ON PACKING OF FOUR AND FIVE SQUARES INTO A RECTANGLE1

P. NOVOTNÝ

Abstract. It is proved in this paper that any system of four or five squares with total area 1 may be packed into a rectangle whose area is at most $\frac{2+\sqrt{3}}{3}$.

L. Moser [3] posed the following question: What is the smallest number S such that any system of squares with total area 1 may be (parallelly) packed into a rectangle of area S? This problem is mentioned in [4], too. Moon and Moser [2] found first results for the upper bound. They proved that any system of squares with total area 1 may be packed into a square of area 2. Some further results were published by Kleitman and Krieger [1]. It follows from their paper that $S \leq \sqrt{\frac{8}{3}}$. Novotný [5] proved the inequality S < 1.53. On the other hand, if we denote S_n the smallest number such that any system of n squares of total area 1 may be packed into a rectangle of area S_n , then $S = \lim S_n$ and the sequence (S_n) is nondecreasing. Trivially, $S_1 = 1$ and

$$S_2 = \frac{1+\sqrt{2}}{2} \tag{1}$$

Novotný [6] proved that

$$S_3 \doteq 1.227759.$$
 (2)

The aim of this paper is to prove the equalities $S_4 = S_5 = \frac{2+\sqrt{3}}{3}$.

Theorem 1 Any system of four squares with total area 1 may be packed into a rectangle whose area is at most $\frac{2+\sqrt{3}}{3}$; this number is the least possible.

Proof. The square of side $\sqrt{\frac{1}{2}} + \sqrt{\frac{1}{6}}$ or the rectangle of size $\left(\sqrt{\frac{1}{2}} + 2\sqrt{\frac{1}{6}}\right) \times \left(2\sqrt{\frac{1}{6}}\right)$ (both of them with area $\frac{2+\sqrt{3}}{3} \doteq 1.244016936$) is necessary for packing a square of side $\sqrt{\frac{1}{2}}$ and three squares of side $\sqrt{\frac{1}{6}}$. We prove that the area $\frac{2+\sqrt{3}}{3}$ is always sufficient.

We denote the sides of four squares $x_1 \ge x_2 \ge x_3 \ge x_4$ and we shall pack the squares in dependence upon x_1 and x_4 . Evidently, $3x_1^2 + x_4^2 \ge 1$ and $x_1^2 + 3x_4^2 \le 1$.

I. Let $[x_1, x_4] \in M_1$ (Fig. 1), i.e. $x_1 \ge 0.82$. If $x_2 + x_3 + x_4 \le x_1$, then it follows from (1) that a rectangle of area at most $\frac{1+\sqrt{2}}{2}$ is sufficient for packing (the two smallest squares need no more space). Thus we assume $x_2 + x_3 + x_4 \ge x_1$. We use the rectangle of area

$$A_1 = (x_1 + x_2)(x_2 + x_3 + x_4) = (x_1 + x_2)\left(x_2 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2} + x_4\right)$$

¹This research was supported by grant VEGA 1/1476/94.

200 P. Novotný

(Fig. 3) for packing. Choosing x_1 and x_2 fixly, A_1 will be maximal if $x_3 = x_4 = \sqrt{\frac{1 - x_1^2 - x_2^2}{2}}$; then $A_1 = (x_1 + x_2) \left(x_2 + \sqrt{2} \sqrt{1 - x_1^2 - x_2^2} \right)$. Since $\frac{\partial A_1}{\partial x_1} = x_2 + 2x_4 - (x_1 + x_2) \frac{x_1}{x_4} < 0$ in M_1 , A_1 is maximal for $x_1 = 0.82$. We verify easily that $A_1 < 1.24$ for $x_1 = 0.82$ and for every $x_2 \in \left\langle \sqrt{\frac{1 - x_1^2}{3}}, \sqrt{1 - x_1^2} \right\rangle$.

II. Let $[x_1, x_4] \in M_2$ (Fig. 1). We pack the squares by Fig. 4 into a rectangle of area $A_2 = x_1(x_1 + x_2 + x_3 + x_4)$. A_2 is maximal if $x_2 = x_3 = \sqrt{\frac{1 - x_1^2 - x_4^2}{2}}$; then $A_2 = x_1\left(x_1 + x_4 + \sqrt{2}x_4 + \sqrt{2}x_$

III. Let $[x_1, x_4] \in M_3$ (Fig. 1, Fig. 2). In the case $3x_1^2 + 2x_4^2 \ge 2$ the inequality $x_2 + x_3 \le x_1$ holds and we can pack the squares by Fig. 5 into a rectangle of area $A_3 = x_1$ ($x_1 + x_3 + x_4$) (we need not consider the case $x_3 + x_4 < x_2$ in regard of (2)). A_3 is maximal if x_3 is maximal, i.e. $x_2 = x_3 = \sqrt{\frac{1 - x_1^2 - x_4^2}{2}}$; then $A_3 = x_1 \left(x_1 + x_4 + \frac{1}{\sqrt{2}}\sqrt{1 - x_1^2 - x_4^2}\right)$. Since $\frac{\partial A_3}{\partial x_4} = x_1 \left(1 - \frac{x_4}{2x_2}\right) > 0$, A_3 is maximal for $x_4 = \sqrt{\frac{1 - x_1^2}{3}}$. Then $A_3 = x_1 \left(x_1 + \frac{2}{\sqrt{3}}\sqrt{1 - x_1^2}\right)$ and it follows from $\frac{dA_3}{dx_1} > 0$ that A_3 is maximal for $x_1 = 0.82$, $x_4 = \sqrt{\frac{1 - x_1^2}{3}}$; this maximum is less than 1.24.

If $3x_1^2 + 2x_4^2 < 2$, then $x_2 + x_3 > x_1$ can be fulfilled and we pack the squares by Fig. 6 (the case $x_2 + x_3 < x_1$ is not important) into a rectangle of area $A_4 = (x_1 + x_3 + x_4)(x_2 + x_3)$. A_4 is maximal if $x_2 = x_3 = \sqrt{\frac{1 - x_1^2 - x_4^2}{2}}$; then

$$A_4 = \sqrt{2}\sqrt{1 - x_1^2 - x_4^2} \left(x_1 + x_4 + \sqrt{\frac{1 - x_1^2 - x_4^2}{2}} \right).$$

Since $\frac{\partial A_4}{\partial x_1} = -\frac{x_1}{x_2}(x_1 + x_2 + x_4) + 2x_2\left(1 - \frac{x_1}{2x_2}\right) < 0$, A_4 is maximal on some from the abscissae which form the boundary of M_3 from the left; we verify easily that the maximum is less than 1.244.

IV. Let $[x_1, x_4] \in M_4$ (Fig. 1, Fig. 2). If $3x_1^2 - 4x_1x_4 + 3x_4^2 \ge 1$, then $x_1 \ge x_3 + x_4$ is fulfilled and we can pack the squares by Fig. 7 into a rectangle of area $A_5 = x_1$ $(x_1 + x_2 + x_3)$. This area is maximal if $x_2 = x_3 = \sqrt{\frac{1 - x_1^2 - x_4^2}{2}}$; then $A_5 = x_1$ $\left(x_1 + \sqrt{2}\sqrt{1 - x_1^2 - x_4^2}\right)$. Since $\frac{\partial A_5}{\partial x_1} = x_1 + 2x_2 + x_1$ $\left(1 - \frac{x_1}{x_2}\right) > 0$ in M_4 , $\frac{\partial A_5}{\partial x_4} < 0$, A_5 is maximal at some from the right lower corners of M_4 and the maximum is less than 1.244.

If $3x_1^2 - 4x_1x_4 + 3x_4^2 \le 1$, it is sufficient to consider the case $x_3 + x_4 \ge x_1$ and we can pack

the squares by Fig. 8 into a rectangle of area

$$A_6 = (x_1 + x_2 + x_3)(x_3 + x_4).$$

 A_6 is maximal if $x_2 = x_3 = \sqrt{\frac{1 - x_1^2 - x_4^2}{2}}$; then

$$A_6 = \left(x_1 + \sqrt{2}\sqrt{1 - x_1^2 - x_4^2}\right) \left(x_4 + \frac{1}{\sqrt{2}}\sqrt{1 - x_1^2 - x_4^2}\right).$$

Since $\frac{\partial A_6}{\partial x_1} < 0$, A_6 is maximal on some from the abscissae which form the boundary of M_4 from the left; the maximum is less than 1.244.

V. Let $[x_1, x_4] \in M_5$ (Fig. 1). If $x_2 \le 0.57$, we pack the squares by Fig. 9 or by Fig. 10 (this is possible only if $3x_1^2 + 2x_1x_4 + 3x_4^2 \le 2$). The area of the rectangle from Fig. 9 is $A_7 = (x_1 + x_2) (x_1 + x_4)$ and it is maximal at some from the right upper corners of M_5 for $x_2 = 0.57$. The maximum is less than 1.244.

The area of the rectangle from Fig. 10 is

$$A_8 = (x_1 + x_2) \left(x_2 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2} \right).$$

Since $\frac{\partial A_8}{\partial x_4} < 0$, $\frac{\partial A_8}{\partial x_1} < 0$, $\frac{\partial A_8}{\partial x_2} = x_2 + x_3 + (x_1 + x_2) \left(1 - \frac{x_2}{x_3}\right) > 0$ in M_5 , A_8 is maximal at some from the left lower corners of M_5 for $x_2 = 0.57$; the maximum is less than 1.244.

If $x_2 \ge 0.57$, we pack the squares by Fig. 8 or by Fig. 7. The area of the rectangle from Fig. 8 is

$$A_6 = \left(x_1 + x_2 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right) \left(x_4 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right).$$

It follows from $\frac{\partial A_6}{\partial x_1} < 0$, $\frac{\partial A_6}{\partial x_2} < 0$ that A_6 is amximal on the left side of M_5 and for $x_2 = 0.57$. The maximum is less than 1.244.

Since $x_1 + x_2 + x_3 \le \sqrt{3}$, the area of the rectangle from Fig. 7 is $x_1(x_1 + x_2 + x_3) < 1.24$ for $x_1 \le 0.71$.

VI. Let $[x_1, x_4] \in M_6$ (Fig. 1; the lower part of the boundary is the stright line $l: x_4 = \sqrt{\frac{1}{6}} + (2 - \sqrt{3}) \left(x_1 - \sqrt{\frac{1}{2}}\right)$). We pack the squares by Fig. 9 into a rectangle of area $A_7 = (x_1 + x_2) (x_1 + x_4)$. This area is maximal if x_2 is maximal, i.e. x_3 is minimal, thus $x_3 = x_4$, $x_2 = \sqrt{1 - x_1^2 - 2x_4^2}$ (the equality $x_2 = x_1$ is impossible in M_6 since $x_1^2 + x_4^2 > \frac{1}{2}$). Then $A_7 = \left(x_1 + \sqrt{1 - x_1^2 - 2x_4^2}\right) (x_1 + x_4)$. Since $\frac{\partial A_7}{\partial x_4} < 0$, $\frac{\partial A_7}{\partial x_1} > 0$ in M_6 , A_7 is maximal on the stright line l. But we have

$$\frac{dA_7}{dx_1} = \frac{\partial A_7}{\partial x_1} + \left(2 - \sqrt{3}\right) \frac{\partial A_7}{\partial x_4} = \left(1 - \frac{x_1}{x_2}\right) (x_1 + x_4)$$

$$+(x_1+x_2)+\left(2-\sqrt{3}\right)\left(-\frac{2x_4}{x_2}(x_1+x_4)+(x_1+x_2)\right)$$

202 P. Novotný

$$\geq (x_1 + x_4) \left(1 - \frac{x_1}{x_4} + 1 + \left(2 - \sqrt{3} \right) (-2 + 1) \right) = (x_1 + x_4) \left(\sqrt{3} - \frac{x_1}{x_4} \right) \geq 0$$

on *l*. Hence A_7 is maximal for $x_1 = \sqrt{\frac{1}{2}}, x_4 = \sqrt{\frac{1}{6}}$ and the maximal value of A_7 is $A = \frac{2+\sqrt{3}}{3}$.

VII. Let $[x_1, x_4] \in M_7$ (Fig. 1; $x_1 = \sqrt{\frac{1}{2}}$ on the right part of the boundary). If $(x_1 + x_2)(x_1 + x_4) \le A$, then we pack the squares by Fig. 9 (we have $x_1 + x_4 > x_2 + x_3$ in M_7). Thus let $(x_1 + x_2)$ $(x_1 + x_4) > A$, i.e. $x_2 > \frac{A}{x_1 + x_4} - x_1$. If $x_3 + x_4 < x_1$, we pack the squares by Fig. 7. If $x_3 + x_4 \ge x_1$, we pack them by Fig. 8 into a rectangle of area

$$A_6 = \left(x_1 + x_2 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right) \left(x_4 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right).$$

Since $\frac{\partial A_6}{\partial x_2} < 0$, we have

$$A_6 < \left(\frac{A}{x_1 + x_4} + \sqrt{1 - x_1^2 - \left(\frac{A}{x_1 + x_4} - x_1\right)^2 - x_4^2}\right)$$

$$\times \left(x_4 + \sqrt{1 - x_1^2 - \left(\frac{A}{x_1 + x_4} - x_1\right)^2 - x_4^2}\right) = B.$$

If we denote $u = \frac{A}{x_1 + x_4} - x_1$, $v = \sqrt{1 - x_1^2 - u^2 - x_4^2}$, then (using $x_1 > v$, $(x_1 + x_4)^2 \le A$ and hence $u \ge x_4$)

$$\frac{\partial B}{\partial x_4} = \left(-\frac{A}{(x_1 + x_4)^2} + \frac{\frac{Au}{(x_1 + x_4)^2} - x_4}{v} \right) (x_4 + v)$$

$$+ \left(\frac{A}{x_1 + x_4} + v \right) \left(1 + \frac{\frac{Au}{(x_1 + x_4)^2} - x_4}{v} \right) \ge v + \frac{A}{(x_1 + x_4)^2} (x_1 - v) \ge x_1 > 0$$

and hence B has a maximum on l. Further, on l we have (using $u \ge v$ and $\frac{u-x_1}{v} \ge 1 - \sqrt{3}$)

$$\frac{dB}{dx_1} = \frac{\partial B}{\partial x_1} + \left(2 - \sqrt{3}\right) \frac{\partial B}{\partial x_4} = \left(\frac{-A}{(x_1 + x_4)^2} + \frac{u\left(\frac{A}{(x_1 + x_4)^2} + 1\right) - x_1}{v}\right)$$

$$\times (x_4 + v) + \left(\frac{A}{x_1 + x_4} + v\right) \frac{u\left(\frac{A}{(x_1 + x_4)^2} + 1\right) - x_1}{v} + \left(2 - \sqrt{3}\right) \frac{\partial B}{\partial x_4}$$

$$\geq \left(\frac{2u - x_1}{v} - \frac{A}{(x_1 + x_4)^2}\right) (x_4 + v) + \frac{2u - x_1}{v} \left(\frac{A}{x_1 + x_4} + v\right) + \left(2 - \sqrt{3}\right) x_1$$

$$= \frac{u - x_1}{v} (x_4 + 2v + x_1 + u) + \frac{u}{v} (x_4 + 2v) + \frac{A}{(x_1 + x_4)^2} \left(\frac{u}{v} (x_1 + x_4) - x_4 - v\right)$$

$$+ \left(2 + \sqrt{3}\right) x_1 \ge \left(1 - \sqrt{3}\right) (x_4 + x_1 + u) + 2u - 2x_1 + x_4 + 2u + x_1 - u$$

$$+ \left(2 + \sqrt{3}\right) x_1 = \left(2 - 2\sqrt{3}\right) x_1 + \left(2 - \sqrt{3}\right) x_4 + \left(4 - \sqrt{3}\right) u$$

$$\ge \left(2 - 2\sqrt{3}\right) x_1 + \left(6 - 2\sqrt{3}\right) x_4 = \left(6 - 2\sqrt{3}\right) \left(x_4 - \frac{\sqrt{3}}{3}x_1\right) \ge 0.$$

Hence *B* has the maximum for $x_1 = \sqrt{\frac{1}{2}}$, $x_4 = \sqrt{\frac{1}{6}}$ and this maximum has the value $A = \frac{2+\sqrt{3}}{3}$.

VIII. Let $[x_1, x_4] \in M_8$ (Fig. 1), i.e. $\sqrt{\frac{1}{2}} \le x_1 \le 0.71$. As in **VII**, if $(x_1 + x_2)$ $(x_1 + x_4) \le A$, we pack the squares by Fig. 9. If $(x_1 + x_2)$ $(x_1 + x_4) > A$, we pack them by Fig. 7 into a rectangle of area less than 1.24 or by Fig. 8 into a rectangle of area

$$A_6 = \left(x_1 + x_2 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right) \left(x_4 + \sqrt{1 - x_1^2 - x_2^2 - x_4^2}\right).$$

We have $A_6 < B$ again. Further, $\frac{\partial B}{\partial x_4} > 0$ in M_8 and $\frac{\partial B}{\partial x_1} < 0$ for $x_4 = \sqrt{\frac{1}{6}}$. It means that max B = A in M_8 .

The proof is completed.

Theorem 2 Any system of five squares with total area 1 may be packed into a rectangle whose area is at most $\frac{2+\sqrt{3}}{3}$.

Proof. We denote the sides of the squares $x_1 \ge x_2 \ge x_3 \ge x_4 \ge x_5$.

Let $x_5 \le 0.12$. It is possible to pack the four largest squares into a rectangle R of area $S_4 = \frac{2+\sqrt{3}}{3} > 1.244$ by Theorem 1. Since $x_1^2 + x_2^2 + x_3^2 + x_4^2 \le 1$, we have $x_1 + x_2 + x_3 + x_4 \le 2$. We can construct R so that the free space in it consists of at most four rectangles (Fig. 11); one side is x_1, x_2, x_3, x_4 one after the other. Since the area of the free space is A > 0.244, at least one from the rectangles has the other side greater than $\frac{A}{x_1 + x_2 + x_3 + x_4} > 0.12$. It means that there is plenty of space for the smallest square.

Let now $x_5 \ge 0.12$. We cover the domain $D = \{[x_1, x_2, x_4, x_5]\}$ (x_3) is determined by the condition $\sum x_i^2 = 1$) of the possible lengths of the sides by small hypercubes $H : x_i \in \langle a_i, a_i + d \rangle$ for $i \in \{1, 2, 4, 5\}$ of edge d. We consider the maximal possible lengths of the sides in any hupercube, i.e. $x_1 = a_1 + d, x_2 = a_2 + d, x_4 = a_4 + d, x_5 = a_5 + d, x_3 = \min \left\{ a_2 + d, \sqrt{1 - a_1^2 - a_2^2 - a_4^2 - a_5^2} \right\}$. The total area of the squares is greater than 1 but we may permit it if d is small because we are far away from the critical point (we have $x_5 = 0$ at the critical point and we assume $x_5 \ge 0.12$). A computer verified that for d = 0.004 some packing into a rectangle of area less than 1.244 is possible for any mentioned hypercube. \square

204 P. Novotný

Fig. 1

Fig. 2

Fig. 11

References

- D. Kleitman and M. Krieger, "An optimal bound for two dimensional bin packing", *Proc. 16-th Annual Symposium on Foundations of Comp. Sci.*, Berkeley, 1975, 163-168, IEEE Computer Society, Long Beach, Calif.
- [2] J.W. Moon and L. Moser, "Some packing and covering theorems", Colloq. Math. 17 (1967), 103-110.
- [3] L. Moser, Poorly formulated unsolved problems of combinatorial geometry, mimeographed.
- [4] W. Moser and J. Pach, Research Problems in Discrete Geometry 1989, # 108.
- [5] P. Novotný, "On packing of squares into a rectangle", Archivum Mathematicum (Brno) 32 (1996), 75-83.
- [6] P. Novotný, "A note on a packing of squares", Studies of University of Transport and Communications in Žilina, Math.-Phys. series 10 (1995), 35-39.

Received July 17, 1997 and in revised form April 7, 1999 P. NOVOTNÝ
Department of Mathematics, FPEDaS
University of Žilina
010 26 Žilina, Slovakia
novotny@fpedas.utc.sk