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THE NATURAL AFFINORS ON ®*7(")

WLODZIMIERZ M. MIKULSKI

Abstract. For integers k > 2, r and n > k we prove that any natural affinor A on the k-tensor
power RXT") of the linear r-tangent bundle functor T") over n-manifolds is proportional to
the identity affinor.
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0. Given a natural bundle F over n-manifolds a natural affinor A on F is a system of
affinors (i.e. tensor fields of type (1,1)) A: TFM — TFM for any n-manifold M which is
invariant with respect to local embeddings between n-manifolds, see [3].

In [3], Gancarzewicz and Kolar obtained a classification of all natural affinors on the
extended linear r-tagent bundle functor EVM = (J"(M,R))* over n-manifolds. From the
mentioned classification one can easily deduce that any natural affinor A on the linear r-
tangent bundle functor T M = (J"(M,R)g)* is a linear combination (with real coefficients)
of the identity affinor id;(y,, : TT")M — TT")M and the affinor being the composition
TTOM = TOMxy TM CTOM xp TUOM Z=VTYIM C TTY) M, where the arrow is (n? , T'n)
n! : TTIM — TU)M is the tangent bundle projection, 7t : T’ M — M is the bundle projection
and the first inclusion is given by the dualization of the jet projection J"(M,R)q — J' (M, R)q.

In this short note we prove the following theorem.

Theorem 1 For integers k > 2, r and n > k any natural affinor A on the k-tensor power
QKT of TU) over n-manifolds is proportional (by a real number to the identity affinor:

In Item 1, for natural numbers r, k and n > k we present a classification of all natural transfor-
mations @*T") — @*T") over n-manifolds. For k = 1 we reobtain a result of Kolaf and Vos-
manska, [6]. In Item 2, using similar arguments as in Item 1, for natural numbers r,k > 2 and
n we present a classification of all natural transformations T(®FT")) = T over n-manifolds.
In Item 3, using similar arguments as in Item 1, we prove that for natural numbers r,k > 2
and n > k any linear natural transformation T(®*T(")) — &FT") over n-manifolds is 0. In
Item 4, using the results of Item 2 and 3, we prove Theorem 1. In Item 5, we formulae similar
results for ®* and f\k instead of ®@*.
~ Classifications of natural affinors on some other natural bundles are given in [1], [2], [7]
and [8].

Natural affinors play a very importrant role in the differential geometry. For example,
they can be used to define torsions of a connection, see [5].

Throughout this note the usual coordinates on R” are denoted by x!,...,x" and 9; = %,
i=1,...,n
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All manifolds and maps are assumed to be of class C™.

1. Each permutation ¢ = (0y,...,0;) € By determines a (linear) natural transformation

Ag: T o kT, W XR...00 = Wg, X...0Wg,, OF,...,0 € Tx[r}M,IE M, Misa
manifold.

Proposition 2 For natural numbers k, r and n > k any natural transformation A : @*T") —
QKT over n-manifolds is a linear combination (with real coefficients) of the Ag for all
O € By.

Proof. Any natural transformation A as in the proposition is uniquely determined by the
<A(®), 071 @...@ joYk >€ R for any vp,...,% : R" = R with 11(0) = ... = 1%(0) = 0

and any ® € @‘r‘?}frj R". Since n > k, by the rank theorem (iﬁxl ,--+,Jox") has dense orbit

in x* (J5(R",R)g). Then, by the naturality of A, A is uniquely determined by the < A(w),
jox'®@...®@ jix* > forany o € @"Tér}R",

Any 0 ®* T&r} R" is a linear combination of the (j5x* )* @...® (jix®)* forallo,...,aX
€ (NU{0})" with 1 < |o!| < r;...,1 < |of| < r, where the (jix®)* € T\ R" for o € (NU
{0})" with 1 < |a| < r form the basis dual to the jjx* € J) (R",R)p for o as beside. By
the naturality of A with respect to the homotheties a, = (t'x!,...,"x"), t = (¢!,...,t") € R,
we have < A(®* T (q,)(®)), jix' ®@...@ jik >=11.. . t* < A(0), jix' @...® jix* > for
any t = (t',...,") € R".. Forany ¢ € R" and any o € (NU{0})" we have T (a,) ((jix*)*)
=1*(j{x*)*. Then by the homogeneous function theorem, see [4], < A(®), jix' ®...® jixk >
depends linearly on the coefficients of @ corresponding to the (jix®)* @ ...® (jpx%)* for
all o = (0y,...,0%) € By and it is independent of the other ones.

Hence the vector space of all natural transformations A : @*T\") — @*T(") over n-manifolds
has dimension < card(By).

On the other hand the natural thansformations A5 for 6 € By are linearly independent.

These facts end the proof of the proposition. (]

2. The tangent map TT1: T(®RFT (M) — TM of the bundle projection IT: @*TVIM - M
defines a natural transformation T'TI : T(®KT()) - T.

Proposition 3 For natural numbers r,n and k > 2 any natural transformation A : T(@kT(" ]) —
T over n-manifolds is proportional (by a real number) to TIL.

Proof. Similarly as in the proof of Proposition 2, any natural transformation A as in Propo-
sition 3 is uniquely determined by the < A(y),dox! > for any y € (T(R*TIR"?))y = R” x
(V(@ATOR™)) = R” x @FT,'R" x 2T/ R", where = are the standard identifications. Us-
ing the invariancy of A with respect to the homothetis @, = (t!x!,...,t"x"), fort = (t',... ") €
R and the assumption k£ > 2, we deduce (similarly as in the proof of Proposition 2) that
< A(y), dox' > depends linearly on the first coordinate of y € R x R?™! x ®F ?};,FJR” X @k?ﬂ:r}

R" and it is independent of the other ones. Then the vector space of all natural transformations
as in Proposition 3 has dimension < 1. This ends the proof. O
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3. The crucial point in the proof of Theorem is the following proposition.

Pmpnsitiﬂn 4 For natural numbers k > 2, r and n > k any linear natural transformation
A T(R}TY 5 QKT over n-manifold is 0.

We remark that the linearity of A means that A determines a linear map ﬂ.{x—kT{"]M) -3
®* Ty, M for any n-manifold M and any y € ®T")M.

Proof. Using similar urgumentq as in the proof of Proposition 2, since n > k, it is sufficient

Pl

to show that < A(y), _,FUI ®...® jix* >=0 for any y = (y1,y2,y3) € (T -&ET&FJR”))D -
R" x '@kTD R" x R ?-i}""JRn Q@k T[;:HRH_

Let (jpx™)* € TEE":'R” for oo € (NU{0})" with 1 < |ot| < r be the basis as in the proof of
Proposition 1.

By the naturality of A with respect to a, = (¢t'x!,...,"x") f-::nr t = (t!,...,t") € R,
< A(T(R*TM) (a)(y)), jpx' ®...@ jixk >=11 .. F < A{} jhx! @ ... & jix® > for any
y € (T(@*TVIR™))g and any ¢ = (r' ,...,1") € R%. Then, using the hnmugenmua function
theorem, we deduce easily that

<A, ot ®. @ jpk >=hyi ..+ z 1y + ), Voyie (*)

gEB; oEf;

for some real numbers A,u%,v°®, where y = (y1,y2,13) € (T(@*T"R™))p = R"x &* Tﬂf”
R" x @F T\ R, yi = (y,...,") € R", yys is the coefficient (with respect to the induced

by tensoring basis of E?;:ki};rr} R") of y2 € E‘I‘TD“:'R” corresponding to (jpx®!)* ®...® (jpx®k)”
and yig 1s the coefficient of y3 € @T&r]
(G1,...,0k) € By.

Since A is linear, < A(y1,v2,73), j{,xl ... ® ijR > depends linearly on (y,y3) for any
y2. Hence A = 0 (as k > 2) and uy° = 0 for any ¢ € By. In particular,

R” corresponding to (jix®)* ®...® (jpx®)*, 0=

<A@ ,,),jox' ®. LR >=<Ale1,0,0), jix'®...® jixf >=0 (*%)

for any ® € -b?j“?}fr] R", where ()€ is the complete lifting of vector fields to ®T").

It remains to show that < A(0,0, (j5x%1)* ®...® (jHx)*), jix' @ ...® j§ ¢ >=0 for
any ¢ = (G},-..,0k) € By.

For showing this, for any ¢ = (61,...,0x) € By we prove

0 = <A((Zh ()0 jpx' @...® jprt >
{A(Umuax‘“ ®...® (jgx®)*), jpx' ®...® jpx* >
< A0,0, (2% )" ® . ® (Ja%)"), o' @ ... @ jixk >,

where @ = (j5(x°1)")* @ (jix®2)* @...® (jix%)* if r > 2and 0 = ¢ (jpr®)* ®...® (jgr)*
if r=1.

The third equality is clear as in the formula (*) A and u° are 0. |

We can prove the first equality as follows. Vector fields d; + X, (x')"d; and o; have
the same (r — 1)-jets at 0. Then, by the result of Zajtz [9], there exists a diffeomorphism
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¢ : R" — R” such that jj¢ = id and ¢,d; = d; + 3, (x')"9; near 0. Clearly, ¢ preserves

i=1
joxl @ ... ® jhx* because of the jet argument. Then, using the naturality of A with respect to
@, from () it follows that < A((d1+ Ty (¥)79:)%,), jox' ®...@ jix* >=0for any w € @*

T&r} R". Now, applying the linearity of A, we end the proof of the first equality.
It remains to prove the second equality. Let ¢, be the flow of ¥ (x')"d;. For any B!,... B
€ (NU{0})" with1 <|B!| <r,..., 1< |B¥| < rwehave

< (E(x")"as)ﬁ}jjﬁxﬁl ®...0 i >

=< & T (e)(0), /¢ @...0 5 >

= &mo <O T () (0), i ®... @ i >

= Ffy=0 < ®, j5(# og) ... j5P og) >

=< 0,5 jpP @...© 5 (&0t ::r[pr) ... >
=< 0,3 ..o (zj(xf)’a;}xﬁ”') R...0 P >

If r > 2, the last term is equal to < , jﬁ((Ef(xf)’a;]xB] ) @jﬁxﬂzﬂ . @j&rﬂk >, (Itis a

consequence of the definition of ). Then the last term is equal to 1 if jg.rﬁl ®...® j{’;xﬂk
= jox°! @...® jpx® and it is equal to 0 in the other cases. Similarly, if r = 1, the last term

is equal to 1 if jﬂxﬁl ®...® j&xﬂk = jpx°' ®...® jox® and it is equal to 0 in the other cases.
Then (E(«‘ff)raf)ﬁ, = (jix®)* ®...® (jpx)* under the isomorphism V,(@*TR™) = @F

?Tﬂ"rr] R”". It implies the second equality. O3

4, We are now in position to prove Theorem 1. Let A be a natural affinor on ®*7"). Then
the composition TTIoA : T(®FT")) — T is a natural transformation. By Proposition 3, there
exists the real number A such that TTIo A = ATTI. Then A —Aid : T(®*T") = V (&FT1)
= T x a, ®*T"). Composing this natural transformation with the projection pry onto
second factor we obtain a linear natural transformation A = pry o (A — Aid) : T(®*T")) —
®*T{"). By Proposition 4, A = 0. Then A — Aid = 0, i.e. A = \id. O

5. Using similar proofs with @* and A (the symmetric and the skew-symmetric tensor
product) instead of ®* one can obtain the following propositions and theorems corresponding
to Proposition 2 and Theorem 1. We leave the details to the reader.

Proposition 5 For natural numbers k, r and n > k any natural transformation A : *T)
— T over n-manifolds is proportional (by a real number) to the identity natural trans-
formation.

Proposition 6 For natural numbers k,r and n > k any natural transformation A : N¥ T o
AT over n-manifolds is proportional (by a real number) to the identity natural transfor-
mation.

Theorem 7 For integers k > 2, r and n > k any natural affinor A on @*T'") over n-manifolds
is proportional (by a real number) to the identity affinor.
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Theorem 8 For integers k > 2, r and n > k any natural affinor A on N* T\") over n-manifolds
in proportional (by a real number) to the identity affinor.
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