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FORCED OSCILLATIONS OF SOLUTIONS OF IMPULSIVE NONLINEAR HYPER-
BOLIC DIFFERENTIAL-DIFFERENCE EQUATIONS
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Abstract. Sufficient conditions for forced oscillations of the solutions of impulsive nonlinear
hyperbolic differential-difference equations are obtained.
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1 Introduction

The oscillation theory is a traditional direction of the qualitative theory of partial differential
equations (PDE) and it is an object of permanent interest [8], [10], {11]. On the other hand,
the theory of impulsive PDE underwent rapid development in the last four years [1}-{7], [9].
In view of the numerous applications of the impulsive PDE to science and technology it 1s
important to investigate the oscillation theory for this new class of PDE.

The present paper deals with the oscillation properties of impulsive nonlinear hyperbolic
differential-difference equations. Sufficient conditions are obtained such that every solution
satisfying certain boundary condition 1s oscillatory.

2 Preliminary notes

Let Q@ C R" be a bounded domain with a smooth boundary 92 and © = QU d€2. Suppose
thatO =<t <ta <...<tp <...are given numbers and tp4; =, + 06, k=0,1,..., where
o = const > (0 and [ 1s a fixed natural number.

Define Jimp = {# } 1, By = [0, Fo0), E0=[-0,0] xQ,E=(0,+00) xQ, E* =Ry xQ,
Eimp =1{(t,x) € E:t € Jimp}, E},,, = {{t,x) € E*:1 € Jimp }.

Let C;,,l,,[ED U E*,R] be the class of all functions u: EYUE* — R such that:

(i) The restriction of  to the set E°UE* \ Ej,,, 18 a continuous function.

(ii) For each (7,x) € E;"F there exist the limits

lim u(g,s) = u(t™,x), lim u(q,s) =u(t™,x)
Lef s p-=rir.a} {g.5p=rlr.x)
gt g>1

and u(t,x) = u(t™ ,x) for (1,x) € Ej, .

The class of functions Cip[E*, ] is defined analogously as E* is written instead of £V U
E* in the above definition.

Let C}TmP[EﬂLJ E*, R be the class of all functions u € Cynp[E” U E*, R] such that:

(i) up: ET\ E;HP — R and it is a continuous function.
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(ii) For each (1,x) € E;:,._.F there exist the limits

lim LEy (q,:;) — H;{f_,.lf), lim y (Q:S) = U (f+_._.r)
(gq.8]—+(t.x) (g.5)—+ir.x)
gt gt

and w (t,x) = u, (t*,x) for (t,x) € Ej, .
Consider the nonlinear hyperbolic differential-difference equation

uy (£,x) — Au(t,x) + p(t,x) f(ult — 0,x)) = H(t,x), (£,x) € E\ Ejmp, (1)

subject to the impulsive conditions

u(t,x) —u(t™,x) = g(t,x,u(t”,x}), (t,x) € E,,, (2)
Hr(fe-r} _HI{I_*.:-I) = h[r‘.l'tﬁ HF(I_}I})‘J l::f.*.l'} € E;rzp (3)

and the boundary conditions
%{I,x} + vt x)u(t,x) =0, (1,x) € (R \ Jimp) x 092, (4)

or
| u(t,x) =0,  (t,x) € (Ry \ Jimp) X 0K2. (5)

The functions p:E* - R, f:R > R, H:E" - R, g:E, , xR = K, h:E‘-“;ﬂp xR — R,
v: R, x 0Q — R are given.

Definition 1 The function u: E°UE* — R is called a solution of problem (1) — (4) ((1)-(3),
(5)) 1if:

(1) u € C';mP[Eﬂ U E*,R], there exist the derivatives uy(f,x), uyx (f,x), i =1,...,n for
(1,x) € E\ Eimp and u satisfies (1) on E '\ Ej,p.

(ii) u satisfies (2)—(4) ((2), (3), (5)).

Definition 2 The nonzero solution u(¢, x) of equation (1) is said to be nonoscillating if there
exists a number u > 0 such that u(r, x) has a constant sign for (7,x) € [y, +0) x Q. Otherwise,
the solution is said to oscillate.

For the function sign we have adopted the following definition

1 if x>0,

signx = ¢ 0 if x=0,

L -1 if x<O.

Introduce the following assumptions:
Hl. p € CiplE™, R4 .
H2. ¢ € C(E],, x K, R).
H3. vy € Cimp[R4 x 0Q, R, ].
H4. f e C(R,R), f(u) = —f(—u) foru > 0, f is a positive and convex function in the interval
(0, +o0).
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HS. H € Cipp[E*, R].
In the sequel the following notations will be used:

P(t) = min{p(t,x): x € Q},

Vt) = fu(r,,r]dx ( fd,l:) ) :

£

0= [ 10699 ( /dx)

3 Main results

We give sufficient conditions for oscillation of the solutions of the problem (1)-(4).

Lemma 1 Let the following conditions hold:
1. Assumptions H1-H35 are ﬁdﬁHed.
2. u € C}(E\ Eimp) NC'(E*\E
damam E.
3. g(te,x,8) < L&, h(tg,x,m) =L, E € Ry, n € R, x€Q, k=1,2,..., Ly, >0 are
constants.
Then the function V (t) satisfies for t > © the impulsive differential inequality

imp) 15 @ positive solution of the problem (1)~ (4) in the

V(1) + P(t)f(V(t —0)) < Holt), t#u, (6)
V) < (1+L)V (), (7)
Vi) = (14+L)V'(1). (8)

Proof. Let ¢ > ¢. Integrating equation (1) with respect to x over the domain 2, we obtain

Ej u(t,x)dx — [Au(t,x)dx+
9] (2 {9)
+I{p(1‘,x]f(u(r - 0,x))dx = E{H(r,x)dx, t # Iy

From the Green formula and H3 it follows that

ou
fﬂu(r,x)dx— >

a0}

M 1S = f vt )u(t.x)dS <0, t#14. (10)

Moreover, for 1 # t;, the Jensen inequality enables us to get

;{ p(t.x) f(u(t—o,x))dx > P(t) ;{ flu(t —o,x))dx >

- (I11)
> P(1)f ( fu(r—ﬁjx)dx(f{dx) )édx: P(r)f[l*’(r—ﬂ)}{{dx.

0Q
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By virtue of (10) and (11) we obtain from (9) that

Vi) +P()f(V(t—=0)) <Ho(t),  t#u

For r = 1, we have that

1
Vi) -Vt ) <Ly (fdx) /u[:;,x)d.tszV{I;),
Q

()

that is,
Vi) < (1+ L)Vt ),

and analogously, | r 0
Vi) = (1+Le)V'(2,).

Definition 3 The solution V € C], [[-0,0]UR,,R]N C2(Up_o(tks tes1), R) of the differen-
tial inequality (6)—-(8) is called eventually positive (negative) if there exists a number t* > 0

such that V() > 0 (V(t) < 0) fort > t*.

Theorem 1 Let the following conditions hold:

1. Assumptions H1-HS are fulfilled.

2. g(“:a-hé) < L.kE.u h(fkala"]} = L, g ERy,MeR, xe ﬁa k=1,2,..., Ly >0 are
constants and g(ty,x,&) = —g(ty,x, —=E).

3. The differential inequality (6)—~(8) and the differential inequality

Vi) + P(t)f(V(t —0)) < —Ho(t), t#n, (12)
Vi) < (1+L)V (), (13)
V() = (1+ L)V (1) (14)

have no eventually positive solutions.
Then each nonzero solution u € C*(E \ Ey,p) NC' (E* \ E},,,) of problem (1) — (4) oscil-
lates in the domain E.

Proof. Suppose the conclusion of the theorem is not true, i.e., u(¢,x) is a nonzero solution of
problem (1)—(4) which is of the class C*(E \ Ejnp) NC! (E* \ E},,) and it has a constant sign
in the domain E, = [y, +0) X Q, u > 0. If u(t,x) > 0 for (r,x) € E,, then from Lemma 1 it
follows that the function V(¢) is a positive solution of the differential inequality (6)—8) for
t > u+ ¢ which contradicts condition 3 of the theorem.

If u(z,x) < O for (¢,x) € E,, then the function —u(¢,x) is a solution of the problem

U (t,x) — Au(t,x) + p(t,x) f(u(t = 06,x)) = =H(t,x), (t,x) € E \ Eimp,
u(t,x) —u(t=,x) = g(t,x,u(t",x)), (t,x) €€ E} :

imp?

ur(t,x) —ue(t~,x) = hit,x,u,(t7,x)), (2,x)€E?

imp?

X (t,2) + (1, )u(t,x) =0, (1,x) € (Ry \Jimp) X 0K,
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which is positive in E,,. From Lemma 1 it follows that the function

f[—u(r,x}]dx fdx

L2

1s a positive solution of the differential inequality (12)-(14) for t > p+ o, which also contra-
dicts condition 3 of the theorem. O]

Theorem 2 Let the following conditions hold:
. P € C:'mp[H+rR+]: Hy € Cfmp[R+v]E]-
2. flu) =2 0foru=0.

3.3 Ly < 4oo, Ly >0,k =1,2,..., are constants.
k=1
4. For any number ty > © we have

hminf

/ n 1 + Ly )(t — s)Hp(s)ds =

Sty =i

Then the differential inequality (6)—(8) has no eventually positive solutions.

Proof. Suppose that the conclusion of the theorem is not true and let V(r) be a positive
solution of differential inequality (6)—(8) in the interval [t*, 4o}, * > 0. Then it follows from
condition 2 of the theorem that

V(1) < Ho(t), t>2t"+0, t#n.
Integrating twice over the interval [f],t], t* + 0 <1} <, we obtain

V(1) < iy (1+ L) [V(R) + V(@) — 7))+
+ [ Ms<q <o (1 + Li ) (r — 5)Ho(s)ds. (15)

h

Dividing both sides of (15) by t — 17 > 0, we get

V
L} < C]* 1+~—--—f H (14 L)t — s)Hy(s)ds. (16)
t—1 T 1—1 t=0J (Zre
Then for t — oo 1t follows from (16) that
V
liminf ) = e, (17)

{—ee [ — [

On the other hand, since V(t) > 0 for t > 1} we obtain that
> (),

V
liminf ) >

[ —poo .!'—I|

which contradicts (17). This completes the proof. [
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Corollary 2 Let the following conditions hold:
1. Assumptions H1-HS5 are fulfilled. -
2. SUk;IaE_,) < Lﬂ:'g:r h(fhl';ﬂ} = Lin, gE R"]’? mne R, xeQ k=12,..., L 20 are

constants such that z Ly < +eoand g(ty,x,£) = —g(tg,x,—E).
k=1
3. For any number ty > G we have

o ]
liminf —
= =1 L s<tp <!

f TT (1 +Le)(t — )Ho(s)ds = —o

and

!

limsup l..f H (14 Lg)(t — s)Ho(s)ds = +oe.

e T—10J (o ey
In -

Then each nonzero solution u € C*(E \ Eimp) NCY(E* "\E;,‘,,p) of the problem (1) — (4)
oscillates in the domain E.

Corollary 1 follows from Theorem 1 and Theorem 2.

Now we give sufficient conditions for oscillation of the solutions of problem (1)-(3), (3).
Consider the following Dirichlet problem

AQ+ o =0 in €,
(18)
(p|&ﬂ =0,

where o = const. It is known that the smallest eigenvalue ¢ of the problem (18) is positive
and the corresponding eigenfunction @g(x) > 0 for x € Q. Without loss of generality we may

assume that @g 1s normalized, 1.e., f @ol{x)dx = 1.

Q
Introduce the notations

W(e) = [ u(t)go(x)ds,

)

H, (1) = f H(t,%)00(x)dx.
()

Lemma 2 Let the following conditions hold:

1. Assumptions H1, H2, H4, HS are fulfilled.

2. u € C*HE\ Eimp) NCH(E*\ E}',‘HF) is a positive solution of the problem (1)—(3), (5) in
the domain E.

3. g(fksx'}&.b) E LkE.u h(fkalf:-n) = Lkni & € R+1 ne ]Ri X € ﬁ: k= 112:“*1 Ly E 0 are
constants.
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Then the function W (t) satisfies for t > © the impulsive differential inequality

Wo(1) + oW () + P(t) f(W(r —0)) <Hi(1), t#n, (19)
W) < (1+L)W( ), (20)
Wi (t) = (1+ L)W' (1) (21)

Proof. Let ¢+ > ¢. We multiply both sides of equation (1) by the eigenfunction @g(x) and
integrating with respect to x over 2, we obtain

ﬁr{"(fa x)Po(x)dx —I{M(I,I}lp(}{x)d_x+

22
+ 100,90t = 0.0)0()dx = [ R0z, 1#5
From the Green formula it follows that
[ Au(t,x)po(x)dx = [ u(t,x)Aqo(x)dx =
Q Q (23)
= —0y 1{ u(t,x)@o(x)dx = —oW(t), t#1,
where 0 > 0 1s the smallest eigenvalue of the problem (18).
Moreover, from the Jensen inequality
i{ p(t,x)  f(u(t —0,x))@o(x)dx > P(t) :{ fu(t —o,x))eo(x)dx >
(24)

>P(t)f ( fu(r—ﬁ,x)fpg(x)dx) =P(t)f(W(t—0)), t#t.

£2

Making use of (23) and (24), we obtain from (22) that
Wh(t) + oW (1) + P(t) f(W(t—0)) <H (1), t#n

For t = 1 we have that

W(t) —W (i) < L f u(t7 x)Po(x)dx = LW (),
Q
that is,
Wn) <(1+L)W(r ),
and analogously, O]
W) = (1+ L)W' ().

Analogously to Theorem | we can prove the following theorem.

Theorem 3 Let the following conditions hold:

1. Assumptions H1, H2, H4, HS are fulfilled.

2. g(tr,x,8) S L& h(n,xm) =L, E€ Ry, meR, x€ Q, k=1,2,..., L > 0 are
constants and g(ty,x,) = —g(ty,x,—E).
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3. The differential inequality (19)—~(21) and the differential inequality

W (1) + oW (1) + P(t) f(W(r—0)) < —Hi(r), t#
W) < (1+L)W(s ),
W' () = (1+Le)W' (1),

have no eventually positive solutions.
Then each nonzero solution u € C*(E \ Ejpmp) NC' (E*\ E},,) of problem (1)-(3), (5)
oscillates in the domain E.

Theorem 4 Let the following conditions hold:

1.Pe Cimp[R-i-:'R-F]} H € Cimp[R'I'&R]*
2. f(u) > 0foru>0.

3. Y Ly < 400, Ly > 0,k=1,2,..., are constants.
k=1
4, For any number ty > G we have

liminf
f=¥os | —f ﬂ

f[] |+ L) (t — s)H (s)ds = —oo.

s<tp <t

Then the differential fnequahty (19)~(21) has no eventually positive solutions.
The proof of Theorem 4 is analogous to the proof of Theorem 2. It is omitted here.

Corollary 4 Let the following conditions hold:
1. Assumptions H1, H2, H4, HS are fulfilled. B
2. H{fk;l’jﬁ} < Lké: h(thTI} = L.ETL é € R’l-:ﬂ ne R, x € Q': k= 112:”'1 Ly 2 0 are

constants such that E Ly < +o0and g(ty,x,&) = —gltx,x, —=E).
k=1
3. For any number 1y > G we have

f [T (1+L)( = $)Hi(s)ds = =

s<ip <t

liminf
f—eo | — fﬂ

and

—poa

limsup———f H 14 L) (r — s)H(5)ds = +oo.
s<tp <t

Then each nonzero solution u € C*(E \ Ejp) NC(E* \ Ejnp) of problem (1)-(3), (5)
oscillates in the domain E.

Corollary 2 follows from Theorem 3 and Theorem 4.
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