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ON THE RELAXATION OF SOME TYPES OF DIRICHLET
MINIMUM PROBLEMS FOR UNBOUNDED FUNCTIONAL

G. CARDONE, U. DE MAIO, T. DURANTE

Abstract. In this paper, considered a Borel function g on R" taking its values in [0, +oo),
verifying some weak hypothesis of continuity, such that (domg)°® = 0 and domg is convex, we
obtain an integral representation result for the lower semicontinuous envelope in the L' (Q)-
topology of the integral functional G®(ug,Q,u) = [og(Vu)dx, where u e H}L‘; (R"), u = ug
only on suitable parts of the boundary of Q that lie, for example, on affine spaces orthogonal
to aff(domg), for boundary values ug satisfying suitable compatibility conditions and Q is
geometrically well situated respect to domg. Then we apply this result to Dirichlet minimum
problems.

AMS classification: 49745

1 Introduction

Let g be a Borel function on R" taking its values in [0, +e¢], domg = {z € R":g(z) < +oo} be
the effective domain of g, g** be the bipolar of g and (g**)* be the recession function of g**
(see (5) and (6)).

Moreover, if C 1s a subset of R", let aff(C) be the affine hull of C, and, in the case in which
C is also convex, ri(C) be the relative interior of C (see §2.1).

Let us suppose that:

—dom g 1s convex,

—g is locally bounded on ri (dom g),

—for every bounded subset L of dom g there exists (1)
z, € ri(domg) such that the functiont € [0,1] — g ((1 —1)z, +12)
1s upper semicontinuous at # = 1 uniformly as z varies in L.

For every ug € W}Lf (R") and every bounded open set , let us consider the integral functional

Go (10, Q,) : u € ug+ W™ () Lg(?u)dx,
the class of admissible boundary values:

T(g,Q)={up € Hﬁr:}f (R") : there exist xp € Q and a compact set
K C ri(dom g) such that up (x + x0) — up(xp) is positively
I —homogeneous and Vi (x) € K for a.e. x € R"}.
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and the lower semicontinuous envelope of Gy (ug, <, -) in the L! (Q)-topology given by
Go(u,Q,") : uel' (Q)w—
inf{lin}!inf‘/ g(Vup)dx:uy € un+wu‘=°"‘(f2), up = win L! (Q)} :
Q

In [6] the following representation result for Gy was obtained in the case in which (domg)® #
0: for every convex bounded open set Q and up € T (g,L2)

Go (up,Q,u) =
= o8 (Vu)dx+ [ (g**)” ;I—g’ﬁ_ld |D*u| + [5 (%) (4o — u)ng) dH" 1,
forevery u € BV (Q),

BV () being the set of the functions in L' (©) having distributional partial derivatives that are
Borel measures on €2, Vu the density of the absolutely continuous part of the vector measure
Du with respect to Lebesgue measure, D°u its singular part and m"%% the Radon-Nikodym
derivative of D*u with respect to the total variation |D*u| of D*u, ng the unit outward vector

normal to 9€2 and H"~! is the (n — 1)-dimensional Hausdorff measure.
If we suppose that

(domg)°® =0, 2)

again in [6] the following representation formula has been proved:

_ | Jog™ (Vug)dx if u= up,
Go (“Ehﬁ:u) - { +o0 otherwise,

(uo € T(g,€2)).

This shows that when u assumes the value up on the whole boundary, we have a not
much significant result. On the other hand, we are expecting that by assigning values only
on suitable parts of the boundary of Q that lie, for example, on affine spaces orthogonal to
aff(domg), it is possible to get more interesting representation results.

The study of such cases is realized in the present paper. More precisely, let us consider an
affine transformation E : R" — R” such that, denoting by Mg the orthogonal matrix associated
to the linear part of E, E~ ! (aff(domg)) = R¥ x {0, } if k > 0 or E~!(aff(domg)) =0if k=0
(k € {0,1,...,n— 1} is the dimension of aff(domg)), and the class of sets

A= {E(A x B) : A C R*and B C R"~* convex bounded open sets} :

We denote with d,Q the part of the boundary of Q such that d,Q = E ((dA) x B), for any
Qe 4.
Then we consider the relaxed functional in the L' (Q)-topology

aﬂ(uu,ﬂ,u) =

= inf{liminfkfﬂg(?uh}dx S up € Fﬂif (R"), up = uin L' (Q), up = ugon aPQ}
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of the integral functional

Gﬂ(ug,Q,J:uEWv-}fg{?u)dx, with W = {u € Wi (R") = up on 3,0} .
()

loc

We obtain the following result

ﬁﬂ(ug,ﬂ, u) =

= Jog™ (Vw)dx+ fo () (8% ) d|D*ul + f 0 (8)" (o — w) ng) dH"

forevery Q € A, up € T(g,Q2), u € BV (Q).
Then we apply this result to Dirichlet minimum problems.
Let g be a Borel function verifying (1), (2) and the coerciveness condition

1z) < gl(z) foreveryz € R".

IfQe A, PBeL™(Q),A>|Bll;~q) and uo € T(g,Q), then:

inf{ [ g (Vu)dx+ foBudx+ A [ |u|dx : u € W= (Q) such that u = ug sud,Q} =

= min{ fog™* (Vu)dx+ Jo ()" (#5 ) d1Dul + fo,0 (") (o — ) ng) dH™" +
+ [qBudx+ A [q|u|dx:ue BV (Q)}.
(3)

the minimizing sequences of the left hand-side of (3) are compact in L' (Q) and the converg-
ing subsequences converge to solutions of the right hand-side of (3).

2 General Notations and Preliminary Results.

2.1 Some results about bipolar and recession functions

Let g be a Borel function with

g:2€R" > g(z) € [0,420]. 4
Let g** the bipolar of g , i.e. the function defined by (cf. Prop. 4.1, p. 18 in [8])

g :z€ R"— sup{d(z) : paffine,p < gonR"}. (5)

Obviously g** is convex, lower semicontinuous and we have:

8" (z) = sup{¢(z) : pconvex, lowersemicontinuous,p < gonR"}

for every z € R".
Let g™ the recession function of a convex function g, i.e.

lim 1

g"":EER“Hf—HW;g(z{JHz), (6)

with zg €domg. This definition is independent on the choice of zq (cf. [13]).
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If C is a subset of R", aff(C) is the affine hull of C, i.e. the intersection of all affine subsets
of R" containing C; moreover if C is convex, ri(C) denote the relative interior of C, 1.e. the
set of the interior points of C in the topology of aff(C).

Remark 2.1. Let g be a Borel function as in (4) such that domg is convex. By Corollary
7.4.1 of [13] it results

ri(domg) = ri(domg™*).

Moreover, since for any convex subset C of R", we have
aff(C) = aff(riC) = aff(C),
by the convexity of domg, we obtain

aff(domg) = aff(domg™).

Let g, be the function

8p: (21yems2k) € RE > 8(24,00y 2, Opi) € [0, +o0] (7)

Lemma 2.2. Let g be a Borel function as in (4) such that affidomg)= R* x {0,_} and g,
as in (7). Then

8p (215 2k) = 87 (21502, On—t) 3)
(857) " (@15ees2k) = (8%)7 (21, s 2ks On—t) - 9)

Proof. By definition of g** and g,,", we easily get the inequality

g;* {zlﬁ “'!zk} :_} gtt (Zlﬂ‘":zk:{}nwk) .

Let us prove the opposite inequality. Let ¢(z;,..,zx) a convex and lower semicontinuous
function such that

Q215 2k) < 8p(Z1yeer28)-

If we consider the function

— _ {P(Eh“wzk) fz =.. =2, =0,
P21, 2n) = { +o0 otherwise,

it results that ¢ is convex, lower semicontinuous and §(z1,..,2,) < g(z1,..,2n) for every
(21,--,22) € R". So
g;* {311 ---_-,f..k} E g** (zla ”':Ekpon—k} .

By (8) and definition of the recession function we get (9). O]

Let E : R" = R" be an affine transformation such that

E(z) = Mgz+zp, withzo € R”, (10)
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where Mg 1s a n X n orthogonal matrix. We will denote with M’E the transpose matrix and
recall that, obviously, M; ! = ML, detMg = 1 and

|Mgx|| = ||x|| foreveryx € R", (11)
where ||-|| is the euclidean norm.
Let us set
ge:z€ R" = g(E(2)). (12)
We have
Lemma 2.3. Let g be a Borel function as in (4) and gg the function as in (12). Then
g (2) =g (E(2)), VzeR", (13)
(85" (2) = (¢")" (Mg2), VzER". (14)

Proof. In fact, by definition of bipolar function, we have
g (E(z)) = sup{0(E(z)) : ¢ convex, lower semicontinuous and ¢ < gon R"}.

Then, fixed € > 0 and z € R”, there exists a function convex and lower semicontinuous ¢ such
that

g (E(z)) —e < 0(E(2)) = w(z).
We know that ¢ < g, and so

Y(z) = 0(E(z)) < g(E(z)) = ge(z)

from which
y(z) < gE (2)-
Then
8" (E(z)) < g (2).
In the same way we obtain the opposite inequality, and so (13).

By (13) and definition of the recession function, with Z €domgg and so E(Z) €domg, we
have

(6£7)"(z) = lim % (8£') (tz+7) = lim_ % (&™) (1(Mg2) + E(2)) =
= (&™) (Mg2).

2.2 Some notations and recalls about measure theory and BV functions

We denote the Lebesgue measure on R" by (dx), and, for every measurable subset E of R",
the n-dimensional Lebesgue measure of E by |E|, and its characteristic function by %, .

In the following we will adopt the definition of a vector measure y on an open subset £2
of R" given in 2] (cf. Def. 1.1). Then, for every Borel subset B of 2, the total variation of u
on B is defined by
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\ul(B) = aup{ Z Nu(Bi)||: B = U B;, B; disjﬂint} . (15)

ieN ieN

We recall that, by Hahn decomposition Theorem, for a scalar measure u, we have (cf. Corol-
lary at p. 37 in [15])

|u|(B) = 5up{f @du : @ p—measurable, || < l} : (16)
B
If we have two measures u and v we denote, as usual, the product measure by u®v.

Remark 2.4. Let A C R* and B C R"* be open subsets. If y and v are scalar measures
respectively on A and B such that v > 0, then

V| = |y @v.

Indeed, let C; C R¥, C; C R"* be open subsets, and ¢ a u® v-measurable function such

that |@| < 1. Then
f (f {p(xl,+.+,x,,)dp) dv
G \JC

1
u(C1)

So ¢ is a v-measurable function and |¢| < 1. Then

Lﬁ ( a (p(x],...}xﬂ}dp) dv /Cz ddv

lu@V|(C x C2) < |ul(Cr) @v((C2),

[ eWdEsv
Cy xCh

Now let us pose

JE——
C

O(Xiet 155 Xn) =

< uf (Cy) < |yl (CV(C).

By (16)

and so
V| < |u@Vv.

On the other hand, by (16), there exists a function ¢; y-measurable such that |¢;| < 1 and

ft‘. @1(x1, ..., xk)du > |p| (Cy) — €.

Since v > 0, there exists a positive v-measurable function @, such that |@;| < 1 and

/{:_ {92(1k+11---:.1n)d\’ :_} v[:CE) — E.
2
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If we set @(xy,...,x,) = @1(x1,....,x8)@2(x441,.--,%1), We have that @ is (u ® v)-measurable
and |@| < 1. Then

[:mcg(p(x)du@v) B [:3 (L,{P’{I‘""*xﬁf}dﬂ) O2( Xk 1 -ees X )V >
> (|ul(C1) —g) (v(C2) —¢).
By (16)
w@v[(C1 x C2) = |u] (C1)v(C2),
and so

RV > |y @v.

O

If a measure g is absolutely continuous with respect to a measure v, we will write u < v.

If u < v, we recall that, by Radon-Nycodim Theorem, there exists a function 5{,—‘ € L1 (v) such
that, for every Borel set A,

du
mm_ﬁﬁw.

Moreover (cf. Theorem 1.13 in [2])

du, . .. P(Cp(x))
v = Im e )

for v—a.e.x. (17)

where CP(I} = (I] = P,Xi +F"} XKoere X (-IH — PsXn +p)‘
We recall that if A < g and u < v, then (cf. [7], p. 138)

d\ _ dhdu
dv  dudv

V—da.e. (18)

Eventually, if y < v and v < u, then we write u >~ v.

- For every open set Q we denote by BV(Q) the set of the functions in L! () having
distributional partial derivatives that are measures on € (cf. Def. 1.41 in [2]) and by BV},.(£2)
the set of the functions in L}, (Q) that are in BV (A) for every open set A such that A CC Q.

If u is in BV (L), where Q is an open set, by Lebesgue decomposition theorem, we have
Du = D%+ D’u = [Vudx+ D’u, where Du is the absolutely continuous part with respect
to Lebesgue measure of Du and Du is its singular part; we also denote by |Du| and |D’u|
the total variations of the R"-valued measures Du and D*u. BV (L)) is a Banach space with
norm |ul|gy(q) = Jo lu| dx+|Du|(Q). By |Vu| we will denote the total variation of the part
absolutely continuous of u, i.e. |Vu|(A) = [, [|Vu||dx.

We recall that

|Du| (Q) =5up{/ﬂudr‘vcpdx:tp€ Co (4R, |lo|| < l}.

Moreover, if z € R", we will denote with zdx the derivative measure of the function z- x,
i.e. the measure A — [, zdx.
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If € is a bounded open set with Lipschitz boundary and u € BV(£2), then (cf. [12],[16])
there exists a function in L' (9Q), called the trace of u on 92 and still denoted by u, such that
for H"~! —a.e. x € 0Q

limp™" / \u(z) —ulx)|dz = 0.
P20 JBy(x)NQ

We recall that (cf. Remark 2.13 in [12]) if Q is a bounded open set with Lipschitz bound-
ary, ' is a bounded open set with Q CC Q', u € BV(Q), v € BV(Q'\ Q), then the function w
defined by

o " u(x)if x € Q,
wixe R = { v(x)if x € Q'\Q
belongs to BV (') and
D’w(B) = / (v—u)ndH"! for every Borel subset B of d€2. (19)
JB

where ng is the unit outward normal to dQ and H"~! is the Hausdorff measure.

Given uy € L'(9Q), if u € BV (L) has trace uy on dQ we say that u = ug on 0£.

If {u;,} is a sequence in BV(Q) and u € BV (L), we say that {u;} converges to i in w* —
BV (Q), and write uy, — u in w* — BV (), if u;, = u in L}m_ (€2) and the sequence {!Duy| (€2)}
1s bounded. Given a functional F on BV(£2) we say that F is sequentially w™ — BV (£2)-
lower semicontinuous if for every sequence {uy} C BV(Q), u € BV (L) such that {u,} — u
in w* — BV(Q) it results F (i) < himinfy, F (uy,).

For a deeper study of BV -functions we refer to [1], (2], [10], [11], [12], and [16].

For every bounded open set Q and € > 0 we define the sets Q. and QF as Q; =
{x € Q:dist(x,0Q) > e} and Q] = {x € R" : dist (x,0Q) < €}.

For every r > 0 and xp € R" let Q,(xp) the open cube of R" with faces parallel to the
coordinate planes centered in xy and with sidelenght r and set Q, = Q,(0).

Let o be a mollifier, i.e. a nonnegative function in Gy (Q1) such that [g. o.(y)dy =1 and
set, forevery € > 0, o' : y € R" E],Tt:t, (E]

Let Q be an open set. For every u € L' (Q), € > 0 and x € Q_ we define the regularization
e Of u at x by

e (x) = (c-:“:?' i u) (x) = / o® (x—y)u(y)dy. (20)
Remark 2.5. If u € L' (Q), then, as € — O (cf. p. 144, note 2 in [14])
Vie(x) = Vu(x) L"—a.e. in Ll

O]

Let Q be a bounded open set and p € [1,+eo]. If {u} is a sequence in WhP (Q), {uy}

is said to converge to u in w—WHP7 (Q) (w* — W= (Q) if p = +e), if, and only if, {uy}
converges weakly to u in L? (Q) (weakly® in L™ (Q) if p = +e0) and {Vu;, } converges weakly
to Vu in (L?(Q))" (weakly* in (L™ (Q))" if p = +<=). In this case we write u; — u in
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w— WP (Q) (w* — W= (Q) if p = 4ec). Moreover, given a functional F on W17 (Q), we
say that F is sequentially w — W2 (Q) (w* — W= (Q) if p = +eo)-lower semicontinuous if
F (u) < liminf, F (u), for every sequence {u,} C WP (Q), u € WP (Q) such that uy — u
inw—Wh? (Q) (w* = W= (Q) if p = +o),

2.3 Some recalls about relaxation

Let g be a Borel function as in (4).
Let us suppose that

—domg 1s convex,

—g 1s locally bounded on ri{dom g).

—for every bounded subset L of dom g there existsz, € ri{(dom g) such that the
functiont € [0,1] — g ((1 —1t)z, +1z)is upper semicontinuous at ¢ = 1
uniformly as z varies in L,1.e. for every € > 0 there exists tz < 1 such that
g((1—1)z, +1z) < g(z)+eforeveryr € Jte,1]and z € L.

(21)

S : . L
For every up € W, '~ (R") and every bounded open set £2 let us consider the integral functional

Go(10,LQ,-) : u € up + H*:Jl'm (Q2) — f g(Vu)dx
Q

and 1ts lower semicontinuous envelope 1n the L (€2)-topology given by

Go(up.Q,") : uel'(Q)— (22)

- inf{]in}inf g (Vup)dx: uy € ug+ W (Q), up — uinL' {L‘J.)}.
I S

Obviously for every ug € W!L‘:,ﬂ{ﬂ”j and every bounded open set Q, Gg (ug,Q,-) is L' (Q)-
lower semicontinuous, and

Go(ug,Q,u) = min {lin}inf/ g (Vup)dx : up € ug+ Wul’m (Q2), Vuy, (x) € domg
! J L2

fora.e.x € Q, up — uin L' (Q) }.

for every ug € Wxif (R"), every bounded open set Q, u € L' (Q).

Now let us define a classe of admissible boundary values:

T(g.Q)={up € Whlf (R") : there exist xg € {2 and a compact set
K C ri(dom g) such that T [xq] up — up(xp) is (23)
positively 1 —homogeneous and Vg (x) € K fora.e. x € R"}.

where T [xp| u(x) = u(x+xp).
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Now we give an integral representation result for relaxed functionals of integrals defined
only on functions with fixed boundary data and an application to minimum problems that was
proved in Theorem 3.4 of [6] in the case in which

(domg)® # 0. (24)

Theorem 2.6. Let g be a Borel function as in (4) verifying (21), (24), Gy be given by (22)
and T (g,-) by (23), then

Gotun 0= [ & (Ve [ (6)° () 40l [ (6" (o —wna) i,

for every convex bounded open set Q, ug € T (g,Q), u € BV (Q). O]
Remark 2.7. If ) has Lipschitz boundary and u is a function in BV (Q), let us denote by
u the extension of u to R" defined by # = ugp in R" \ Q. Clearly % is in BV,.(R").
By (19) we can write the result of Theorem 2.6 in the following way:

Eﬂ(uu,ﬂ,u}:Lg**(?u}dx+fﬁ(g”}m (;lf;ﬂ) D] .

3 Some Observations About BV-Functions.

Let C; C R* and C; € R** be bounded open sets and v € L! (C1). Let us introduce the
function

v{orv™) ix=(x1,...,%2) € C} X C2 > v(x1,...,X¢) - (25)

Lemma 3.1. Ler C; C R* and C; C R"* be bounded open sets and v € BV (Cy), then,
considered C = C; x C3, v € BV (C) and

Vvlxy,.yxn) = (Vv(xy,...,x¢),0p—x) forL'—a.e.(xy,...,x,) € C, (26)
D'v=((D’v® (dx)n-k) ,0n—k) (27)
\DV]|=(|DV| @ (dX)n—k) , (28)

dD%v \ dD*v
((drﬂw[)(I“""I’*)’ﬁ”“f) = 20DV @ (), ) &)

\D*v| ® (dx)p—i — a.e.inC.
Proof. Let us first prove that v € BV (C). Obviously v € L'(C). Let ¢ = (¢1,..,¢,) €
Co(C:R") such that ||@|| < 1. It results

/F{xi,..jxn)diwpdx]*-dx,,—f ‘I.?(Il, .{fjﬂ dxkf a{pidxk+1 dI”.
cC Ca = IBI:



On the Relaxation of Some Types of Dirichlet Minimum Problems for Unbounded Functional 241

But, being [~ X", ., %%JIH] --dx, = 0, we have
k a .
f?(.rl,..,,z;n}dimpd,r] --dx, =f V(X1 .. X )dX] --d.rg;z —/ Pi(X1,y ey Xn)dXps * -dXp,.
c C = ox; Je,
The functions, fori = 1,..,k,

1
- |CE |ri—£: s

Oi( X105 %k) @i(x1, ., X0 )dXpy - dxy

belong to C[E (C1) and, since | [, @i(x1,..,xn)dxgs - -dxn| <|Ca|p-k, we have that ¢ = (0y,..,¢x) €

Cy(C1;RY) and |j0]| < 1; so

K Jo;
fﬁ{x]._..jx”)dh«'tpd,r| dxy, = ECEIH—A-[ 1"(-1’l=-~.-¥k}z ¢£d—"*’l"d*‘fk =
C C y 7

|Cgiﬁ_g;f v(xy,..,x; ) divedxy - -dxy.
Ci

Since v € BV (C}), it results that v € BV (C).

Let us prove (26).
Let v¢ be the regularization of v. Let o € CF{RI") and o € CE"{R”_;‘} such that o) > 0,
O > 0, Jreo(xyy.c, Xk )dxy - -dxgr = 1 and [gn—s O (Xps15 009X )dXg41 -+ -dx, = 1. Let us
take 0t®) (x) = 0\ (x1, v.er )OS (X1 v X

Then for j < k, for the derivative of vg respect to x;, we have

Ve (x) = f (V50 (=) 7)dy VxeCo.
Then

ViTe(xtyentn) =

I

o X1 — V1o X — Vi
‘/I;-ﬂi (vj Eﬁ‘l ({ 1 — F = ' IE‘::I )) V(j.'] ' “j}’k}d}’[ f d}}

02 [ (Xpt1 — Vitly-eosXn — Vn)
/ n—k ( f';}!k—rl : 'd}’n
Jrr-k € £

/ o ({Il — V1 ees Xk _H}) dDjv = (Vve)(x1,...;xk).
R

k gk £

For € — 0, we have, by Remark 2.5, V ;vg(x) = V;¥(x) and Vjve(x) = V;v(x) L"-a.e. in C;
SO V jv(x1,...,xn) = Vjv(xy,...,x¢) L"-a.e. in C, for j < k.

In the same way, for j > k, we have V ;v¢(x) =0 L"-a.e. in C, , and so (26).

Let us prove (27).
Let Dy C C, and D> C (7 be open sets, and let us pose D = Dy x D,. We know that there

exist two sequences {@;, }, in Cj(D1) and { @} }, in Cj(D,) such that @, — ¥, and @ = X,
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everywhere. Taking @;(x) = @} (x1, ..., Xk )2 (X1, ..., Xn) We have for j < k
‘/I;(Phdﬂjir = /D{p.i!t(-xl:"*:-xk){p%(‘xk+l:“*:Iﬂ)dﬂji‘;:
= - LWJ‘P}. (X1, oo X ) O (Xt 1 ey X )X =

= —fﬂ "?jilﬁ};(xlv--glk)fiﬂ“dxkj; Oh (Xt 15 s X)X 4 - Ay =
1 2

f ‘P}l(xh--—:xic)dﬂﬂ’f OF (Xk 15 ey X)X 1 - A
D Ds
Passing to the limit on A, we obtain
Djv(D) = |Dy|,_y-D;jv(Dy).
For j > k
[@idD7 = [ 0h(x1, e w0 xks1, - 20)dD; =

.._./i; F‘-PFI:(I]:---:I!:]dI] ) 'dxkfﬂz vjqjﬁ(xk.kl,}_"’xﬂ) dxk—-l-—] __ixn —_ 0
1

and so
DF(D) - ((BF@' (dx)n—k) (D) 1Un—k) - (30)
By (26) and (30) we obtain (27).
Let us prove (28).
By definition (15), we have that
ID*V] = ) |D}¥] 31)
i=1
and
(ID°V| @ (dx)n—k) = Y (ID}V]| @ (dX)n—s) - (32)
i=1
Moreover, by Remark 2.4, we have
|DiV] > (|Djv| ® (dx)n—s) - (33)
By (31), (32) and (33) we obtain (28).
By definition (17), (27) and (28) we get (29). O

Remark 3.2. Let A C R¥, B C R"* be convex bounded open sets, vo € W, (R¥) and
v € BV(A x B) such that Djv(C) =0,Vj >k, VYC CAxBandv="von (dA)x B. Let us
set
v _ F(I],.;,Ik,ﬂk.ﬂ,..,fﬂ) if(xlz--ka} EA:
V(%150 ) = { Vo inR¥—A,
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where (¢g+1,..,¢,) is a fixed vector constant of B. Then

VE BVpe(R¥),

y=vo on Rk — A, (34)

=

W
v=vonA x B.

Moreover if v € H’}Lf (R"), then ve W,L‘:{Rk). O
Remark 3.3. Let 4 and v two measure on R”" such that v is absolutely continuous respect
to |u|, and M a n x n-matrix. Then MYV is absolutely continuous respect to |u| and

dMv dv
——=M—--.
d |yl d |yl
O
Given an affine transformation E as in (10) and a function u € BV},.(R"), let us set
uf 1y € R* = u(E(y)) (35)

Lemma 3.4. Let E be an affine transformation as in (10). Then for any u € BVj,.(R"), it
results that u* € BV,,.(R") and for any Borel set B of R"

Du" (B) = M;Du(E(B)), (36)
Vyub (y) = MEVau(E(y)), Vy€R", (37
D*uf (B) = MLD*u(E(B)), (38)

where ut is defined as in (35).
Proof. Let us consider @ € C} (R";R") such that ||¢|| < 1. We know that

(D,0)(E~" (x)) = MED,9F " (x). (39)
Then by (39), we obtain

]Rn o(y)dDuif = - /1; u” (y)dive(y)dy = - fn u(E(y))divg(y)dy = (40)
~ [ uotaive) (B ()ax = [ u(xME(aive ) x)ax =

—ML fR ﬂ u(x)(diveE ™ )(x)dx = ML fR ] oF ™' (x)dDu

|

We have that, for any ¢ € Cj(Q;R") such that ||| < 1, by (11)

“[guEdiv{p(y)dy“ = ||-ML L{Q]CPE_](I)JDH =

= |of || _ipuE)i < |65 || 1pul (B(0)) <+




244 G. Cardone, U. De Maio, T. Durante

where Q is a cube in R*. Then uf is in BV},.(R").

Since uf € BV,,.(R"), it is sufficient to prove (36) when B is an open set of R”. We
know that there exists a sequence ()5 of functions of Cj(R";R"), with ||@y|| < 1, such that
@}, — %, everywhere, for i = 1,..,n. By (40) we have that

[ 9i0)aDu = | (@) (x) aMEDu (41)

But ((pi]E_l (x) = ¢, (E~1(x)) and @} (E~1(x)) = %, (E~"(x)) everywhere. Obviously

X5 (B~ (X)) = Yy () (42)
Passing to the limit on A 1n (41)

u®(B) = M Du(E(B)),

for every Borel set B of R”.
Let us prove (37).
By Remark 2.5, we have
?}'HE{}’) = éi_l}%vy(”E]E()’}-

It results

(15)e() = ()" (). (43)
In fact, taking x = E(z) and B(x) = o(Mz 'x), we have that B is still a mollifier and so

@) = [ oely-uE@)Mz= [ oely-E™ ()u(x)dx=

/R“ %(E-I{E[}’})_E_l(x}}u(x)d.l?:‘[nﬂ %(MEI{E@} _I)H(.I)dxz
1 M:zYE(y) - 1 E(y) —
— Rﬂu( £ (EG) I))u[x]dx=g RHQ(MEl( ) I))H(x}dx:

en £ (A

= 1 i B (E(y) —I) u(x)dx = /1;" Be(E(y) — x)u(x)dx =

e" JRr €
= (HE](E(}’)} = (”E}E()’]-
Then, since u* € BVj,.(R") and by (43)

Vy(u)e(y) = Vyue(E(¥)) = ME Viue(E(3)). (44)

So, by (44), we have:
Vyu® (y) = lim Vy (u®)e(y) = M lim Voue(E(y)) = Mg Vau(E(y)).

£—0

Let us prove (38).
By Lemma 2.3 and Lemma 3.4 we have that
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DWE(B) = DuE(B)- j Vi (y)dy =
B
= M{Du(E(B)) - MFE f Vu(x)dx = ML (Du(E(B)) - f ‘Fu(x)dx) =
- E(B) E(B)
= ME:Du(E(B)).
]
Lemma 3.5. Let E be an affine transformation as in (10), u a measure on R".
Then for anv Borel subset B of R"
ul (E(B)) = |MEu|(E(B)),
Proof. Let B a Borel subset of R". By (11) we have
lu(E(B))|| = ||MEu(E(B))]|-

By definition (15) we get the thesis. O

Corollary 3.6. Let E be an affine transformation as in (10). Then for any u € BV;,.(R")
and for any Borel subset B of R"

|Du| (B) = |Dul (E(B)),

Vol || () = ||Vaul| (E(y)),
D*uf | (B) = |D*u| (E(B)),

where ut is defined as in (35).
Proof. By Lemma 3.4 and Lemma 3.5, taking u = Du, we have (45).
By Lemma 3.4 and Lemma 3.5, taking 4 = [ Vudx, we have

IVu|(A) = f [IVul| dx, for every open set A C R".
A

Then by definition of Lebesgue points, we get (46).
By Lemma 3.4 and Lemma 3.5, taking u = D*u, we have (47). O

Lemma 3.7. Let E an affine transformation as in (10), u a non negative measure on R". If

uE (B) = u(E (B)) for any Borel subset B of R" and for every uE -measurable positive function
W, then

J VOE = [ w(E (0)du

Proof. Let y(y) = ,_1 O 5, (y) be a simple function, where 0.y,...,0y are the values of
and B; = {y : y(y) = 0}, for i = 1,...,N. By (42) we have
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w(y)du®

R

N
ZEFLHXB;[J’)“THE:

N N
Z o (B;) = Z a;u(E(B;)) =
z 0 [ gy ()= S, [ o, (B ()t =

i=1

= fe W(E™" (x))dp.

Let now y a uf-measurable positive function. So there exists an increasing sequence (W),
of positive simple functions such that y, — y u* — a.e. in R". Then taking y = E~!(x)

f y)du* = llI'l'l f Y (v)du® = llm l|!;1 (E~1(x))dp.
By B. Levi theorem, since y, = W uF — a.e. in R”, then

[Rn y(y)du" = /1; ﬂ w(E""(x))dp.

O
Lemma 3.8. Let E an affine transformation as in (10) and u* € BV;,.(R") as in (35).
Then for every |D5uE| —measurable positive function it results

fw(y)d|DuE|—f W(E~"(x))d |Dul,

fR" W(Jﬂ)li?qulldyzL” W(E ™ (%)) || Vcuel| dx,

[ v || = [ wE w)a ol
R" R

Proof. By Corollary 3.6 and Lemma 3.7, we obtain the thesis. O
Let us define the function

w1y € R" = u(E(y)) — (MEz0)y. (48)

Corollary 3.9. Let E be an affine transformation as in (10). Then for any u € BV,.(R"),
it results that u% € BV;,.(R") and for any Borel set B of R"

Duf(B) = M{,Du(E(B)) — (M{z0) |B|, » (49)

Vyur(y) = MEV.au(E(y)) — Mg 'z0, Vy€R”, (50)
D*u(B) = Mg D*u(E(B)), (51)
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|Duf| (B) = |Du — zodx| (E(B)), (52)

|V (3)]|| = || Vate = 20| (E(¥)), Vy€ER?, (53)

|D*uf | (B) = |D’ul| (E(B)), (54)
dD*ut dD’

y Dsug (y) = ME dID"uI(E{y) for|D*uE| —a.e.y € R, (55)

T
 v0)d D] = [ W(ET )], (56)
[ vo)|ut| = [ wE aiul+ ol [ WE)as, s

where ug is defined as in (48).
Proof. By Lemma 3.4, Corollary 3.6, Remark 3.3 and Lemma 3.8, it follows the thesis.
O

4 A Representation Result in the Case of Fixed Boundary Datum

Let g be a Borel function as in (4).
Fm' every convex bounded open set A x B, such that A C R¥, B C R" ¥, and for every ug €

.!'m: ~(R") let us consider the integral functional

G®(ug,AxB,"):uevVe | g(Vu)dx,
AxB

withV:{uEW

loc

T(R™) :u=ugon (04) x B} and its lower semicontinuous envelope in

the L' (A x B)-topology given by

(_?ﬂ(uu,ﬂ xB,-) : u€L'(AxB) l—a-mf{lm}rmf g (Vup)dx : uy EW“"(R”) (58)
AxB

up —uin L' (AxB), up=ugon (dA) x B}.

We want to represent the functional Iex (ug,A x B,-) in the L' (A x B)-topology, for some
bounded convex open set A x B and boundary values ug satisfying compatibility conditions
in the case in which

(domg)°® =0 (59)

and
aff(domg) = R* x {0,_;}. (60)
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Remark 4.1. Given a set Q with Lipschitz boundary and a function u € BV (Q), let & be
a function as in Remark 2.7 and § C 0Q; it results by (19)

[ s [ @ (52 ) @i+ [ (6 (o wman =

dD’u
= [ g™ (Vu)dx+ e d|D*7|.
[e@uars [ @ () dioa

]

Let us state the following theorem

Theorem 4.2. Let g be a Borel function as in (4) verifying (21), (59) and (60), Gg be
given by (58), A C R%, B C R"* be convex bounded open sets and T (g,-) by (23), then for
everyug € T (g,A x B), it results

dD'u
G’ (ug,A x B :f *(V ) .
woaxBu)= [ ¢ act [ ($25) dip

for every u € BV (A x B).
Proof. Now we first prove that

dDi
d|D57i|

G’ (u,,A X B,u) > gt (Vuydx+ | ()7 (
AxB AxB

)d|ﬂ*ﬁ|. (61)

We can suppose that G (ug,A X B,u) < +oo. Then there exists uy € Pﬂ;;”[[l"), such that

up — uin L' (A x B), Vuy, €domg and G (up,A X Byu) =limy, [,, g8 (Vuy)dx.

Moreover ug € T (g,A x B), and so Vug (x) € K Cri(domg). Then u, depends effectively
only on its first k variables in A x B. Then we denote with vq the function from A to R such
that vop = ug.

We know that Vi, €domg and aff(domg) = R¥ x {0,_;}. Then Vi, =...=Vuu, =0
in A X B. So, by the convexity of A x B, u;, depends effectively only on its first k variables in
A X B, for h enough large.

Moreover, since u, — u in L' (A x B), then |D ju| = () for j > k. So by Remark 3.2 we

get that the functions EE BVj,-(R¥) and Ehe lﬂi’: (Rk) satisfying (34). Obviously E;,—} i in
L'(A).
Let us set
A v,
u(x) =u(x)inR", (62)

Let g, the function as in (7). Let us define the functional
GO (v0,A4,) 1 v € v+ W™ (4) - [lgp (Vv)dy

and

G, (v0,A,") : v € L' (A) = inf{liminf, [, g (Vvy)dy :
VR EVo+ Wnl*m (A),vy = vinL'(A)}.
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We have that (domg,)° # @ and Vv, belongs to a compact contained in ri(domg).
Then by Theorem 2.6 and Remark 2.7:

—0 w [ dD’V :
G° (vo.Av) = [ g (V)d . b,
do0a) = [ v+ [ ()7 (55 ) 210

Vv € BV(A).
So we have that

—0 .
G (ugp,AxXB,u) = lim g(?luh,...,vkuh,ﬂn_ﬂ dx =
h JAxB

. v —{ W
11}1:[1 |B|”_kj‘;gp (v ”h) dy = |B|,_+ G, (F{HA,H) :

=<

We observe that Zf{ by (34); then

W
0 v (o V e | dDS v
IBln—kGP (yﬂv"qru) = |Bln-—k'[qu (v H’) dy+ IBlﬂ—.‘I/A; (g.ﬂ' ) ( WV ) d |Ds “l‘

d‘D’ u

and so

—0 V dD? E v

G (ug,A x B,u) > |B|,_; f gy (Tf u) dy + 1B|n_kf_(g;*) —7 |4 ‘Dﬁ ul. (63)

A A d ‘D‘F "
By Lemma 3.1 we have
A v
Viu(xy,.x,) = (? u (x;,..,xk},[}n_k) for L"—a.e.(x1,...,xn) € A X B.
Then by Lemma 2.2 and Fubini Theorem it results
oV e} 0 V
Bl fyy (V) dy-+ 1Bl i (e5)” (882 ) | ] -
- (64)

= [en8™ (V) dx+ frp ((g57)7) ((ﬁg_i) ,oﬂ_k) (|0 4| ® (dx)u-s ).
By (9) and (25) we have

((E?)m)h (21,20) = (87) " (21,1 2k, On—k). (65)

By (29), (28) and (18), it results

~ - - v
i  dD'u ¢|\Du

dD’ i dD’
W }Oﬁ—k —_ W — o
a|Ds i d(|p i @ @vns)  al|po

; (66)

d(|p | @ (dx)ns)
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By (65), (66), the identity 4 (x) = u
we obtain

and positively 1-homogenity of the recession function,

el

Jaxp8™ (‘F ﬁ) dx+ frn((25)7)” (ﬂ) 0, d(‘D’E‘ @(dx)ﬂ_k) _

diﬂsﬁ|

(67)
e ~ # ) 09 Dt A
~ ueas (V) )" (22 ) o]
By Remark 4.1 applied to # and @ and observing that # = @ on R¥ x B, we obtain
A A M
g™ Vulde+ [+ g*#m dﬂsﬁ d‘D“‘u —
f.&xﬁ' ( ) foB( ] (J|D’u|) (68}

= [uxp8" (Vi) dx+ [, (8™)" (455 ) d|D°7

Then by (63), (64), (67) and (68) we obtain (61).
Now let us prove the opposite inequality. Let us suppose that
dDr¥u
d |D*u

& (Vde+ [ (g)” ( ) 4|0 < +oo

AxB

Then Vu €domg** L" —a.e. in A x B and by (60) we get that ﬁ% caff(domg™) |Du| —a.e.
in A x B,

By (60) and Remark 2.1, we obtain that Vi ju= ... =V, u=0L" —a.e. in A x B and
dD‘EHu dD?u
= .= ——=) Du|l—a.e.in A x B.
i T
Then we obtain that |Dyyu|(A x B) =--- = |Dyu| (A x B) =0.

Let ue be the regularization of u given by

ue (x) = Jgn 0 (x—y)u(y)dy, €>0,
Vx€ (AxB), ={x€AxB:dist(x,d(AxB)) >e}.

We know that ug — u in L'(A x B). Let us consider Vjug (x) = [pn 0t (x —y)dD;u. Since
|Dyyu|(AxB)=---=|Dyu|(AxB) =0, we have Vi jue = ... = Vyue =0 L" —a.e. in
(A x B); , where 1| > €. So ue depends effectively only on its first k variables in (A X B); *
Since, for € = 0, ue — u in L'((A x B), ), we obtain that u depends effectively only on its
first k variables in (A x B), . Now passing to the limit for n — 0, the sets (A X B), tends to
cover all A X B and so u depends effectively only on its first k variables in A x B.

Moreover ug € T (g,A x B), and so Vuy (x) € K Cri(domg). Then uy depends effectively
only on its first k variables in A x B. Let vy € W;?f (R") such that up = vy in A x B.

By Remark 3.2, let us consider 1 and U defined in (62).
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Then (68) and (64) hold. So

fir o o (355

g ¥

But

= 5?, (FU,A,E) .

W
fg 'i"u dy+f{g dDII:, d|D5;';
d‘DEu

Then there exists v, € vo+ W, (A) such that Vv (y) edomg, L" —a.e. in A, v, —uinL! (A)

and

W

fg vu dy+[(g dﬂg‘; dlﬁﬁ‘zliminffgp(?vh)dy (69)
d‘D‘u hJa

Obviously v, —uin L' (A x B) and Vy), edomg. So v}, = u in L' (A x B) and Vv, edomg
L" —a.e. in A x B. By (64), (67), (68), (69) and Remark 2.1 we have:

Eﬂ(uu,ﬂ X B,u) < lin}:inf g(Vvp)dx = lin}linﬂBin_kfgp (V) dy =
AxB A

W
%% % 00 dﬂ';u W
Bl [ & (V1) ) v+ Bl [ [Py ) o] =
d‘ﬂfu

dD’u
g o "? d )T d Ds- y

We now treat the case in which aff(domg) is just an affine subspace of R”".
Let E be an affine transformation satisfying (10) such that

E~'(aff(domg) = R* x {0,_4}, ifk>0,o0r

E~(aff(domg)) = 0, if k=0, (70)

where k € {0, 1,...,n — 1} is the dimension of aff(domg). Obviously

E~ ) —E " (32) = Mz (y1 — »2).

For every affine transformation E as in (10) and verifying (70), let us consider the class
A={E(AxB):ACRtand B C R"* convex bounded open sets }

Given Q € A4, let us denote with d,2 the part of the boundary of £ such that 0,Q =
E ((0A) x B).
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For every Q € A4 and every ug € Hf}:: (R"), let us consider the integral functional

Go[uu,ﬂ,*):uEWI—}Lg[?u)dx,

with W = {u € W}:f (R") : u=upon E}pﬂ} and its lower semicontinuous envelope in tt
L' (Q)-topology defined by

G (uo,Q, 1) = inf{liminfy, [, g (Vup) dx : up € W= (R"), D
up — uin L' (Q), up = ug on d,Q},

forue L' (Q).

We will obtain a representation result for G° (4g,€,-) in the L' (Q)-topology for u €
BV (Q), and ugy € T(g,Q2), in the case in which Q € 4 and (domg)° = 0.

For every Q € 4, there exist A C R* and B C R"* convex bounded open sets such that
E(A x B), for some affine transformation E verifying (10) and (70).

Let gr a Borel function as in (12); it verifies assumption (21), (60) with gr in place of g.

For any up € T(g,2), let us denote with (4)% the function as in (48) with ug in place of

Remark 4.3. If ug € T(g,Q), then (up)% € T(gg,A x B).
By definition of T'(g,2), there exist x, € £ and a compact set K Cri(domg) such that T [x,] u,
(x,) is positively 1-homogeneous and Vi, (x) € K fora.e. x € R" .
If we set xo = E(yp) and Kg = M{.(K — zp), we have that T [y,] (uo)5 — (uo)5 (v,) =
uo(Mgy + xo) — ug(xo) — (M£zo)y is positively 1-homogeneous, Kg is a compact and Kg C
ri(dom gg, V(up)%(y) € Kg for a.e. y € R™. O

Let us consider the functional

Gt (u0)%,A x B,u) = inf {liminfy [, 5 g (Vi) dy : wy € W™ (R"),
Up — HinLl (A }CB), Up — (Hﬂ')g on (aA) KB},

foru € L' (A x B).
Let us observe that

E‘; (o) 5 E~1(Q),uf) = (—?ﬂ{ug,ﬁ, u), foreveryQe AanducBV(Q). (72)

In the following we consider unit outward vectors normal to different sets. Thus we will
denote with ny . g and ng the unit outward vector normal to (dA) x B and to d,,2.

Theorem 4.4, Let g be a Borel function as in (4) verifying (21), (59), _Gﬂ be given by (71)
and T(g,-) by (23), then

G (w0, 2,) = Lg“ (V) dﬁfg(g“)w (iﬁ‘;t) d|D’ul+ fapﬂ (£")" ((uo — 1) ng) dH"
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for every Q € A, ug € T(g,Q2), u € BV () and where nq denotes the unit outward vecto
normal to dp<2.

Proof. By Theorem 4.2, with u? and Eﬁ. in place of u and 60, and (72)

G'(uo,u) = Gy ((uo)E,AxB,uf) = (73)

[ s EO) v+ [ (e (A2E (o) ) ajpeat
AxB d AxB T d|D5E% T

Then, by (13) and (50), taking x = E(y), we have

Il

ot (EON 2 = fg-.{m g5 (MEV.u(E()) ~ MEzo) dy = 74)
— 4 4 vx d
fng (Viu(x))dx
By (14) and (55)

T~

' dD'u cere dD &
fhﬂ(&) (dlﬂf_ |(y)) |D°up (&™) (M (}‘})dlﬂjurfﬁ'ﬁ)

* B |D‘f E‘
wxree [ ADU _
L;xﬂ(g ) (a'lﬂ“_{ (E(y) )d|ﬂ~*u

By (75), (56), with W(*) =x; , ()(8™)" ( BE (E())) we obtain

fo& (i3 EOD) dpat| = [ e (5P el ao

By Remark 2.7, we have

Jaua,a€™)” (455 (x)) d|D°a| =
= Jolg™)" ( > (x)) d|D'ul+ [5 0 (&™) ((uo —u) ng) dH" 1.

So by (73), (74), (76) and (77) we obtain the thesis. ]

7

S5 Applications to Dirichlet Minimum Problem

In this section we study the Dirichlet minimum problem for integrals of the type [, g (Vu)dx
by assuming that g is a Borel function as in (4) verifying the coerciveness condition (78).

Theorem 5.1. Let g be a Borel function as in (4) verifying (21), (59), and

1z| < g(2) for every z € R". (78)
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If Qe A, T(g, Q) is given by (23), p € L™ (Q2), A > ||Bl| = (q) and up € T(g,Q2), then:

inf { [ g (Vu)dx+ [q Budx+ A [q |u] d_r:. u€ WhH= () such that u = up sud,Q} =
= min {Jnﬁ“ (Vu)dx+ [o(g™)" (.Eﬂf;;i,) d|D’ul +

+ J5,0(87)" ((uo —u)ng) dH"" + [, Budx + A Jq, |u| dx : u € BV (Qj} '

(79)
the minimizing sequences of the left hand-side of (79) are compact in L' (Q) and the converg-
ing subsequences converge to solutions of the right hand-side of (79).

Proof. By Poincaré inequality, (78) and the compactness in BV (€2) in the L' (Q)-topology
of the subsets of BV (£2) bounded in the BV (£2)-norm, we get that the functional

uew — [g{Vu)d.rJr/ Budx + lf 1| dx,
Jo Q Q

where W = {u € WH*(Q) :u=upond,Q}, is coercive on BV (L) with the topology of
L'(Q). By virtue of this, well known results in relaxation theory (cf. §1.3 of [3]) and Theorem
4.4, we have that its relaxed functional in the L' (Q)—topology is given by

ueL'(Q) =
Jag8™ (Vu)dx+ [o(g™)" (:?Irgil) d|D’u|+

< + [3,0(8")7 ((uo — ) n) dH" ' + [ Budx + A [q |u] dx if u € BV (Q),
+eoo if u & BV(Q)).

%

Then, again by standard arguments in relaxation theory, we have (79). L
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