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GEODESIC GENERATORS OF 7, Spin(n+ 1)

LUCAS M. CHAVES, A. RIGAS

Abstract. We show for all n > 2 the Cartan inclusion of S" in Spin(n+ 1), as a totally
geodesic submanifold of constant sectional curvature, generates a cyclic direct summand of
n,Spin(n+1).

1 Introduction

There is a precise analogy between representing characteristic maps of principal bundles over
spheres by embeddings of equators as totally geodesic submanifolds of the group and the con-
sequent representation of the associated classifying maps into suitable grassmannians, also
by a totally geodesic sphere. The second process is directly related to non negatively curved
Riemannian structures on bundles over spheres ([5], [11]) with pontentialy strong conse-
quences. It seems natural that the same consequence must also ensue from the characteristic
maps process.

In [14], Qi-Ming Wang showed that all elements of the stable homotopy group of the in-
finite orthogonal group (and consequently its classifying space) can be represented by totally
geodesic spheres of constant curvature in the infinite orthogonal group O and its classifying
space BO, whose image, of course, lies in some finite O(n) or Grassmannian. The analogous
statement for the non stable groups is far from being understood and many cases involved
are of independ interest, like for example, exotic differential structures on spheres of various
dimensions. The basic difference is that, in the non stable case there is lack of enough space.

In this note we are dealing with the opposite question: We know there is a metric with
non negative sectional curvature on the principal bundles in question and we show that the
corresponding characteristic maps are totally geodesic. Our result deals with xt,Spin(n+ 1)
for all n and covers the generators of at least “one direct summand of the group” in a sense
made precise in Theorem 1. The other one is taken care of by Wang’s theorem, although only
in the stable range. In the last section we prove that our map is the Cartan inclusion of S” in
Spin{n+ 1). As an application we exhibit in detail a generator of m45p(2).

2 Clifford algebras and Spin Groups

We briefly recall from [9] the basic steps of the construction of Clifford algebras to set the
notation.

Associated to the Euclidean space R", with the canonical scalar product, we can define an
associative algebra C(R"), its Clifford algebra, taking the quotient (3 @ "R")/A(R"), where
A(R"™) is the ideal in the tensor algebra of R" generated by elements of the form v ® v +
[v||*- 1, for vin R". If {e},e2,...,e,} is the standard basis of R, {1,e1,...,e,,€1€2,...,€n_1



220 Lucas M. Chaves, A. Rigas

€n,-.., €] €2 ...€y} is a standard basis for the associated Clifford algebra. Note that e? = — |
and e;e; = —eje; for i # j, from which we obtain a multiplication table for C(R"). Con-
sider the group Pin(n) = {vy...w, ||vi|| = 1,v; € R"} C C(R"), and its subgroup Spin(n)
= {v)...va ||vil| = 1, v; € R"}. Spin(n) is the 1-connected covering groups of SO(n). For
x € R" and u € §"~! the assignement x — uxu = R,(x) is the reflection in R" in the hyper-
plane perpendicular to u. These maps define the double covering map

Spin(n) = SO(n), vyi...vas— Ry, - R,,_,

with RU] - ui?.plT (I) = V] { . {uzs.rvg_,_,.} . s .)1?1 :

3 A generator of n,Spin(n+ 1)

The Bott periodicity theorem for the orthogonal group [2], [10] states that the stable homo-
topy groups 7;( Q) are periodic with period 8 and are isomorphic to the following groups:

Zin for i = 0 or 1 (mod8),

Ofori=2,4.5, or 6 (mod8),

Z fori = 3 or 7 (mod8).

The stability is achieved for m, Spin(n+ 2). To exhibit generators of ©,SO(n+ 1) it seems
more adequate to work with Spin(n+ 1). The group &, Spin(n+ 1) is isomorphic to

Z & Zforn="7or3 (mod8)

Za7Z» forn=1(modB)

Z for n = 5 (mod8)

Zn @ Zn for n = 0 (mod8)

Z» forn= 2,4 or 6 (mod38)

n#1,2,6 and myS° =0, mgSpin(7) = 0 [11, pag. 217).

Let @ : 5" — Spin(n+ 1) be defined by ©(v) := ve, 4.

Theorem 1 The homotopy class [©] generates a non zero cyclic subgroup of m,Spin(n+ 1),
that is isomorphic to Z when n is odd and to Z» when n is even.

Proof. Consider the commutative diagram

Zo -+~ Spin(k) - SO(k)
E p 5
Zo --- Spinlk+1) — SOk+1)
4 }
s = s
. : Ok .
where SO(k) is included in SO(k+-1) as ( 30( ) ? ),p[wh ..,5) =AwithA=R, ---R,,

and the projections on S* are A(egy1) = vy...(Vas€rs1Vas) ... V1, composition of successive
reflections.
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To establish the boundary operator in the exact sequence of the Spin bundle we will
employ the standard diagram of the characteristic map as follows:

Spin(n+1)

§n — a{:‘rt+l
- P _
cell C"*1 @ c sttt o Spin(n+2)
—€p42 Y \! l_
Sﬁ‘]‘-l—]

Let y above be

W(v) 1= veyq with ¥(v) := mow(v) = (vey+2)ent2(entav) = —veuqav.

Note that ¥(—e,12) = e,42 and ¥(v) = —ep42 for all v in §", since v anticommutes with
en+2. Consequently if ¥ is restricted to the cell C"1 then y: (7, 8"%) = (8", —eps1)

represents the fundamental homology class, generator of H, 1 (S"7 '). One could prove
that this restriction is a relative homeomorphism by the following argument: let v =
= — cos(t)eps1 +sen(t)w, w e 5" = spaniey,....ens1 1,0 <t <m/2,ve " —{§"U
—e,+2 b One has y(v) = cos(2t)e,+2 — sen(2t )w which shows that y restricted to this domain
is a diffeomorphism between C"*! —§"U{—ep42} and $"7' — {ep12, —ens2}, so yis arelative
homeomorphism as claimed and [y] is a generator of ®,) (Spin(n+2), Spin(n+1)) = M4
(C"+1, 8"y = 7, that is, we can suppose [y] = 1 in Z. |

The relevant part of the exact homotopy sequence of the above bundle 1s described below
taking into account the fact that 7, Spin(n+ 2) is already stable.

M1 (S = wm,Spin(n+1) — wm,Spin(n+2) = 0
n(mod8)
0 7 = Fr@® in — &in
1 L — Led, — 7
2 Y/ i — 0
3 Z = Lol — 7
4 L = Lo — 0
6 Lo = Ly = 0
7 7 = Lbl — 7

It follows immedately that d[y] generates an infinite cyclic direct summand for all odd »n
and a Z» direct summand for all even n.

As d[y] is equal to the class of y restricted to S” = dC"*!, it is enough to show that this
last one is equal [@]. Observe that ©(S5") C nenr2) while W(S") C ©=! (—ens2). Right
translation by —e,.2€,+1 is a fiber preserving diffeomorphism and

w{"j[_fﬂ+’lﬁn+]] = (LIEH-.*-E]I:_EJHEEH-FI} = Véu+] = E}{FL forve s .
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Remark 2 As observed in the introduction, a generator of the remaining summand is taken
care of by Wang's theorem [14], though only in the stable range. This means that there is
a totally geodesic eulidean n-sphere in n,Spin(n+k), k > 2, that generates n,Spin. This k
is usually large. However, in the first steps of the Bott periodicity theorem corresponding to
n3Spin and Ty Spin, both infinite cvclic, this generator is given by totally geodesic sections of
the bundles of Spin frames over S° and §' obtained by quaternionic (in the case of S°) and
Cayley (in the case of 87 ) multiplication by the element of the base [4].

Theorem 3 The image O(S") is a totally geodesic submanifold of Spin(n+1).

Proof. Let oft) := cos(t)e 1 + sin(t)eg.t € |®/2.3n/2} in §", with ¢(n) = —e,+; and
o' () = —e;. Compose with © to get dO(—e;) = —ere,,) for k=1, ...,n and therefore
dO(v) = ve,s forall v=a|v| +...+a,v,, at the point &(xt) = —e;, 1. AsO(—e,.1) =1 the
tangent space of ©(5") at 1 is T10(8") = {vey+1,v =av| +...+ayv,}. The one parameter
subgroup corresponding to ve,+; for v unitary in R” is exp(fve,+1) = cos(t)1 +sin(t)ve,+1 =
[cos(t)(—eps1) +sin(t)v]ens) = Oow(t), since (ve,s1)® = —1, for aut) = cos(t) (—eps1) +
sin(t)v. le., exp{tve,s) 1s in ©(S"). On the other hand, every element of §" is in such a
curve o.. Consequently, exp(7;©(5")) = ©(S5"). To show that ©(S5") is a totally geodesic
submanifold we have to prove that 77©®(S") is a Lie triple system [8, pg. 224]. In effect,

[[fff’rr——l rfjkfrh—l]- f.ﬂ"'?n+l] = [EJJ'FJH-] €r€n+1 — €k€nt1 — €k€n+1€i€n41,E5€n+ l] =

[Efffﬁ'- €5€n+ ]1; = 2e;jeresen — 2e5€,1 €€ =

0 §#F 1,k
. 0 s=i=k
2 ELE, — EE[E 1] = )
(ejeres — eseier )eys) derensi s=ifk
—deiep,y s=k+F£i
all possible results being elements of 7;©(S" ) that i1s spanned by all e;je,1,i = 1,.... n and
therefore it is a Lie triple system. O

A generator of T,S50(n+ 1) is obtained by projecting &(5") to SO(n + 1) through the map
m that 1s a local 1sometry and therefore preserves totally geodesic submanifolds.

4 Algebraic Formulation

There i1s an algebraic structure that suits the map @, which we describe now.

Let W= e ...e, in Pin(n). Define the automorphism ¢ of Spin(n+1) by 6(A) = wAn ™.
[t follows from ®* = (—1)""*1) that 6> = id and we can easily see that 6(A) = A & A €
Spin(n). We can now define the map

& : Spin(n+1)/Spin(n) = §" — Spin(n+1) by 6([A]) = Ac(A~1). The following the-
orem of E. Cartan [5, pg. 77] applies in this case:

Theorem 4 (Cartan). If G is a compact Lie Group with a bi-invariant metric with an auto-
morphism © of order 2 having H C G as its fixed point subgroup, then the map & : G/H = G
defined by 6([g]|) = go(g~ Y is a well defined totally geodesic embedding and the metric on
G/H, induced by G is twice the normal one.
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Theorem 5 We have O(S") = &(S").

Proof. Both manifolds being totally geodesic with common point the identity element of
Spin(n + 1), it is enough to show that the tangent spaces to both at the identity are equal.
Recall that 71©(S") = span{eje,+1,e = 1,...,n}. To calculate T)G (S") let v;(z) and v;(r)
be curves in $”, such that v;(0) = v;(0) = ent1, v;(0) = e; and V}(0) = e;, i # j. Taking
the product of these two curves we obtain the curve v;(7)v;(t) in Spin(n+1). Let B(r) = &
([vi(t)v;(1)]) = vi(t)v;(£)wv;(t)v;(t)o~" and note that B(0) = 1 and B'(0) € T &(S"), B'(0) =
2 (e; —ej)e,+1- Repeating this with vi(0) = ¢;, V/;(0) = —e;, we get B'(0) =2 (e; + €;)env1.
As the vectors of the form {(e; —e;)en+1, (& +£jie,,+|} generate 71©(S"), the result follows.

Noting that the submersion metric on the sphere is of constant sectional curvature we can
restate the Theorem 3 as

Theorem 6 The image O(S") is a totally geodesic submanifold of Spin(n+ 1) with constant
sectional curvature.

5 A special case

It 1s known that

Sp(2) = {A = ( E ; ) a,b.c.d e H AA™ = A*A 21}, where H is the algebra of

quaternions, is isomorphic to Spin(5). The isomorphism uses the classification of simply
connected compat Lie groups or considerations concerning the Cayley algebra [11], [4].
Working with quaternions and the Cartan Theorem we get a totally geodesic submanifold
of Sp(2), isometric to the round $*, which is precisely the generator of m4Sp(2) = Z» de-

scribed by Theorem 1.

Lelhz( g} [11 ) € Sp(2) and

Sp(1)x Sp(1) = {A = ( E {]} ) ,p,q € Sp(1) = §?, the unitary quaternions}.

For A € Sp(2),AA = AA & A € Sp(1) x Sp(1). Therefore the conjugate orbit through A,
O(A) = {AAA™!, A € Sp(2)} is the symmetric space Sp(2)/Sp(1) x Sp(1).

Claim. Sp(2)/Sp(1) x Sp(1) is isometric to S* with the euclidean metric of constant sectional
curvature.,

Proof. Take the Hopf projection

( gi ;‘é ) — (||a||> = ||b]|?,2ab), where 2ab is in the disk D* and |a||*> — ||b||? in
[—1, 1] so that the vector is in the unit $*. The metric induced on it by submersion from the
Killing - Cartan metric on Sp(2) in the euclidean one as is well known. O

We remark that the metric induced on S’ as an intermediate step of the above map from
Sp(2) is not the euclidean one and this fact has interesting consequences in the geometry of
Z?, the Gromoll - Meyer exotic 7 - sphere. (Carlos E. Duran, Blaschke structures on an exotic
sphere, preprint).



224 Lucas M. Chaves, A. Rigas

The matrix A has order 2, so the map & : Sp(2) — Sp(2),A — AAA makes (Sp(2),Sp(1) x
Sp(1)) a symmetric pair. By the Cartan Theorem we have

G:5%~Sp(2)/Sp(1) x Sp(1) = Sp(2). As the Cartan embbeding is a right translation
of a conjugate orbit and there is only one conjugate orbit that is $* [1, pg 103] follows,
independently of the identification between Sp(2) and Spin(5), from Theorem 4, that G is a
generator for T4Sp(2) = Z,. In fact, we can get another simple expression for this generator
by:

Theorem7 Let ®:S* SRS =R x H — Sp(2),(x,&) — ( fg i: ) where x € [—1,1],
EEH, E_,E +x? = 1. Then @ is a totally geodesic embedding with constant sectional curvature
that generates mySp(2).

Proof. Let ¥ : 5% = Sp(2)/Sp(1) x Sp(1) = Sp(2), A —> AAA~!. As ¥ is obtained from &
by right translation by A it follows from Theorem 4 that ¥ is a totally geodesic embedding
with constant sectional curvature. It remains to show that ¥ = ®. From the relations between
the coefficients of matrices in Sp(2) we have, if a # 0.

A ( a ¢ la] ifi Ii” 0 W ppose then that A 1s
- = - d . ¢ Cdn su
b d ) ”!::;” —|lall O —qa

—_—

lall
of the form b ||‘|’| I and we have
o]  — 114

_( liall* ~labl]? 2ab A2 _UBI2 E —ha _
‘P(A}—( b 1BI12 - llal|? Afx = ||all=—||b||*, & = 2ba we get W(A) =

®(x,&). For a = 0, we can suppose A = ( E Bﬂ ) and W(A4) = ( _ﬂl {1} ) = ®(—1,0).
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