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Abstract. Characterizations of weakly functionally ©-normal spaces, similar to that of a nor-
mal space, are obtained and used to establish the existence of partition of unity subordinated
fo certain locally finite open covers.
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1 Introduction

It 1s of fundamental importance in topology to obtain a factorization of a given topological
property in terms of two weaker topological properties. The literature in topology is replete
with the results of this nature. Normality is an important topological invariant and hence a de-
composition of normality is desirable. First step in this direction was taken by G. Viglino [9],
who defined seminormal spaces. Subsequently, Singal and Arya [6] introduced the class of
almost normal spaces and proved that a space is normal if and only if it is both a seminormal
space and an almost normal space. A search for another decomposition of normality led us to
introduce in [4] the class of 8-normal spaces and certain of its variants such as weakly func-
tionally 6-normal (wf 8-normal) spaces. The notion of wf 6-normality serves as a necessary
ingredient for a decomposition of normality. In [4], wf 6-normal spaces are defined in terms
of the existence of certain continuous real-valued functions. In this paper, in analogy with
the normal spaces, we obtain a characterization of wf 6-normal space in terms of separation
of certain closed sets by open sets. Moreover, we introduce the notion of a 8-shrinking of an
open cover and obtain a characterization of wf 6-normal spaces in terms of 0-shrinking of
certain covers. Furthermore, we characterize w f 8-normal spaces in terms of the existence of
a partition of unity subordinated to certain locally finite open covers.

Section 2 1s devoted to basic definitions and preliminaries. In section 3 we obtain a
characterization of wf 6-normal spaces analogous to that of Uryshon Lemma and in section
4 we give a characterization of wf 6-normal spaces in terms of 8-shrinking of 8-open covers
and use the same to obtain a characterization of wf 6-normal spaces in terms of the existence
of partition of unity subordinated to certain locally finite 6-open covers.

2 Preliminaries and basic definitions

Definition 1 [8]. Let X be a topological space and let A C X. A point x € X is called a
O-limit point of A if every closed neighbourhood of x intersects A. Let Ag denote the set of
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all B-limit points of A. The set A is called 6-closed if A = Ag.

The complement of a 8-closed set will be referred to as a 8-open set.

Lemma 2 [4]. A subset A in a topological space X is 6-open if and only if for each x € A
there is an open set U containing x such that U C A.

In general the O-closure operator is not a Kuratowski closure operator since 6-closure of
a set might not be 6-closed (see [3]). However, the following modification in [5] yields a
Kuratowski closure operator.

Definition 3 [5]. Let X be a topological space and let A C X. A point x € X is called a
uB-limit point of A if every 8-open set U containing x intersects A. Let A,g denote the set of
all u®-limit points of A.

Lemma 4 [5]. The correspondence A — A,g is a Kuratowski closure operator:

It is observed in [5] that the set A g is the smallest 6-closed set containing A.

Definition 5 [2]. A function f : X — Y is said to be 8-continuous if for each x € X and each
open set U containing f(x) there exists an open set V containing x such that f(V) C U.

Every continuous function is 6-continuous but the converse is not true in general. How-
ever, a 6-continuous function into a regular space is continuous in a somewhat strong sense.

Lemma 6 [5]. Let f: X — Y be a B-continuous function and let U be a 0-open set in Y.
Then f (U) is 0-open in X.

3 Weakly Functionally 6-Normal Spaces

Definition 7 [4]. A topological space X is said to be weakly functionally ©-normal (wf 8-
normal) if for every pair of disjoint 8-closed sets A and B there exists a continuous function
f:X —[0,1] such that f(A) =0and f(B) = 1.

The class of wf 8-normal spaces is much larger than the class of normal space. An ex-
ample of a wf 0-normal spaces which is not normal is given in [4]. Moreover, the cofinite
topology on an infinite set is (vacuously) wf 6-normal but not normal. Similarly, the par-
ticular point topology [7, p. 44] and the indiscrete rational (irrational) extension of R [7, p.
88] are wf O-normal but are not normal. Furthermore, every finite topological space is wf
0-normal which need not be normal.

Theorem 8 For a topological space X, the following statements are equivalent.
(a) X is wf B-normal.
(b) Every pair of disjoint O-closed sets are contained in disjoint ©-open sets.

(c) For every O-closed set A and every 0-open set U containing A there exists a 6-open set
V suchthat ACV C Vg CU.
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Proof. To prove the assertion (a) = (b), let X be a wf 8-normal spaces and let A, B be disjoint
B-closed sets in X. By wf 8-normality of X there exists a continuous function f : X — [0, 1]
such that f(A) = 0 and f(B) = 1. Since [0, 3) and (%, 1] are 6-open sets in [0, 1], by Lemma
6 [0, —]j) and f1 (%, 1] are disjoint B-open sets in X containing A and B respectively.

To prove (b) = (c), let U be a B-open set in X containing a 8-closed set A. Then A and
X — U are disjoint B-closed sets in X. So there exist disjoint 8-open sets V and W such that
ACVand (X—-U)CW. Now,ACV CX —Wy. Since X — W is B-closed and since V,g is
the smallest B-closed set containing V.ACV CV,g CU.

To prove the implication (c¢) = (a), let A and B be disjoint 6-closed sets in X. Then
A C X —B = U, (say). Since U, is 6-open, there exists a 6-open set U}, such that A C
Uyja C(Uyj2)ue C Uy. Again, since (U 2),p is a B-closed set contained in the 6-open set Uy,
there exist 8-open set U ;4 and Us 4 such that A C Uy yy C (Uyya)ue C Uyp2 and (Uyp2)up C
Usjs C (Usy4)ue C Uy. Continuing the above process, we obtain for each dyadic rational r,
a 8-open set U, satisfying the condition that r < s implies (U, ),s C U;. Define a mapping
f:X—10,1] by

inf{r:x e U,}, ifx belongstosome U,
1. if x does not belong to any U, ~

0 ={

Clearly f is well defined and f(A) =0, f(B) = 1. Now it remains to prove that f is
continuous. To this end we first observe that if x € U,, then f(x) < r. Similarly, f(x) > rif
x & (U,)ue. To prove continuity, let x € X and (a, ) be an open interval containing f(x). Now
choose two dyadic rationals p and ¢ such that a < p < f(x) < g <b. LetU = U, — (Up) 0.
Then U is an open set containing x. Now fory € U, y € U,. So f(y) < g. Alsoas y € U,

vé&(Up,)ue- Thus f(y) > p. And so f(y) € [p.q]. Therefore, f(U) C [p,q] C (a,b). Hence f
1S continuous. O

4 0O-Shrinking of Covers and Partition of Unity

Definition 9 An open cover u = {Uy : 0. € A} of X is said to be O-shrinkable if there exists a
0-open cover v = {Vy : 0. € A} of X such that (Vi) C Uy for each o. € A.

Recall that a covering u of X 1s said to be point finite if every x € X belongs to only finitely
many elements of u.

Theorem 10 A ropological space X is wf 6-normal if and only if every point finite 8-open
cover of X is B-shrinkable.

Proof. Let X be a wf 8-normal spaces and let u = {U, : o0 € A} be a point finite 8-open
cover of X. Well order the set A. For convenience we may assume that A = {1,2,...,0,...}.
Now construct {Vy, : o0 € A} by transfinite induction as follows. Let Fj = X —Ugs1 Ugy. Then
F) is a B-closed set contained in the 6-open set U;. So by Theorem 8 there exists a 6-open
set Vi such that Fj C V| C (Vi)ue C U;. Suppose Vj has been defined for each < o Let
Fo =X —[(Up<aVp) U(Uysaly)]. Then Fy is a B-closed set contained in the B-open set Uy,
So, again, by Theorem 8 there exists a 8-open set V,, such that Fy, C Vi, C (Vo )ue C Uy. Now
v={Vy:0 € A} is a O-shrinking of u provided it cover X. Let x € X. Then x belongs to only
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finitely many members of u, say Uy, , ..., Uy,. Suppose o0 = max {a,.... oy }. Now x does
not belongs to U; for A > o and hﬂI‘lLL 1f,x & Vi for B < a, then x € F, C V. So in any case
x € Vp for B < o Thus v is a 8-shrinking of u.

Conversely, suppose A and B are disjoint 0-closed subsets of X. Then {X — A, X — B}
1s a point finite 8-open cover of X. So, by hypothesis there exists a 6-shrinking {U,V} of
{X —A,X —B}. Now X — (U),p and X — (V)¢ are disjoint 8-open sets containing A and B,
respectively. Again, in view of Theorem 8 X is wf 6-normal. o

Recall that for a continuous real-valued function f defined on X, the support of f is the
closed set {x € X : f(x) #0}.

Definition 11 [1]. A family {fo :€ A} of continuous functions from a space X to the closed
unit interval |0, 1] is called a partition of unity on X if the collection {support fo : 0. € A}
forms a locally finite closed cover of X and ¥y 5 fu(x) = 1 for every x € X.

A partition of unity {fy : o0 € A} on a space X is said to be subordinated to a cover
u = {Uy: o€ A} of X if support f, C U, for each o € A.

Theorem 12 A space X is wf 8-normal if and only if for every locally finite 8-open cover u
of X there exists a partition of unity subordinated to u.

Proof. Let X be a wf O-normal space and let u = {Uy : o« € A} be a locally finite 8-open
cover of X. Since every locally finite collection is point finite, by Theorem 10 choose a 8-
shrinking v = {Vy : a0 € A} of u, i.e. (Vy)ug C Uy for each o € A. Since the collection u is
locally finite, so is the collection v and thus v is point finite. Again by Theorem 10 choose
a B-shrinking w = {Wy : o € A} of v. The cover w is locally finite, since v is locally finite.
Since X is wf B-normal, for each 0. € A there exists a continuous function ¢ : X — [0, 1]
such that O ((Wy)ue = 1 and ¢q(X — Vi) = 0. Since ¢, '(0,1] is contained in V, and since
Vo C (Vo )ue C Uy, support ¢y C Uy. Now let x € X. Again, since w is locally finite, there
exists a neighbourhood U, of x and a finite subset Ag = {at1,...,0,} of A such that ¢ (x) =0
for all o € A — Ag. Thus foreach x € X, ¢ = 3| ¢, (x) is positive. Therefore, we may
define, for each o, fu(x) = ¢q (x)/¢@(x). Then the collection {fy : o« € A} is the desired
partition of unity subordinated to u.

Conversely, suppose that every locally finite 8-open cover of X has a partition of unity
subordinaterd to it and let A and B be any two disjoint 0-closed sets in X. Then {X —A, X — B}
constitutes a finite (and hence locally finite) 8-open cover of X and so there exists a partition
of unity {fi. f>} 5;11hcsrdinmcd to it. Suppme that support | C X — A, Then support f>» C X —
B. Therefore A C X —jl (0,1] CX - f; '(0,1] and B C X —f5 '(0,1] CX—/fy '(0,1]. Now

define h: X — [0,1] by A{x) = 7 :._;:‘*}; —. Clearly & is continuous, h(A) = 0 and h(B) = 1.

Thus X is a wf 6-normal spaces . O
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