which is another way of observing that Sp(2) is isomorphic to Spin(5). Observe that S X S

is precisely Spin(4) C Spin(7), as

o= (& 8n) (29): (52))

p,q € H, unitary}. This is the same as all (A, B B) € Spin(7) with A(e;) = e5, s = 1,2,3.

The bundle Spin(4)---Spin(5) — $* is defined by (A,B,B) — A(e3). We want to
express Diagram 1 in terms of Spins and triality, therefore Cayley numbers, instead of in
terms of quaternions.

Proposition 11 For (A,B,B) € Spin(5) we have
Ales) = (e;B(1))(B(1)ey) € $* C R? = span{es,...,e7} CRS =K.

Proof: Observe that A(e3) = A(eje2) = B(e1)B(ez). Applying the triality autnmﬂrphmm
we have Y(A,B B) = (B,A,B) and Y*(A,B,B) = (B,B JA), therefore, B(e;) = Ble; - 1
A(e1)B(1) = A(e1)B(1) = e1B(1) and

Bley) = B(1-ep) = B(1)A(ez) = B( )A(ez) = B(1)es.

Consequently, A(e3) = (e1B(1))(B(1)es).

As A(e3) is perpendicular to 1 = A(1), e; = A(e;) and e; = A(e) the result follows.

Remark 12 In [C-R3] we show that the map o+ (e1 ) (Clez) from S” to $* C R® = span {e3,

..,e7 } is essentially the Hopf map h expressed in terms of Cayley numbers. Its non triviality
is due to the non associativity of this product, as the formula clearly shows. From the above
we have
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Corollary 13 The following diagram is commutative and it is the Spin-version of Diagram
/.

Spin(4) e 3

Sg :S'pin(ﬁ) — .'5'7
(A?B?E) — E(Efi)

4 | } L —h

B(1) —  A(es)

s> o 87 — s
o —  (ejo)(Cler)
Diagram 2.

Proof: We just have to show that —h(B(es)) = A(e3). ButA(e3) = A(—eseg) = —B(es)B(eg) =
B(es)B(eg). From y(A,B,B) = (B,A,B) we have

__:E(Eﬂffl) = e1B(e4) and B(eg) = B(ezes) = (62)3(64) = 623(64) which im-
plies B(eg) = —B(e4)es. Therefore, A(es) = —(e1B(es))(B(es)ez) = —h(B(es)).

4 Infinitesimal Triality

By taking the first derivative of (T) we get an expression for the triality relation in the Lie
algebra Spin(8): Let y(¢) = (A(¢),B(t),C(t)) be a curve in Spin(8), with y(0) = (1,1,1) and
v (0) = (Ag,Bo,Cp).Then we have for any £,1 € K,

Ao(ENn) = Bo(€) ‘N +&-Co(M)

Call this relation (T').

It is convenient to write the relation aboveas

Spin(8) = {(X, x?‘» xp) € SO(8) x SO(8) x SO(8)},

where X(En) = X (En +EXP(M) for any c"; n € K. As conjugation commutes with

--"'"-'-.-l-'-"--r

derivatives, we have Spin(7) = {(X, X", X ?‘") € Spm(S)}
The automorphisms v, d, and T of Spin(8) define, by linearity, Lie algebra automorphisms

of SM)

Proposition 14 The maps %(id +1) =M and %(id +v+Y%) = A from SM) are the Killing

- Cartan projections onto a) Spin(7) and b) Ga.

Proof: We will only show b). Part a) is completely analogous.

First note that A = A, since Yy has order 3. The image of A is equal to Gg, since
AX,XMXP) =1 (X +X?"-I—X‘} X* 4 X +XP XP 4+ X* +X) is always of the form (W, W,W).
AsW(l)=W(1-1)=1- W(l)—!—W( )-1=2- W(l) and
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| W(1) || = ]| W(1) || we have that W(1) = 0 and therefore W = W. As A fixes every

element of G, we have the equality, as claimed. The kernel of A is orthogonal to G, with
respect to the Killing - Cartan metric, by

(X, XM XP),(Z,2,2)) = —Trace(XZ +X"Z+XPZ)

= —Trace(X + X*+XP)Z =0, as (X, X", XP) is in ker(A).

3 Further Remarks

For o. € §7 we have Ly, Ry, € SO(8) and the Cayley conjugation

Co = LyoRg € SO(7). In [T-S-Y] was proved that the map o —— Cy, generates 77(SO(7)) =
Z and 17(S0O) = Z (where SO is the infinite special orthogonal group) and that ol — Ly
( similarly, o0 —> Ry ) generate the second component of 717(SO(8)) =2 Z® Z. The Mo-
ufang identities {Mo] show that (@) = (Lo o Ry, Lo © Ry2, L5 0 Rg) € Spin(7) and ©(ar) =
(Lo, Lo o Ry, L) € Spin(8), for all oo € §7. The maps ¥ and O provide explicit constructions
for homotopy generators in several other cases [C-R1], [C-R2], [C-R3], [W].
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