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A VISCOELASTIC FLUID FLOW THROUGH MIXING GRIDS
S. CHALLAL

Abstract. We study the asymptotic behaviour of a viscoelastic fluid in a porous medium £,
(€ > 0) obtained by removing from an open set Q some small obstacles (T )1 <y<n(e) Of size
ag periodically distributed on a hyperplane H which intersects ). We establish that the fluid
behaves differently depending on whether the size ag is greater than or smaller than a critical
size ce. If az = ce, a convolution term appears in the limit problem. This corresponds to a
long memory effect. If ag is smaller than cg, the fluid behaves as if there where no obstacles.
If ae is greater than cg or is of the order of the period, the fluid adheres on the hyperplane H
which plays a thin solid plate role and the fluid behaves separately on each side of this plate.

1 Introduction

Viscoelastic materials have a gift for a "continuous memory” in the sense that the stresses, at
any moment ¢, depend on the history of all deformations previously subjected by the material.
There are many substances in a industrial feeding which are viscoelastic example: gelatinous
liquid. In biomechanics, we study viscoelastic fluids (saliva, ...) and viscoelastic solids (skin,
biological textures, ...).

In this study, we consider linearized vibrations of a viscous fluid. The model obtained 1s a
viscoelastic medium. More precisely the fluid adheres to solid particles which are similar to

small holes (?;E]:Ei (e being a small parameter tending to 0 and n(g) designates the number
of holes). These obstacles are periodically distributed on a hyperplane H which intersects the
domain occupied by the fluid. This provides a mathematical model for fluid flows through
mixing grids. The aim of theses particles is to deflect and to set the fluid in rotational motion
in order to mix and homogenize the profile of the velocity field or to make values of quantities
carried by the fluid, such as its temperature or concentration of a polluting, uniform cross a
section.

The problem of mixing grids has been studied by several authors. In [10], G. Nguetseng
considered the Dirichlet problem for the Laplace equation where the size of the holes is of the
order of the period of their distribution. In this case, the solution tends to a function taking
null values on the plane section H when the period tends to 0. For the same problem, D.
Cioranescu and F. Murat in [7] obtained a “strange term” when the size a. of the holes is of
the order of the critical size c¢ given by:

ce =Coe" V"2 forn>3, ce=e V¢ forn=2 withCy> 0. (1)

G. Allaire (see [1]) obtained at the limit, in the case of Stokes and Navier-Stokes equations,
Brinkman’s laws. In another point of view, these problems were studied by [11] and [3] for
Laplace and Stokes operator respectively. The holes considered are entierely included in the
surface H.
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The case of Stokes equations in a domain which contains a periodically perforated sieve is
studied by C. Conca in [8]. We also refer the reader to [13] and [14].

In our problem, we first study the asymptotic behaviour (problem (7)) of the fluid when
the size g of the holes is of the order of ¢ given by (1). A long memory effect appears
(problem (Pg, }). This models the presence of obstacles in the fluid.

Next, we shall be interested to what happens when the size g; is less or greater than cg. We
denote by (Py) and (P..) the limit problems obtained respectively.

Finally we consider the case where the size of the holes 1s of the order of the period. We
obtain the same model (P..). (See Figure 1 for the different problems studied).

Figure 1
2 Formulation of the problem

2.1 Geometrical considerations

Let Q be a bounded and connected open set in R"(n > 2), whose boundary is C' by parts.
We assume that £ has a non-empty intersection with the hyperplane

H={xeR"/x, =0}. (2)
We define the open set H; to be a slice of €2 of thickness 2& near H (see Figure 2) by
He = {x € Q/|x,| <€} (3)

The set He is covered with a regular mesh of size 2e. Each cell is a cube P, identical to
(—€,4€)" up to a translation. At the center of each P included in H; there is a hole T, each
of which is similar to the same closed set T rescaled to the size az. We assume that:

Jo, 0<a <1 suchthat By, CT CB (4)

where By and B, are the open balls centered at the origin with radius respectively o and 1,

lim — =0. (3)

Elementary geometrical considerations give the number ot holes:

QN H]
[EE}H—].

nie) = [1+o(1)] (6)
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where |QM H| is the measure of QN H in R"~! and o(1) is a function of € such that lime_, 0(1) =
0

We define the set £); (see Figure 3) by:

Qe = Q\ U™ TE.

v=1

Because we considered only the cells entirely included in €2, we are sure that no obstacle
intersects the boundary 0.

--..._E-_E..u-..-
.-L_#T--"
- T H

L - e -
E
By Figure 2
£
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Figure 3
2.2 Statement of the problem

We consider a reference state characterized by a stress tensor field with components GE—} =
— poo; j» associated with a constant pressure py. (9 j being the Kronecker symbol). Now,
under the hypothesis of small perturbations and denoting Ug(x,?) the displacement field, the
stress perturbation tensor is given by

ol
6i;(Us) = ctpodijSunein(Ue) + (MSijkn + p(8id jn + 8ind k) )Ern (a—:) : (7)

where pg is the volumic mass of the fluid in the unperturbed state, ¢g is the velocity of the

sound, €;(u) = ll, (?ﬁ: + %Til) ,N and u are the viscosity coefficients and satisfy [12]:

m+2ue” >0 with O<a" <1l p>0. (8)



156 5. Challal

The perturbation displacement field Uy satisfies:

allg ; .
Paj;%- = 0;0ij(Ug) + F; in Q¢
Ug(x,t) =0 on dQ (Pe)
Ug(x,0) =0, Ui(x,00=0 in Q,

where the body force F is such that F € L*(0, +eo, (L?(2))").
For the existence and uniqueness of a solution of (P;), we have the following theorem
(see [9]):

Theorem 1 There exists a unique solution Ug to Problem (P:) satisfying:
Ue € L™(0, T, [Hp (Q)]") NL*(0, T, [Hy (Qe)]")
Ug € L7(0,7, [L(Qe)]") NL*(O, T, [Ho ()]"),  (Pols) € L7(0, T, [H™'(Qe)]")-

Moreover |\Ue|| =0 1.1 ey Uelli=(0,7, 11200 NUEll 20,713 (201 @14
1(PaUe) [l 2 (0,T,[H-1(Qe)]) @re bounded independently of €.

Now we are going to see what happens when € — 0 following the considerations described
by Figure 1.

To make the study easy, we use in (P ) the Laplace transform to obtain a stationary prob-
lem of elasticity type. If we denote by L the Laplace transform, ue = L(Ug) and f = L(F),

we obtain
{ e € [HEE (ﬂE)]n (g}
A pouei — Oj(aijm€in(ue)) = fi in Qe i=1,...,n
with

{ aijin = c3P0d:0m + M(8i;8ih + u(8:ydjh + 8:xd1)), (10)

forA€ C Rek > 0 sufficiently large.

In order to prove the convergence of the homogenization process, we use the energy method
developped by L. Tartar [13]. First, let us consider the weak formulation of (9):

{ Find u; € [Hy(€2)]" such that : (11)

fﬂs lzpﬂugﬁdx ~+ fns ﬂfﬂhﬂm (HE:]EU (W)dx = fne fﬁdx Yw e [H& (ﬂg)]"

where w denotes the complex conjugate of w and H} (€2 ) is considered as a C vector space.

2.3 A priori estimate

Taking w = ug in (11), we easily get ||ig| IH& () bounded by a constant independent of €, where

* denotes the extension operator by 0 in \Q;. Then there exists a subsequence still denoted
(iig )e>0 and u € [Hj (Q)]" such that

de —u in [H)(Q)]". (12)
Using a Lemma due to Allaire [1], we have also the following estimate:

|”51L2{He] < fﬁewﬂahzmﬂ (13)
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where ¢ is a constant independent of € and ¢ 1S given by:

" 1/2
(Lr) for n>3

iy -

GE:
E|h:}g%|l’FE for n=2.

(14)

3 Test functions

In this section, we construct suitable test functions ()<<, which allows us to pass to the
limit in problem (11). The cases n = 2 and n > 3 will be treated separately.

3.1 The two dimensional case
£
B T,
77 € By
4 K
| 3
1 g

Figure 4
We decompose each cube P¢ such as indicated by Figure 4. The set Bf (resp. B%) is the ball
of radius ag (resp. €) centered in PE, CE = BE\TE and K& = PE\B,,.
We define functions (] )i<x<2 on the open set Q by:

 For each cube entirely  included in H :
{t}E = & n KE and —aj{ﬂ,‘ﬁhEm(mﬁ}} = in Cfr
4 w, =0 in 7, and wi e {H'(P))%.
—and by:
h of = e elsewhere in  Q\UM P
(13)

To estimate these functions, we compare them with functions ()1 <i<2 defined by replacing
TF by By in (15). It is possible to compute explicitly of, in Cj\By*. Denote by r the
radial coordinate and e, the unit vector in each CZ\B\*. Proceeding as in [4], we get: Wy, =
xerf(r)e, + g(r)eg for r € [ae, €] where we seek for f and g expansions of the form: f(r) =
S ogrfand g(r) = 377 Brr* —Alogr. We establish that

— | _EE E:_ﬂé — A
1) = e |~ S| (o)), m= e

£ &

I4+2m "
(16)
Arguing as in [4], we deduce:
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Lemma 2 The functions wf, satisfy:
2

<c

|mEm — €

€
ol/2
o < (3)

| +m € )
T om ozl T obledy

Vo,

e

2
L2{€))

and

(aijmem(og) (e} - e;))8y = 2Au
where 8" denotes the measure defined by: < 8y, @ >= [y @(s)ds Vo € D(Q).

. . r
Now let us introduce the difference ®f between ®f and w{,

Then we have
Lemma 3
¢ 1 o2 Vet o128 d 1ot <ce'?E k=12
o € [Hy ()", Vo |p2q) < ce P O |12y S c€ oz =5
E E

where ¢ does not depend on &.

Proof. We take in account the number of holes (see (6)), we procede as 1n [5] (Lemma 6.1)
and the result follows, ]

So we deduce from Lemma 2, Lemma 3 and (17):
Theorem 4 The functions (0} )1 <y<2 defined by (15) satisfy

e o122 €2 L
;= exlp2(qy < cE g Yoy |2 g < )
£ £

where the constant ¢ does not depend on €.

3.2 Thecasen >3

_ag |e |2

ia0n

Figure 5

We decompose each cube PY as indicated by Figure 5, where

C; is the open ball of radius €/2 centered in Pt and perforated by T,
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BE is the ball of radius € and centered in Py,
Df, is equal to BY, perforated by C,UT,.
K§ = P\(Tf UG, UD,).

Then we define the functions (®}) <<, as follows:

4

—For each cube entirely included in  Hg,
B}E = € in KE, —aj(ﬂ;ﬂhﬁ;h{{ﬂﬁ)) = in D‘:’,
{ mﬁzmkl(;—a) inCt, =0 inT 8
of € [H (FY)]",
—and by :
| W, = ek elsewhere in Q\ Uf,{:’:{ Py
where y is the unique solution (see [5]) of:
- 2
—dj(aijmem(oy)) = mR\T, Z;; |Efj({'}h'f)|L2{:RmJJ < o, (19)
o, =0 ondT, w; = ¢ at infinity,

Taking into account the number of holes and proceeding as in the case of distributions of
holes in the whole volume (see [3]), we get:

Theorem 5 The functions (®})1<k<n defined in (18) satisfy:

£ 2 £
i, — -::
oo E‘flﬂ{n] = CE (%)" |log

where the constant ¢ does not depend on €.

In the following section we describe the case where ag is of the order of ce.

4 Case a; ~ ce: The size a; is of the order of the critical size ¢,

Assume that;

. 1 i . g . .
AI_I:::I} clogds =—Cqy ifn=2, EI—I}% pr e Co ifn> 3, (20)

then we have

Theorem 6 Let ug be the unigue solution of (9). Then

e —u in[Hj(Q)]"
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where u is the unique solution of the following problem:

{ Find u € [H} (Q)]" (21)

?"Epﬂuf_aj(ﬂiﬂhﬁfh(u))"l'pi:'u:ﬁ in Q i= ],--.,ﬂ,

and fori= 1, ...,n, y; is given by:

A(cfpo+A(n+2y)) _
. 2nCo cﬁgﬁﬂmﬂp} €0y forn=2,
[ -2
G (2mieminenl) EO)Sy  forn 3,

Fi(A) = [5p aijimein(@x)njeido, n = (n;) is the outward unit normal to 0T, 8y denotes the
measure defined as the unit mass concentrated on H i.e., < 0u,Q > prmy= [y @(s)ds for
any @ € D(R™).

Proof. Let ¢ € D(Q). Take @®;]q, as a test function in (11) and integrate by parts after
extending ug by 0 in Q\ ¢, we get

1
fn A2 poite Quidx + fﬂﬂfﬁhﬁm(ﬁe) 5 [3:p(00p) j + 9,;p(y)i]dx+

+ < —n(aijmeij (@), o(de) > — fn a;jin€in (O ) (On@(ie);)dx = fn fowdx.
Since the size ag satisfies (20), Theorems 4 and 5 lead to
of =¢  in[HY(Q)]", (22)
of >e  in[LH(Q)]". (23)
So we can easily pass to the limit in all terms of the above equality, except for the term
< —Onlaijmeij(0F)), p(de); >

To find this limit, we distinguish two cases.

Case n = 2, We remark that we have:

—0(aijmem(0f)) =i, =%, inH ' (Q)

where

{pﬁ = Z’.,’.E]lﬂsjmﬁm(mﬁk](fr'fj]fiafﬁz:{j;”iﬁhﬁm((’)f)(fr'fﬂffﬁﬁ

% = Ef-{:}l aijin€n (o) (ey - €;)eidre,

o is the unit mass concentrated on the sphere 0By, and dre is the unit mass concentrated on
oTE. Note that we have: ¥ =0in [H1(Q¢)]* ie. <1E,v>=0, Vv € [H}(Q)]? withv =0o0n
UH{E}T\?. s0 < Y, 9(i#e) >= 0. Then it suffices to prove that there exists y, € [H™1()]* such

v=1

that: 1€ — uy in [H~1(Q)]2.
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First, we have by a simple computation:

v=] v=lI

40 LY (S (0 enevst
+{1+2m)£‘ﬂ (1+ 1+2m) (Z(Er'fﬂfrav)] [1+o(1)].

v=1
Letting € — 0, we get:

n(E)
Y aijmem(05;)(e) -e)eids — e in [HH(Q))?

v=I

since (see [1]), we have for n > 2:

H{E] Sﬂ- ) :
253—}2n_l5,q in H™'(Q)
v=1

J‘!{E} S
2 (e -ey)e) 5 — ﬂz:—l ey In [H-l (Q)]"
v=]

where §, denotes the area of the unit sphere in R”.
Next, we prove that:

n(e) ;
2 a;jinein(0F )(ey - ej)ed; — 0 in [H‘l (QHZ*

v=1
Let ve € [H] (Q)]? such that v — v in [Hj (€2)]* and set

nig) ’
Ae =< Y aijinein(0f )(e) - €)eidy,ve >p-1(0) #i() -

v=1
We remark that
nie) n(g)

~dj(amen(@})) = Y aijmem(@)(e! - e)eid + Y aijmem(f ) (e} - e;)eids—

v=1 v=1|

n(e)
!
— Y aijmemn(of )(e) - ej)edre.
v=1]

Let R be a mapping satisfying:

Proposition 7 (see [5]) There exists an operator R satisfying:

(i) Re € L([H (Q)]":[Hy ()], (ii) u € [Hy (Qe)]" = Reit = u in Q.
(ii) There exists a constant ¢ > 0 which does not depend on € or u, such that:

1
2 2
[Reullipgg ey < ellVulpz(g) + Eg'”iﬂwﬂ]'

= 2m+3 & 3

161

(24)

(25)

(26)

(27)
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We consider the mapping R; in the case where the holes are the balls B¢ so:

I

iEe)
Ae <M lrrumEm{m,;,) ey -€;)eid%, Reve >y LHY ()

= < —d; {HUHIE”; {:I]L )) (REVE :}H HI ﬂ_}— fﬂﬂ:ﬂhEﬁr(mg )E!J(REFE)

then

[ Ag| "TWWE 12 El}lv{RE""E |12 (Qe)

<

1/2 €
< E'f [|vvt|£, ﬂ}+_’5|"“£|_{_ { Hg }]
Taking into account the fact that ve vanishes on 0dQ, one can establish that:

Then
cel/?

o?. 12(0)
1 + £ 57| sinceve is bounded in [H' ()]

‘?Hm E‘J’ﬁ

CEI"'FI

AN FAN FAN

ce!'’? since 5 = Co.
E'

So A = 0 when € — 0 and (27) holds.

Case n > 3. We also remark that:

—dj(@ijm€mn( 7)) =t ; — Y
with ¥ =0 in [H'(Q)]"

and gy = EH{E (aijm€m(@f) (e} 'fj]fi)aﬁﬁ — dj(aijinem(Of)xe)ei

where 87 is the unit mass concentrated on the sphere dC,, MDY and ), is the characteristic
function of uf,{j Di;. Before passing to the limit, we need the following lemma proved in [5]:

Lemma 8 (i) The solution Wy, of (19) satisfies at infinity

[0y = e — ;w,l-z (2241 fi 4+ (Fi-er)er] [1 +0(1)]

_ | 1
viﬂk—o(,ﬂ_-r)v Y= 350w (28)
C aijinm(onje; = <Ly [2mFy + M=l (F e )e, ] + 0 ()

i

A

where O(h) denotes a function such that |O(h)| < c.h with ¢ a constant independent of h.
(ii) A € {Reh > B} C C = F(A) is holomorphic and |F,(A)| < cP(|A|) where P(|A}) is a
polynomial.

It follows from definition of ®; in Dy, and the behaviour of w; at infinity that:

2
£
< —
|? ﬂ'|L2{uftlE]I.}£} _ CE (Gg) (29}

then
—aj{ﬂumEm(ﬁ}E}xE)E{ — 0 Etrﬂngl}' n [H_ : [Q)]"
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We have also by (18) and (28):

mm+m+n—1

£

1

ajjim€in(og) (e -ej)e; = 2" Y2 2mFj +
E

(F -ei)e;] +0 (g&) . (30)
£

Then using (25)-(26), we deduce the resulit.
The uniqueness of the solution of (21) holds since the matrix [p]}_, is positive (see [5]). O

Now, we give the evolution problem (Pg,) corresponding to (21). First let us introduce
the following Hilbert space W(€2) defined by

W(Q) = {v € L*(0,T,[Hy ()]"),V € L*(0,T, [Hy (Q)]"), (poV) € L*(0,T, [H™(Q)]")}

and equipped with the norm:

1/2
_ 2 2 2
HF” - (”v”LI{D.T,[H{:{ﬂ]]"} + ”"’II||;_2|[{]‘T,[H&{£I}]!|] + H(pﬂp ) ”LI{H.T,[H" {ﬂ}]ﬂ) g

Theorem 9 Let U be the unique solution of (Pe) in W(£):) and u be the unique solution of
(21). Then

i) there exists U € D'(]0,+oo|, [Hy (2)]") such that: u(h) = L(U) Reh > 0 sufficiently
large,

i)Us —U inW(Q).

iii) The distribution U is the unique solution of the problem (Pc,):

) polY =3,04U) - (GxU)i+F in Q i=1,..n
i) U(x,0)=0, U'(x,0)=0 in Q (Pe,)
i) Ux,t)=0 on 09Q,

where G(1) = L~Y(M(L)) for Reh > 0, sufficiently large. The matrix M(A) is defined by its
columns [pg(A)]7_,.

Proof. It is easy to see that ii) is a consequence of estimates given by Theorem 1 For proof
of i) and 111), we refer the reader for the case of distribution of holes in the whole volume £2
(see [5]). ]

Remark 10 Problem (Pc,) describes a viscoelastic medium with a long memory. The con-
volution term (G * U) and the mass &y model the resistance of holes and their distribution on
the hyperplane H.

We can give G explicity in the case of spherical holes since Fy is well known (see [4]).

We also remark that G is independent of the form of holes in the two dimensional case con-

trary to the case n > 3 where G depends on Fy. The quantity F; appears as a force exerted by
the fluidon T.

Now, we treat the case where the size a. 1s much smaller than the critical one.
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5 Case a; << ¢g: The size g, is less than the critical ¢

We suppose that:

. 1 . . a
lim =0 ifn=2, lim :
e—0 elogag g0 gn—1/n=2

=0 1fn>3,

then we have

Theorem 11 Let ug be the unique solution of (9). Then
e —u in[Hy(Q)]"
where u is the unique solution of the problem:

u € [Hy (Q)]"
Mpou; —9j(aijmem(u)) = fi inQ i=1,...,n

S. Challal

(31)

(32)

(33)

Proof. Let ¢ € D(Q) and w] be the test functions built in Section 3. From assumption (31)

and Theorem 4, 5, we deduce:
®f — e; in [Hj(Q)]".

If we take qﬁﬂns as a test function in (11), we have:

[ Rpoicouidx+ [ auen(e;(pop)dx= | foads

Since (34) holds, we get (33) by letting € — 0 in (35).
Note that we have:

[ Wpolaelax+ [ ameni)e;@de= [ fTedx— | fads
{2 9] 1§ £}

:/ﬂlzp{}|u|zdx+fnﬂ;‘ﬁh3£h(“)5fj(ﬁ)d‘x

from which we deduce

fﬂ aijin€in (i )€ij (e )dx — /;1 a;jin€in(u)€ij(W)dx

since by (12) and rellich’s theorem we have iz — u in [L*(Q)}". This leads to

Lﬂiﬂhﬁih(ﬁe — u)€;j(fe — u)dx — 0.

By coerciveness of coefficients a;;; and Korn’s inequality, we deduce (32).

The corresponding evolution problem to (33) is given by:

(34)

(35)



A viscoelastic fluid flow through mixing grids 163

Theorem 12 Ler Ug be the unique solution of (P) in W(8¢) and u be the unique solution of
(33). Then

i) there exists U € D'(]0, +oo, [Hy (Q)]") such that: u(r) = L(U) Rek > 0 sufficiently
large,

i) Us = U in W(Q).

iti) The distribution U is the unique solution of the problem (Fy):

) pelY=3;0,(U)+F  in Qi=1,...n
i) Ux,0)=0, U'{x,00=0 in Q (Po)
ii) Ux,t)=0 on o€

Remark 13 We note that, when the holes are very small, the fluid behaves as there are no

obstacles. This phenomenon was also observed in [1], [6] and [7] for a volume distribution
of the holes.

6 Case gz >> cg: The size q. is greater than the critical size c;

We suppose that:
Eﬂ—l,r"ﬂ—l
limeloga, =0 if n=2, Ilim =0 if n>3. (36)
£l £-+() 'ﬂE

We denote by Q. and Q_ (see Figure 6) the sets Q; = QN [x, > 0], Q- = QN |x, < 0]
where [x, > 0] (resp. [x, < 0]) = {x = (¥',x,) € R"/x, > O (resp. x, < 0)}. We set 9,.Q =
QN [x, > 0], 0-Q = QN [x, < 0]. The function u™* (resp. ¥~ ) denotes the restriction of a
function u to 24 (resp. Q_).

Theorem 14 Let u; be the unique solution of (9) and u such that

lzpﬂ“? - aj(“fjfﬁeffi(“+)) = ff in Q+ i=1,...,n,
Mpou; = dilamem(u™)) = fi inQ-  i=1,...n,
ut =0 ondi Q. u =0 ond_Q
u =0 onH, u =0 onH.

(37)

Then we have
e = u in[Hy(Q)]".
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Proof. We prove the theorem for n > 3. The case n = 2 can be treated similarly.
From Theorem 4 and Theorem 5, functions (®{) built in Section 3 are such that

£
with — — +o=,

|?ﬁ]ﬁ.]_,r_1{n "ﬁ"g GE

Proceeding as in Section 4, we have for ¢ € D(£2)
Ja llpﬂﬁsmid-’f + Jo @ijin€ij (i) %[ai‘P(mE)j + 9 p(wp);]dx+
+ < —Op(aimei(0F)), (e )1 > — [oaijmem(®})dp0(de)1dx = [q feuwidx
with
—0h (ﬂumﬁu{fﬂi)] = Pﬁ; - '}ﬁ?;
HE = T (@ijnein(0f) (¢} - €)Y — 3 (asjunem(0f)xe)er

First from (30), we have

2
G_Ei Efr[E {{ﬂrﬂhgfh(me})(t? EI}EJ}&V"{ = 2n= ?[2”1}:' ZV{EI ﬁvﬁ
ezt 2 ] 0 () 2

E

Using (23), (26) and letting € goes to () in (39), we deduce

nig)

= Y (asmem(@f)) (e €)1 in[H(Q))"

v=1

ﬁl

where

|

{) {hn

= — B.I'I.Cl My = — —M
Hy :ﬂn_gﬂk ( 0 [Juﬁ:]k—] [:-n— )

Moreover, we derive from (29)) that

2
%(_aj{ﬂfﬁhﬂ‘h (mﬁ}xg)ﬂ) — 0 1m [H—l (Q)]”

Then

2
) : -
S in [HQ)
We have also ty Theorem 3
2

%?mﬁ - 0in [L2(Q)]", %mk — 0in L*(Q).

Then letting € goes to 0 in (38), after multiplying (38) by %2* we get by (42)-(43):
< Mou,p >=0 Vo e DQ)

from which we deduce by density since u € [H} (€2)]"

< Mgu,ﬁ == ﬂ
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(38)

(39)

(40)

(41)

(42)

(43)
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1.€.
/ 1u|2d5 =0 forn=2 and f ([Fi)iw)uids =0 forn > 3.
H H
So u=0o0n H Vn > 2 since [F]j_, is symetrical and invertible matrix (see [1]).

Now to get the equations satisfied by ™ and «™ in (37), we take in (11), for € sufficiently
small, @, (resp. @, ) as a test function, where @; (resp. @) is the extention by 0 to Q of a

function @ (resp. ¢) € D(L2,) (resp. € D(€2_)) and we deduce the result. It is clear that
u 1s the unique solution of (37). O

Then one can prove as we did for Theorem 9, the following result:

Theorem 15 Let Ug be the unique solution of (Ps) in W(S:) and u the unique solution of
(37). Then

i) there exists Ut € TV (]0, +oo[, [Hy (Q4)]") (resp. U™ € D/(]0,+oo, [Hy (Q-)]") such that:
ut(A)=L(UY), u (A)y=L(U") for ReA > O sufficiently large,

i) Us = U in W(Q).
iit) The distribution U is the unique solution of the problem (P.):

( Ut + . .
i) pPo=st=0;05;(UT)+F inQii=1,...,n

g
Uii) poid-=3j0,(U)+F inQ_i=1,...n
i) U(x,0)=0,U'(x,0)=0 inQ (P.)
Civ) Ulx,t)=0 on d0QUH.

Remark 16 We note thar the fluid behaves in two domain (L) and 2_ ) separated by the
solid obstacle H. This models the effect of big holes.

The following section gives us some remarks about problems (21), (37) and (33).

7 Relationships between problems (P..),(P) and (P¢, )

We denote by Ug, the unique solution of (Pg,) and uc, = L(Ug,).
QOur purpose in this section to see that one can obtain problems (33) and (37) as a limit of
problem (21) when Cy — 0 and Cy — +-<= respectively.

First, let us take uc, as a test function in the weak formulation associated to problem (21).
We obtain

fﬂ A2poluc, | dx + fn aim€mluc, )€ij (g, )dx + h(Co) < Mouc,,tic, >= fﬂ flic,dx

with
| G forn=2
h(Co) = { Ci~% forn>3.

So by coerciveness of the coefficients a; ., positivity of the matrix My and Korn's inequality,
we have

lucyl gy ) S €
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where ¢ is a constant independent of .
By Rellich’s theorem and the continuity of the trace function from [H, (2)]" to [L*(H)]", we

deduce the above estimate:
uc, = u in[Hg (Q))"

uy = u in[LX(H)] @

when Cy — 0 or Cy — oo,
Now we have by (21) for all v € [H, (Q2)]"

j;llipﬂucﬂvdx+fﬂaumﬁm(ucﬂ)au(v)dx+h(Cg) < Mouc,,v }=fﬂfvdx+ (45)

1) Using (44), we Let Cp go to 0 in (45). The term h(Cp) < Mouc,,v > takes null value at the
limit, so « 1s solution of (33).
i1) If we devide each term of (45) by A(Cp) and let Cy go to +oo, we get: < Mou,v >=10
Vv € [H} ()]" and then 1 = 0 on H.
Now taking v € D(€2 ) (resp. D(£2_)) in (45) and letting Cy — +oo, we obtain (37).

We summarize the above results in the following theorem:

Theorem 17 Let uc, be the unique solution of (21). We have
ucy = u in [Ho(€))"

when Cy — 0 (resp. Cy — +oo) where u is the unique solution of (33) (resp. (37)).

8 Case a; >~ ne: The size a; is of the order of the size of the period

In this section, we assume that

imZE =n  with0<n< 1. (46)
e+ E

First, we need the following lemma proved in [10].

Lemma 18 There exists a constant ¢ > 0 independent of € such that:
ul}2 gy < celVultaq, Yu€ Hy(Q), u=00ndT{, v=1,n(e).
Theorem 19 Let ug be the unique solution of (9) and u be the unique solution of (37). Then

de —u in[H}(Q)]".

Proof. In section 2, we have established that |||, 1(q) is bounded independently of €, then

by Lemma 18, we get iﬁglig{H} < cg and fig|y — 0 in [L*(H)]". But by the continuity of the

trace mapping u +— u|y from [Hj ()] to [L*(H)]" we deduce from (12) that: |y — uly
in [L2(H)]*. Sou=0on H.
Arguing as the end of the proof of Theorem 14, we achieve this proof. O

The evolution problem corresponding to (37) is (P..) given by Theorem 15.
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Remark 20 We note that we obtain the same limit problem as the case of holes with size
greater than the critical size cc. When the holes are of the order of the period, the fluid adheres
on the hyperpane H which plays a thin solid plate role and the fluid behaves separately on
each side of this plate.

This differs from the case of the distribution of holes in the whole volume where the limit
problems are different depending on whether the size of holes is greater than the critical

one or of the order of the period. In the case of the Stokes problem, Allaire [2] proved a
relationship between the two homogenized problems.
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