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SOLVABLE EXTENSIONS OF FLAG-TRANSITIVE PLANES
YUTAKA HIRAMINE, VIKRAM JHA, NORMAN L. JOHNSON

Abstract. The translation planes of order q" for n # 3 which are solvable extensions of a
flag-transitive affine plane of order q are completely classified.

1 Introduction

A natural analysis of a translation plane by its collineation groups normally focuses either on
a particular type of group acting on the plane or by the nature and action of its collineation
group on the affine points or infinite points.

In this article, we provide a general study of ‘solvable extensions of flag-transitive planes’.

~ An affine plane 7 is said to be an ‘extension of a flag-transitive plane’ if and only if ©
contains a subplane 7, and a collineation group G which leaves 7, invariant and acts transi-
tively on the sets of affine and infinite points of ©t, and on the infinite points of © — ,. Note
that, in the finite case, this makes the subplane n,, into a translation plane.

Is 1t possible to provide a complete classification of extensions of flag-transitive planes
if we assume that the plane is a finite translation plane? In this situation, one may relax the
group condition to asking if the group acts transitively on the infinite points of m, and on the
infinite points of T — 7, and leaves m, invariant.

The Desarguesian, Hall, Hering, and Ott-Schaeffer planes are affine translation planes
of order ¢, with spreads in PG(3,q), each of which admit collineation groups that have an
infinite point orbit of length g+ 1 and i infinite point orbits of length (¢* — g) /i fori = 1 or 2.
In the Desarguesian and Hall planes, there is an invariant subplane of order g within the net of
degree g+ 1. In all of these classes, there are corresponding groups isomorphic to SL(2,q).
However, in the Hall case and some of the Desarguesian cases, there are also solvable groups
which admit these orbit lengths.

In Jha-Johnson [9], [10], [11], a classification is given of a large subclass of translation
planes, called generalized Desarguesian planes, of order ¢° that admit GL(2,q). There are
vast numbers of mutually nonisomorphic planes of this type and where the kernel of the plane
may be chosen in a variety of ways. In these planes, the associated vector space is a standard
GF(gq) GL(2,q) module. This means that the group SL(2,q) is generated by elation groups
and that GL(2,q) leaves invariant each subplane of order ¢ incident with the zero vector in
the associated GF(g)-regulus net defined by the elation axes of SL(2,q). Furthermore, there
are always infinite point orbits of lengths ¢+ 1 and ¢* — ¢ and we thus have a variety of cubic
extensions of a flag-transitive plane.

In Jha-Johnson [7] and [8], regular parallelisms and associated translation planes are con-
sidered. Recently, Pentilla and Williams [16] have constructed an infinite class of cyclic
regular parallelism in PG(2,q) for ¢ = 2 mod 3. The previously known regular parallelisms
are also cyclic and lie in PG(3,2), PG(3,5) and PG(3,8).
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In general, there are corresponding translation planes of order g* admitting a collineation
group isomorphic to SL(2,9) X Z, . ., » when the parallelism lies in PG(3,g). In this case,

there are (¢* — q)/(¢q* — q) = 1+ q + g* derivable nets containing a net R of degree 1+ g and
the group Z, , _, » acts regularly on the set of these derivable nets. The group SL(2,q) fixes

a derivable net and acts transitively on the g*> — g component not in R and transitively on the
components of R. Moreover, R is a K-regulus net for some field K isomorphic to GF(q) so
there are 1 + g+ g* + ¢° subplanes. It follows that Z| 4+, leaves invariant a subplane and

SL(2,q) leaves invariant all of the translation planes 7t of order g* that contain a subplane T,
of order g such that 7 is a transitive extension of a flag-transitive plane.

Hence, the Johnson-Walker and Lorimer-Rahilly translation planes of order 2* admit
collineation groups with orbits of length 2 4+ 1 and 2* — 2 and also there is an invariant
subplane of order 2 within the net of degree 3. The planes of Prince [17] of order 5%, the
unpublished plane of Denniston of order 8* as well as all of the translation planes arising
from the parallelisms of Pentilla and Williams [16] then are examples of translation planes of
order ¢g* that admit a collineation group with infinite point orbits of lengths g+ 1 and ¢* — ¢
that leave invariant a subplane of order g.

As mentioned, in these cases, the collineation group is SL(2,q) X Z(; . »2) and, in fact,
the existence of such a group forces the plane to be an extansion of a flag-transitive plane.

However, we may consider this more generally.
That is:

Theorem 1.1 Let & be any translation plane of order g*" for r > 1 admitting a collineation
group in the translation complement isomorphic to SL(2,q) x Zi2r-1_1) (g1

(1) Then the kernel is isomorphic to GF(q), the p-elements are eleations where g = p'
and there is a regular partial 2-parallelism induced on any elation axis.

(2) = is an extension of a flag-transitive plane.

Proof. (1) is simply the theorem (3.2) of Jha-Johnson [8].

If ¢" = 4* then there exists a cyclic group C of order 21. Futhermore, there are 1 +4 +
4% + 47 subplanes of order 4 incident with the zero vector of the eleation net. It follows that
the group of order 7 in C fixes a subplane of order 4 pointwise and the full fixed point set is
exactly this subplene. Hence, C leaves invariant a subplane of order 4.

If ¢* # 4%, then 2r > 2, there is a p-primitive divisor u of (g*~1 = 1) so it follows that
there is a planar u-collineation ¢ and a fixed point subplane of order g that resides within
the net R of elation axes. Hence, SL(2,q) and Z(2r-1_1)/(4—1) Doth fix the subplane Fixc =
m,. Clearly, SL(2,q) acts transitively on the g + | elation axes corresponding to the g + 1

Ir

Sylow p-subgroups. There are — %—_1[__1 Desarguesian partial spreads of degree ¢* + 1
containing the net of g+ 1 elation axes which are permuted transitively by the cyclic group
of the same order. Furthermore, SL(2,q) is transitive on the g° — ¢ infinite points not in the
elation net of each Desarguesian partial spread of degree ¢° + 1. Hence, the group is transitive
on the g% — g infinite points not in the elation net so that the plane 1s a transitive extension of
a flag-transitive plane. O

So, we see that the complete determination of the translation planes of order ¢" which
are extensions of flag-transitive planes of order ¢ is probably not possible when n is 3 due
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to the existence of the generalized Desarguesian planes and is made further difficult by the
possibility of planes which may be constructed from regular partial 2-parallelism.

In contrast with these difficulties for extensions that are at least cubic, the authors recently
resolved the problem for quadratic extensions.

Theorem 1.2 (Hiramine, Jha and Johnson [5]).

Let ©t be a finite translation plane which is a quadratic extension of a flag-transitive plane
o

Then 1 is either Desarguesian or Hall.

In particular,

(1) if the associated collineation group is non-solvable then & is Desarguesian and

(2) if the associated collineation group is solvable then © is Hall or Desarguesian of order
4 o0r9,

Note that, in these above known situations for extensions that are at least cubic, the
collineation group is always non-solvable unless g = 2 or 3. Hence, if we assume that we
have a ‘solvable extension of a flag-transitive plane’; that is, if we assume that the group is
solvable then there may be a chance to obtain a complete classification.

1.1 The Examples of Solvable Extensions

To see that a solvable group occurs in the Hall planes, consider the Hall plane 7 of order ¢
constructible from a Desarguesian plane I of order ¢* by the replacement of a regulus net R.
There exists a central collineation group C of order g{g — 1) which fixes a component L of R
pointwise and which leaves R invariant and acts transitively on the points at infinity not in R.
So, C fixes all Baer subplanes of R incident with the zero vector. Let H* denote the homology
group of order g° — 1 of £. H* acts transitively on the set of ¢ + 1 Baer subplanes of R which
are incident with the zero vector. Let ©* denote the Hall plane obtained by the replacement of
the net R and let R™ denote the derived net and &, = L be a Baer subplane of R*. Hence, CH*
acts transitively on the infinite points of R* and transitively on the remaining infinite points
and leaves L = m}, invariant. That is, CH™ is a solvable group which fixes a subplane of order
g and has two points orbits at infinity of lengths g + 1 and ¢* — g.

Hence, we shall find the Hall planes in any concluding statement on the classification of
solvable extensions of flag-transitive planes. Are there other solvable extensions?

We have seen that the Lorimer-Rahilly and Johnson-Walker planes of order 16 admit a
collineation group isomorphic to SL(2,2) x Z7 and hence are solvable extensions of a flag-
transitive plane of order 2. Furthermore, the possible translation planes corresponding to
regular partial 2-parallelisms of order 2°" admitting a group isomorphic to SL(2,2) x Lyan-1_
are also solvable extensions of a flag-transitive plane of order 2.

In a similar manner, one might expect that the translation planes of order 3** correspond-
ing to regular partial 2-parallelisms might occur as solvable extensions of a flag-transitive
plane of order 3, although there are no concrete examples of such planes at present. How-
ever, we are able to show that any solvable extensions of order 3 forces k to be even and such
extensions do correspond to regular partial 2-parallelisms.

The translation planes of order 16 of Johnson-Walker and Lorimer-Rahilly are unusual in
that the planes considered as order 2% are solvable extensions of planes of order 2, and the
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planes considered as order 4° are tangentially transitive in that there is a group fixing a Baer
subplane which acts transitive on the tangents incident with a given affine point. Although,
the plane considered in the form 4° is not a solvable extension, it appears that the usual
character 1s plane of order 4" might provide instances where there is a solvable extension.
Hence, we see that it is conceivable that there might be non-Hall solvable extensions
when g = 2,3 or 4. In fact, our main results shows that this are the only possibilities.
For convenience, we now formalize some definitions.

Definition 1.3 If an affine plane n of order q" admits a collineation group G which has
infinite point orbits of lengths g+ 1 and " — 1, we shall call ®© a ‘(g + 1,4" — q)-transitive
plane’ and G and ‘(g + 1,q" — q)-transitive group’.

If G leaves a subplane T, of order q invariant within the net of length g + 1 and there is
a collineation group transitive on the sets of affine and infinite points of m, and transitive on
the infinite points of ® — 1, then 1, is a flag-transitive affine plane and we shall call © and
‘extension of |,,’.

If the group of an extension is solvable, we shall call the plane a ‘solvable extension of a
flag-transitive plane’.

Our main general result on solvable extensions is as follows:

Theorem 1.4 Let 7t be a finite translation plane of order q" which is a solvable extension of
a proper flag-transitive plane m, of order q. Let G denote the corresponding group.

Then one of the following occur: (1) & is Desarguesian and (g,n) is in

{(2,2),(2,3),(3,2),(3,3),(2,5)}.

(a) For (2,2),(2,3), the group SL(2,2) is a (3,2)- or (3,6)-transitive group respectively.

(b) For (3,2),(3,3), the group SL(2,3) is a (4,6)- or (4,24)-transitive group respectively.

(c) For (2,5), the group SL(2,2) X Zs is a (3,30)-transitive group.

(2) mis Hall and n = 2.

(3)n=3.

(4)n>3and g=2,3, or4.

Furthermore, one of the following occurs:

(a) g = 2 and there is an normal subgroup generated by elations isomorphic to SL(2,2)
which acts doubly-transitively on the infinite points of ®,. Also, the Sylow 2-subgroups have
order 2 and the full group Gg,) which fixes m, pointwise has index 6 so that SL(2,2) Gig,) 1$
the full translation complement.

In addition, if n is even then the spread is a union of Desarguesian nets of degree 5
containing ™, and there is a regular partial 2-parallelism of 2"~' — 1 2-spreads in PG(2n —
1,2),

(b) g =3 and n is even. Furthermore, there is a normal subgroup generated by 3-elements
such that the restriction to m, is isomorphic to SL(2,3) and which acts doubly transitively on
the infinite points of m,. The Sylow 3-subgroups are non-planar groups of order 3 and the
full groups Gz ) which fixes T, pointwise has index 24 so SL(2,3)Gy) is the full translation
complement.

If the 3-elements elements are elations, the spread is a union of Desarguesian nets of
degree 10 containing ®, and there is a regular partial 2-parallelism of (3"~ — 1) /2 2-spreads
in PG(2n — 1,3). Furthermore, if the 3-elements are not elations then n > 20.
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(c)g=4andn=4.

(d) g =4 and n > 4. Then all involutions are elations and there is a normal subgroup
generated by elations that acts doubly transitively on the infinite points of T,,.

Furthermore, the Sylow 2-subgroups are cyclic of order 4 and there is a normal 2-
complement. If T is a collineation of order 4 then nm may be decomposed into a direct sum of n
cyclic TGF (2)-submodules of dimension 4 and each Sylow 2-group pointwise fixed subspace
has cardinality 2".

Remark 1 We note that there are examples in case 4(a) of the Lorimer-Rahilly and Johnson-
Walker planes of order 16. For the other possibilities, it is not known whether non-Desarguesia
non-Hall examples exist.

Thus, we have:

Corollary 1.5 Let &t be a finite translation plane of order g" which is a solvable extension of
a proper flag-transitive plane T, of order q.
If g > 4 and n # 3 then T is the Hall plane of order ¢°.

Remark 2 The main result on solvable extensions does not provide any information on what
occurs when n = 3. As we have seen, there exists infinite families of such planes admitting
SL(2,q) which are cubic extensions of flag-transitive planes and conceivably cubic extension
planes always admit non-solvable groups when g > 3.

2 Desarguesian Extensions

[n this section, we assume that we have a Desarguesian extension of a flag-transitive plane
and provide a complete determination of the possibilities.

Theorem 2.1 A Desarguesian plane nt of order q" for n > 2 with subplane m, of order q is a
transitive extension of the flag-transitive plane n, if and only if
(I)n=2,
(2)n=3or
(3) (g,n) = (2,5).
Furghermore, the group is solvable if and only if (g,n) is in
{(2,2),(2,3),(3,2),(3,3),(2,5)}.
(a) For (2,2), (2,3), the group SL(2,2) is a (3,2)- or (3,6)-transitive group respectively.
(b) For (3,2),(3,3), the group SL(2,3) is a (4,6)- or 4,24)-transitive group respectively.
(c) For (2,5), the group SL(2,2) x Zs is a (3,30)-transitive group.

Proof. The group is a subgroup of I'L(2,4") and the subgroup which fixes 1, pointwise has
order dividing n where ¢ = p” and p is a prime. Furthermore, the group induced on =&, is a
subgroup of I'L(2,q) and contains the subkernel group of order g — 1 induced from the kernel
group of order ¢" — 1 of m. Hence, it follows that g(¢g*> — 1) rn > ¢" — g. Moreover, the full
collineation group induced on the line at infinity is divisible by g(¢*> — 1)rn and so ¢" — g
divides g(g* — 1)rn.



188 Y. Hiramine, V. Jha, N.L. Johnsor.

Thus, (¢* — )rn > g" ! — 1.

Assume thatn > 3thenrn > (¢" ' = 1)/(g* = 1) > g"3 = pr*-3),

If p = 2 the only possible solutionsaren =4 andr=1,2,30orn=5and r = 1.

Now we check the divisibility condition for the various values of (p,r,n):

For (p,r,n) = (2,1,4), (q(q”> — 1)rn, (¢" — q)) = (24,14) # 14, for (p,r,n) = (2,2,4),
(g(g* = Drn, (¢" —q)) = (32-15,4-63) # 463 and for

(pyryn) = (2,3,4), (q¢(¢* — V)rn, (¢" — q)) = (3-32-63,56-73) # 56-73.

If p =3 the only possible solutions is r = 1. Clearly, there are no other solutions. For
(p,nn) = (3,1,4), [Q{qz —1)irn, (¢"—¢q)) =(12-8,3 26) # 3-26.

Hence, we have possible solutions when ¢" = 2° or n = 2 or 3.

Now assume that the group is solvable. Note that if there exists an element inducing an
elation on 7, then SL(2, p) or SL(2,5) is generated on the subplane by the set of elations of
the subplane.

First assume that p is odd and larger than 3. Then, there can be no nontrivial linear p-
elements that act on 1, since otherwise a nonsolvable group would be generated. Thus, there
1s a p-group of order divisible by ¢ which acts on =, perhaps not faithfully. Let p® be the
order of the subgroup which acts faithfylly on 7, and p® the order of the p-subgroup which
fixes 7, pointwise. Hence, p® divides n so that ¢ divides p**? which divides nr. Hence, p"
divides nr and by the above remarks, n = 2 or 3. However, in all cases 5" > 3r so we must
have either p = 2 or 3.

We now establish a fundamental lemma to complete the analysis.

Lemma 2.2 As G is solvable, let Giy,) denote the pointwise stabilizer of the set of infinite
points of «t,.
The either G/ Gy, < IL(1,4°) org=3.

Proof. Since G is transitive on the infinite points of &, it arises as the stabilizer of the zero
vector of a solvable flag-transitive translation plane. Now we apply the results of Foulser [3]

to complete the proof of the lemma, noting that &, is Desarguesian of order g = p” where
p=2or3. O

Let f denote the order of the subgroup which fixes 1, pointwise and note when the plane
1s Desarguesian f must divine n.

Lemma 2.3 Let A denote the set of infinite points of T,,.
Then we either have

(i) the order of G|A (modulo the kernel) divides 2r(g+ 1) or
(ii) g = 3 and order of G|A (modulo the kernel) divides 4!,

Proof. Note that we are assuming that G contains the kernel subgroup. U

Hence, in case (ii) above, we have (g,n) = (3,2) or (3,3).
So, we may assume that g = 2",

Lemma 24 Ifn=2 thenqg=2.
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Proof. We may apply the previously listed result of Hiramine, Jha and Johnson. {J
Thus, we may assume that n = 3.

Lemma 2.5 Assume f =l andn=3. Theng =2 or4.

Proof, If f = 1 then g divides rp by (i) above. Thus g = 2 or 4. O

Now assume f # 1. Then f =3 and as (i) occurs, (¢" —q)(g+ 1)/3 (g+ 1,4" — q) divides
2r(g+ 1) and g = 2". From this, we have (g,n) = (2,2). (2,3), (4,3), (3,3).

When we have the case (p,r,n) = (2,1,5) then the group induced on the subplane has
order divisible by 30 and is in GL(2,2). It follows that the group of order 5 which fixes x,
pointwise arises from the Frobenius automorphism z — z° of order 5 within ['L(2,2°). The
remaining parts of the theorem now follows as SL(2,2) is transitive on the infinite points not
in the elation net on the Desarguesian affine planes of orders 2% and 2* and the analogous
statement holds for SL(2,3) on Desarguesian affine planes of orders 3% and 3°. O

2.1 The Main Result
We shall make use of results of Jha [6] which we list for convenience.

Theorem 2.6 (Jha [6] Lemma 1, p. 774).

Let V be an elementary Abelian group of order q" for n > 2 and suppose that U is any
nontrivial u is a prime p-primitive divisor of ¢"~' — 1 and U is in Aut(V,+).

Then the following are valid.:

(a) The fixed point subspace FixU under U has order q.

(b) U acts semiregularly on V — FixU.

(c) U is cyclic.

(d) If n > 2 then V = FixU & Cy where Cy is the only U submodule of V disjoint from
FixU.

(e)Ifn>2and W is a U-submodule then either W C FixU or |W| > ¢ 1.

Theorem 2.7 (Jha [6] Theorem B, p. 774 part (iii)).

Let T be a translation plane of order q", n > 2, which admits a planar collineation group
H of order u* pﬂ where g = p” for p a prime and u is a prime p-primitive divisor of g"~' — 1
fora>1,p> 1.

Then a Svlow u-subgroup is normal in H.

We now give the proof of the main result. The reader is refered to the introduction for the
statement of the theorem. The proof shall be given as a series of lemmas.

Lemma 2.8 If n = 2 then the plane is Hall or Desarguesian and the situations where the
plane is Dearguesian are given in the previous section and are those of case (1).

Proof. We merely apply the previously noted theorem of Hiramine, Jha and Johnson. O

Let A denote the set of infinite points of m, and [ denote the remaining infinite points.
Hence, the group is transitive on A and I'.
Let S denote a Sylow p-subgroup. Clearly, S fixes a point P of A.



190 Y. Hiramine, V. Jha, N.L. Johnson

Lemma 2.9 If g+ 1 is not a prime power then S does not act transitively on A — {P}.

Proof. If S does act transitively then there is a doubly transitive group action on A. However,
this implies that the group acting on A is non-solvable since otherwise there is a solvable
socle requiring g + 1 to be a prime power. O

Lemma 2.10 Assume that " # 27,4% If S does not act transitively on A — {P} then n = 2
orn=3.

Proof. Hence, by order, there exists a element h of prime order p in S which fixes two
components of m, and hence, % is a planar p-element. Since h leaves T, invariant, there 1s a
subplane ®, of m, which h fixes pointwise.

If n > 3 then either there is a p-primitive divisor u of (¢"~! — 1) as g" # 2 or 4* and note
that ((g+ 1), (¢" ' — 1)) divides (¢> = 1,¢" ' = 1) = (g*" "V —1)org" ' —1=2°~1 and
q' =27 or 4%,

Hence, u cannot divide ((g+1,(¢"~' —1)) whenn—1 > 2.

Thus, u divides (¢*~! = 1)/((g+ 1), (¢"~' = 1)).

So, there exists an element g of the group G which has order u. Also, g leaves the subplane
7, of order ¢ invariant and u does not divide g* — 1. We may assume that g leaves an infinite
point of m, invariant since the group is transitive on A. Hence, g must fix a second infinite
point. Since « does not divide g* — 1, then u fixes a third infinite point and must fix non-zero
points on any fixed component £ N1, as the cardinality of this latter set is q.

So, it follows that g must be planar and actually must fix 7, pointwise.

That is, there exists a planar u-element provided there is a p-primitive element u which
divides (¢"~' = 1)/((g+ 1), (¢"' = 1)).

Since the group G is solvable, use Hall’s extension of the Sylow theorem to obtain that
there must be a planar group H of order u®p®, for o. > 1, B > 1, whose fixed point subspace
contains @,.

Now let the order of a Sylow p-subgroup S, of G be gp“. Now, as the group is not

transitive on the infinite points of 7, — {P}, it follows that there is a planar group of order pP
where B > a+ 1 and we assume that pP is the order of the largest planar group within §,.

Let £ be a component of ®, so that £ is invariant under A. By the results of Jha mentioned
above [6] considered on £, there is a unique Maschke complement C on £ for the fixed point
subspace on f of a Sylow u-subgroup S, of order ¥* and furthermore, S, is normal in H.
Hence, again by the results of Jha, FixS, = &, so that C$ (£N FixS,) = ¢.

Thus, S, normalizes §, so leaves FixS$, N ¢ invariant and permutes the Maschke comple-
ments and so must leave C invariant and hence has non-zero fixed points on C.

Let the order of ®, be p” where b < z and g = p® and let I' denote the orbit of infinite
points of length ¢" — g. Hence, S, fixes a subplane X, pointwise of order p° where ¢ > b.
If £, is contained within the net N, containing 7, then S, would fix p© + 1 components of
m, which would imply that ®, has order > p®. Hence, part of Z, intersects components of
I" nontrivially. This says that a component M of I' is fixed by a group of order pP so that
the order of the Sylow p-subgroup is at least pg® > gp?, a contradiction. This completes the
proof of the lemma. O

So, we obtain:
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Lemma 2.11 (1) If g+ 1 is not a prime power then n =2 or 3.

(2) Assume that g" # 4°. If g+ 1 is a prime power and n > 3 then there are no planar
p-elements.

Proof. If ¢" # 27, we may apply the two previous lemmas and their arguments. Since 7 is
odd, it follows that there are no planar 2-elements in the case when g" = 2. O

Lemma 2.12 If q is odd and g+ 1 is a prime power then g = 3.

Proof. If g is odd then ¢+ 1 = 2¢ which implies that ¢ is a prime p as ¢* — 1 does not admit
a p-primitive divisor. Thus, the subplane n, is Desarguesian.

In this case, the Sylow p-group induces a faithful subgroup of I'LL(2, p) on 71, so that the
group 1s an elation group on 7.

Hence, the group acting on ®, generated by the elations of m, is SL(2, p) in this case
(acting on the subplane). Since the group is assumed solvable, it follows that p=3=¢q. O

Lemma 2.13 Ifn > 3 then the subplane =, is either Desarguesian or Liineburg-Tits.

Proof. The group is doubly transitive on A. The affine translation planes admitting collineation
groups acting doubly-transitive on the points at infinity are either Desarguesian or Liineburg-
Tits (see e.g. Buekenhout et al [1]). [

Lemma 2.14 [fn > 3, g is even, ¢" # 2’ or 4* and q+ 1 is a prime power then g =2 or 4.

Proof. If g is even, first assume that the subplane is Liineburg-Tits. Then S.(,/q) is the full
subgroup on the subplane which is generated by the elations (of the subplane). As there are
no planar 2-elements, any Sylow 2-subgroup S, induces a faithful group on &, so that $> must
normalize S.(,/q).

Since the outer automorphism group has odd order ([2]), it follows that S5 is in S-(1/9)-
[t then follows that the group generated by the Sylow 2-subgroups acting on the plane &
contains a group isomorphic to S.(,/g) which is contary to the assumption that the group is
solvable.

Hence, we must have that m, is Desarguesian and, again noting there are no planar
2-elements, S, induces a faithful group on I'L(2,q). Let g = 2% where (2,1) = 1. If
g = 2%7/2% > 2 then the elation groups acting on m, must generate a nonsolvable group
1somorphic to SL(2,2) for ¢ > 2. The inequality does not hold only if either g is 2 or 4. This
completes the proof of the lemma. O

Lemma 2.15 If u is a p-primitive divisor of ¢"~' — 1 and u® is the largest divisor then the
order of a Sylow u-subgroup is u®.

Proof. A Sylow u-subgroup U fixes exactly i, pointwise.
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Lemma 2.16 (1) Ifn > 3 and g = 2 then the involutions are elations and generate a normal
subgroup isomorphic to SL(2,2) acting 2-transitively on A. If Gir,) is the subgroup of G fixing
T, pointwise then G = SL(2,2) Gy, |

(2) If n is even then the translation plane is the union of a set of 2" — 2 Desarguesian
partial spreads of degree 5 containing the net N and there is a regular partial 2-parallelism
of 2" — 2 spreads induced on any elation axis.

Proof. We have seen that the involutions cannot be planar. Hence, the involutions are elations
and since the group is transitive on A, it follows that SL(2,2) is generated and clearly the
group generated by all elations is normal. We note that SL(2,2) is transitive on the nonzero
points of m,. This proves (1).

Now assume that n is even. By Johnson [14] (1.2), there 1s a rational net of degree 22 41
coordinatized by a field isomorphic to GF(4) containing the elation net Ny. Moreover, the
group SL(2,2) fixes this net and acts transitively on the components outside of N4. Since
SL(2,2) is normal, it follows that there is a set of 2”7 — 2 such rational nets of degree 2% + |
containing Ny. Now applying the results of Jha and Johnson [8], it follows that such a spread
of rational nets imply that there 1s a regular partial 2-parallelism on any elation axis. O

Lemma 2.17 (1) If g = 3 and n > 3 then the 3-elements are non-planar and acting on w,,
the group is isomorphic to SL(2,3).

If Gip,) is the subgroup fixing 7, pointwise then SL(2,3)Gy,) = G.

(2) n is even.

(3) Either the 3-elements are elations or 3|(u— 1) for every 3-primitive divisor of 3"~ — 1.

Furthermore, either the 3-elements are elations or if U is a Sylow u-subgroup where u is
a 3-primitive divisor of 3"~ — 1 of order u® then there are exactly u® Sylow 3-subgroups of
U{(t) where T is any collineation of order 3.

(4) Let T be an element of order 3 and let the number of 3,2, and 1 dimensional TGF(3)-
modules on the component £ containing Fixt be a, b, c respectively. Let the number of 3,2, 1
dimensional modules on ® be a*,b*, and c* respectively.

Then

Ja+2b4+c = n,c>0

3a*+2b"+c* = 2n,
c* = 0, and
a+b+c = a" +b" sothat
a+c—n = aand

b*+n—2c = b,a"andb” > (.
Thus, if T is not an elation then n > 20.
More generally, let u be the largest 3-primitive divisor of 3=t 1 and u® the largest

u-factor. If (3minl@™+b")=1 _ 1),0 5 (3n=1 _ 1) where 3a* + 2b* = 2n, then T is an elation.

(5) If T is an elation then there is a set of (3" — 3)/3 Desarguesian nets of degree 3241
containing the elation net Ny and inducing a regular partial 2-parallelism of (3" —3)/3 2-
spreads on any elation axis.

Proof. We note that when n is odd then 8 divides 3"~ — 1. Furthermore, there is a kernel
involution which is not accounted for as we must have an orbit of length 3" — 3. Hence, the
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order of a Sylow 2-subgroup must be at least 16. Since this group must act on 7, and the
order of T'L(2,3) is 24, then there is an element of even order which fixes m, pointwise from
which it follows that there is a Baer involution. But, this then implies that » 1s even. Hence,
n must be even.

Now a Sylow u-subgroup U is cyclic of order dividing 3"~ — 1 for « a 3-primitive divisor.
Note that U fixes &, pointwise and FixU = m, by the above results of Jha.

A Sylow 3-subgroup S3 has order 3 and fixes a unique component £ of 1, as otherwise,
there would be a planar 3-element.

Let T be a collineation of order 3. Since the group is solvable, there exists a subgroup of
order u* - 3 where u® is the order of U. Since 1+ ku > 3, we may assume that U/ is a normal
subgroup within the group of order u“ - 3, or rather, that T normalizes U.

There is a unique u-complement C of dimension n — 1 on the component ¢ containing
Fixt. First assume that T centralizes U. Then, there are 1-fixed points in C on £ and U
permutes the fixes point semi-regularly. Since U cannot fix a proper subspace of C, as u is
3-primitive, it follows that T fixes C pointwise. Hence, T fixes C &, N £ pointwise so that T
is an elation.

Hence, either T is an elation or T permutes semi-regularly the generators of the cyclic
group U. Hence, 3 divides «® — u®* ! = u4*! (u—1) so 3 divides u— 1.

Thus, u divides 37! — 1 and 3 divides u — 1. ‘

Now either 7 is an elation or the minimal polynomial for Tis (x—1)° = (x> = 1) (sec e.g.
Liineburg [15] (47.2) and (47.5)). Let the unique component fixed by T by M. Then M may
be considered a direct sum of cyclic TGF(3)-modules of dimensions 3,2 or 1.

Hence,

n=3a+2b+c

where a, b, c are the numbers of cyclic submodules of dimensions 3,2 or 1 respectively. Note
that T will fix exactly a 1-dimensional subspace pointwise in each cyclic submodule. Hence,
Fixt has dimension a + b + ¢ as T is not planar.

Similarly, the vector space of dimension 2n is a direct sum of cyclic submodules of dimen-
sions 3,2,1 respectively. Assume that there are a*, b, and ¢* cyclic submodules of dimensions
3,2,1 respectively.

Hence, we obtain

2n=3a"+2b" +¢".

Also, we must have a* +b* +c* =a+b+c.

In the decomposition of the vector space of dimension 2n, assume that there 1s a submod-
ule of dimension 1. In this case, there is a submodule S of dimension 2n — 1. This submodule
is a hyperplane and since the spread is a dual spread, we must have that S contains a unique
component of T which then must be left invariant by 1. Hence, S contains the unique compo-
nent containing Fixt. However, this is a contradiction as there is a submodule of dimension
1 disjoint from S. Hence, there are no submodules of dimension 1 and we must have ¢* = (.

The interrelationships between the a, b, ¢’s and a@* and b* follows directly. Note that ¢ > 0
since T fixes m, N ¢ pointwise and there is a unique T invariant Maschke complement C of U
and U is normalized by 7. Since there must be non-trivial 3-dimensional submodules then
a* > 0. Since 7, is left invariant, there must be non-trivial 2-dimensional submodules so that

b* > (.
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Now assume that n = 4. Then 3a+ 2b+ ¢ = 4 and 3a* + 2b* = 8 which implies that
a*=2and b* = 1. Hence, a* + b = 3 = a+ b+ ¢ which implies that 2a+ b = | sothata =0
and b = 1 so that ¢ = 2. Hence, 7 fixes exactly 3° points on ¢ and exactly 3 points on C.
But u = 13 in this situation and as (3* — 1)13 > 3% — 1, it follows that there exist overlaps of
elements fixed by elements of the form 1% where g is a collineation of order 13 in U. Thus,
(1,7%) fixes > 3 points on £. This group is generated within U (t) so must involve elements
of order 13. But, the elements of order 13 fixes exactly m, pointwise.

Hence, n # 4. Since, 3 does not divide 11 — 1, it follows that n # 6.

Assume thatn =8, Then 3a™ +2b" = l6and a” cannotbe 0,1,3.4 or 5. Hence,a™ =2 and
b* = 5 which implies that 7 fixes exactly 3’ points on £ and 3° points on C. However, since
(37— 1)/2 = 1093 is a prime and (3° — 1)10933” — 1, the same argument implies that there
are u elements fixing points other than 7, pointwise. If n = 10, then 757 = (3° - 1) /{3° — 1)
is prime so # = 757. Since 3a* + 2b* = 20, it follows that (a*,b*) = (2,7),(4,4), or (6,1)
which implies that T fixes 3”,3% or 3’ points on ¢ and so 3% 37 or 3° points on C which is
dimension n — 1 = 9. Since (3° — 1)757 > 3” — 1, the previous argument again provides a
contradiction.

Assume that n = 12. It follows that (a*,b*) = (2,9),(4,6) or (6,3) and since (3% — 1)u >
3% — 1 for u > 3, we have a contradiction as before.

One can carry one in this manner, and conceivably prove that T is an elation in general if
(3min{@®+b")=1 _ 1y 4 > (37=1 _ 1) where 3a* + 2b* = 2n.

Hence, for example, (3"~U/3 — u® > (37~ — 1) whenever u® > 3"/3.

If n = 14 then 3a* + 2b* = 28. Hence, (a*,b*) = (2,11),(4,8),(6,5),(8,2). Thus, (3° -
1) u®* > 3" — 1 provided u® > 34,

So, 3'% — 1 which when divided by 2 is 797161. But, direct calculation shows that there
are no prime divisors less than 81.

Suppose n = 16 so that 3a* +2b* = 32 and (a*,b") is (2,13),(4,10),(6,7),(8,4),(10,1)
so that C has at least (310 — 1 )u".

Now 3!° — 1 divided by 2 is 7174453. However, the odd part of 3° — 1 divides this number
as does the odd part of 3° — 1. Hence, we may divide by 121 - 13 which is then 4561 which is
prime.

Since 4561 > 3° — 1, we have a contradiction.

Hence, n cannot be 16.

If n = 18 then 3a™ + 2b* = 36 which implies that a minimum for ¢* + »* = 13 with
(a*,b*) = (10,3). Hence, (3" = 1)u® > (3'" — 1) requires a prime power divisor u* > 3°.
Since (3" — 1)/2 = 64570081, assume that all prime divisors are less than 3° = 243. A
straightforward tedious calculation shows that are no prime divisors less than 243.

Hence, n # 18.

Part (5) now follows exactly as in the case when g = 2. L]

Lemma 2.18 Assume thatn > 4 and g = 4.

(1) Then there is a cyclic group of order 4 in TL(2,4) — GL(2,4) generated by an element
t such that t° is an elation. The Sylow 2-subgroups have order 4.

(2) There is a normal 2-complement

(3) ® is a direct sum of n cyclic TGF (2)-submodules of dimension 4 and the unique com-
ponent { fixed by T is the direct sum of n cvclic TGF(2)-submodules of dimension 2.
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Hence, T fixes exactly 2" points on (.

Proof. If the 2-group is cyclic, there is a normal 2-complement of a Sylow 2-subgroup 5>
e.g. by Gorenstein 7.6.1 [4]. We note that any 2-element must be an elation. Furthermore,
note by Foulser [3] (4.3), we see that such a group does act or rather can act as maintained
on m, or there is an elation group of order at least 4 which means that SL(2,4) is generated
contrary to the solvablity assumption.

If there is a 2-group of order strictly larger than 4, then there is a planar 2-element, which
does not occur.

So, there is a cyclic group Cy4 of order 4 and since the group is solvable, there is a group of
order 4 - 4™ where u is a 2-primitive divisor of 4"~! — 1. Since we may take u > 5, it follows
that there is a Sylow u-group which C; normalizes. The Sylow u-group fixes the subplane =,
pointwise so that there is a unique u-Maschke complement C on ¢ of dimension 2(n — 1),

Decompose the vector space relative as a tGF(2)-module.

We assert that every 4 and 3 t-submodules intersect ¢ in 2-dimensional submodules and
every 2-submodule must be in £ as well as an 1-dimensional submodule.

0 0 0 1
, . . . . . . 1 0 0 0
To see this consider a cyclic module of dimension 4. written in the form 01 0 0
00 1 0
0 0 1 0
. . 0O 0 0 1 . .
and notice that the square is { 0 o0 o | must fix the vectors (x, v, x,y) pointwise; fix a
O 1 0 0

2-dimensional subspace pointwise which must lie in £. But, 1 maps (x,y,x,y) onto (v,x,y,x).
That is, there is an induced 2-dimensional module on #.
A cychic submodule of dimension 3 may be written in the form

0 0 1] 0 1 17
I 0 1 | whosesquarein | O 1 O | which fixes (x,y,x) pointwise; fixes a 2-
0 1 1 1 1 0

dimensional 1GF (2)-submodule pointwise which must lie in £. Furthermore, 1 map (x,y,x)
onto (v, x, v).

Any cyclic submodule of dimension 2 when squared is the identify so that this submodule
must lie within £.

Similarly, any 1-dimensional submodule must lie within £.

However, we know that there are 1-dimensional submodule as 1 fixes non-zero point on
.

Thus, in any decomposition of & into a direct sum of cyclic submodules, the intersection
with ¢ produces a direct sum of cyclic submodules of ¢ as £ is T-invariant.

S0, assume that there is a 1-dimensional submodule. Then there is a hyperplane disjoint
from the 1-space which then contains a unique component and since 7T fixes exactly one
component, it follows that the component must be £. However, there are no fixed points not
in £. Hence, there are no l-dimensional submodules.

We know that T is a generalized elation on £ and hence fixes pointwise a subspace of
dimension n over GF(2).
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Now let the number of 2 and 1 modules TGF(2)-submodules, where T has order 4, on ¢
be a and b so that 2a + b = 2n as 1 is an elation. Let the number of 4,3,2 modules on T be
a*,b*,c*, respectively so that:

4a” +3b" + 2c" = 4n.

Since 12 is an elation, it follows that
2a° +2b" 4+ 2¢ = 2n.

Hence, we must have
2a* +b" = 2n

which, in turn, implies that &* + 2¢* = 0 so that b* = ¢* = 0.
Hence, 4a™ = 4n so that a* = n. Since £ intersects every 4-dimensional submodule in a
2-dimensional submodule, this implies that @ = a* and every module on £ is 2-dimensional.
We may assume that u is a 2-primitive divisor larger than 5. Hence, any u-group is normal
since the Sylow 2-subgroups have order 4.
This completes the proof of the main result. The proof of the corollary is now immediate.
O
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