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Abstract. Beutelspacher’s construction of line parallelisms in PG(2a − 1, q) is generalized
to line parallelisms of PG(2a − 1,K), where K is an arbitrary skewfield admitting a suitable
sequence of quadratic skewfield extensions.
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Introduction

Given a projective space Σ, a ‘line spread’ is a disjoint cover of the points of Σ
by a set of mutually skew lines (the spread). A ‘parallelism’ (or ‘line parallelism’)
is a disjoint cover of the lines of Σ by a set of mutually line disjoint line spreads.
In 1974, Buetelspacher [1] gave a construction of parallelisms in PG(2r − 1, q)
for any positive integer r and for any prime power q = pt > 2.

In this article, we generalize Buetelspacher’s construction to arbitrary pro-
jective spaces over skewfields and construct a variety of new parallelisms. The
main difference is where Buetelspacher would use a ‘geometric’ spread, a so-
called ‘Desarguesian spread’ is used in its place. Hence, it is possible to con-
struct a variety of line parallelisms over infinite skewfields or infinite fields by
this method. Basically the only required criterion is to be able to construct
parallelisms in three-dimensional projective space that contain at least one De-
sarguesian spread.

Regarding infinite parallelisms, it might be pointed out that Buetelspacher
[2] has also used transfinite induction to construct parallelisms in finite dimen-
sional projective spaces over infinite skewfields. In the cases considered in this
article, the constructed infinite parallelisms are somewhat more accessable in
that potentially their collineation groups and isomorphism classses may be de-
termined.



58 N. J. Johnson

1 Preliminaries

We first somewhat generalize the notion of a geometric spread as used by
Buetelspacher as follows. It will be assumed that all vector spaces are ‘left’
vector spaces and skewfield extensions are always considered to be on the left.

1 Definition. Let K1 be a skewfield and let V be any K1-vector space.
Denote by PG(V − 1,K1) the associated K1-projective space. We define a ‘De-
sarguesian Sperner space’ to be a translation Sperner space given by a spread of
lines of PG(V − 1,K1) all of whose associated 2-dimensional vector subspaces
over K1 are 1-dimensional vector subspaces over some skewfield extension K2 of
dimension 2 over K1. Also, the associated line spread is called a ‘Desarguesian
line spread.’

2 Proposition. Let K1 ⊆ K2 be skewfields, where K2 is 2-dimensional over
K1 and let V be a K2-vector space. Let R denote the set of all 1-dimensional
K2-subspaces of V . Then, R is a Desarguesian line spread of PG(V − 1,K1).

Proof. Any non-zero vector in V is contained in a unique 1-dimensional
K2-subspace so any 1-dimensional K1-subspace is contained in a unique 1-
dimensional K2-subspace. A point P of PG(V − 1,K1) is a 1-dimensional K1-
subspace, generated say by e. So, P is the set {αe; α ∈ K1}. Simply take e
generated over K2 (the tensor product with K2) to construct the unique 1-
dimensional K2 subspace containing P . QED

3 Notation. In the following, we shall adopt the following notation: Let
R denote a Desarguesian line spread in PG(V − 1,K1). If g and h are distinct
elements of R, let 〈g, h〉 denote the 2-dimensional K2-vector subspace generated
by g and h, which is also considered a 4-dimensional K1-vector subspace and
projectively as isomorphic to PG(3,K1).

If L is a subskewfield containing K1 and z1, z2, . . . , zs ∈ V , the L-vector
subspace generated by {zi; i = 1, . . . , s} shall be denoted by 〈zi; i = 1, . . . , n〉L.

The following propositions are analogous to similar ones in Buetelspacher
[1].

4 Proposition. R as a set of ‘points’ and {〈g, h〉K2
; g, �= h} ∈ R as ‘lines’

is isomorphic to PG(V − 1,K2).
Let L be a line of PG(V − 1,K1)−R. If L nontrivially intersects 〈g, h〉 for

g, h ∈ R, then L ⊆ 〈g, h〉K2
and there exists a unique 〈g∗, h∗〉K2

, for g∗, �= h∗ in
R containing L.

Proof. Let PQ = L, where P and Q are points of PG(V − 1,K1). Since
R is a spread, there exist unique lines g and h containing P and Q respectively
and g �= h since L is not in R. Let g = 〈eg〉K2

and h = 〈eh〉K2
, 1-dimensional

K2-subspaces. P in g means that P = 〈aeg〉K1
where a ∈ K2. Similarly, Q =
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〈beh〉K1
, where b ∈ K2. Then L, as a 2-dimensional K1-subspace, is 〈aeg, beh〉K1

,
which clearly is in 〈eg, eh〉K2

= 〈g, h〉.
Let L = P ∗Q∗ = PQ, let g∗ = 〈eg∗〉K2

, h∗ = 〈eh∗〉K2
contain P ∗ and Q∗

respectively. Then L = 〈a∗eg∗ , b∗eh∗〉K1
, for some a∗, b∗ in K2. Hence,

〈a∗eg∗ , b∗eh∗〉K1
= 〈aeg, beh〉K1

.

This implies that a∗e∗g is in 〈aeg, beh〉K1
, implying that eg∗ is in 〈eg, eh〉K2

. By
symmetry, 〈g, h〉K2

= 〈eg, eh〉K2
= 〈eg∗ , eh∗〉K2

= 〈g∗, h∗〉K2
. QED

5 Proposition. R | 〈g, h〉K1
is a line spread of 〈g, h〉K1

as a projective space
isomorphic to PG(3,K1), for each ‘line’ 〈g, h〉K2

of R.
Proof. When an element M of R nontrivially intersects 〈g, h〉K2

, it is con-
tained in 〈g, h〉K2

since M is a 1-dimensional K2-subspace and 〈g, h〉K2
is a

2-dimensional K2-subspace as well as a 4-dimensional K1-subspace. Since R
is a spread, each point of 〈g, h〉K2

is covered uniquely by some element N of
R. QED

2 Extension of Beutelspacher’s Theorem

Since we are dealing with arbitrary skewfields, we begin with some elemen-
tary properties of spreads and parallelisms.

6 Proposition. Let W be any vector space of finite dimension d > 3 over a
skewfield L, let S1 and S2 be line spreads of PG(W −1, L), and let P1 and P2 be
parallelisms of PG(W − 1, L). Then cardS1 = cardS2 and cardP1 = cardP2.

Proof. Since the proposition is trivial when L is finite, assume that L is
infinite.

Note that a line spread of PG(3, L) corresponds to a translation plane and
the spread is in bijective correspondence with the line at infinity of the associated
translation plane. But, when L is infinite, a translation plane with spread in
PG(3, L) has cardinality cardL since this is the cardinality of a set of points on
a projective line. Let {ei; i = 1, . . . , d} be a basis for W . Then, 〈αe1 + e2〉L for
fixed non-zero α determines a set of mutually distinct 1-dimensional L-subspaces
of cardinality cardL. The number of non-zero vectors is (cardL)d = cardL,
implying that cardS1 ≤ cardL. Clearly, there are also cardL 2-dimensional L-
subspaces and not all can belong to a line spread in the projective space. Given
any 2-dimensional L-subspace Z that does not belong to S1, there are cardL
lines of S1 required to cover Z. Hence, cardL ≤ cardS1 ≤ cardL.

In order to cover the set of 2-dimensional subspaces with line disjoint spreads,
a given point P is clearly in cardL 2-dimensional L-subspaces, implying that
at least cardL spreads. It then similarly follows that cardP1 = cardL. QED
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7 Theorem. Let K1 ⊆ K2 be skewfields, where K2 is 2-dimensional over
K1 and let V be a K2-vector space. Let R denote the set of all 1-dimensional
K2-subspaces; an associated Desarguesian spread of PG(V − 1,K1). Let P be a
line parallelism of PG(V − 1,K2) and for each PG(3,K1), 〈g, h〉, g �= h of R,
let M〈g,h〉 denote a parallelism of 〈g, h〉 containing R | 〈g, h〉.

More generally, index the spreads of the parallelism P by Ω, so that

P = ∪{Ms ; s ∈ Ω}.

Let Λ be a set of cardinality the cardinality minus 1 of any parallelism of line
spreads of any PG(3,K1) and let ∆ be a set of cardinality the cardinality of
lines of any spread of lines of PG(V − 1,K2).

For each spreadMs of P in PG(V −1,K2); (the points are those of R), for
s ∈ Ω, index the spread lines by ms,k by k ∈ ∆.

Assume that each ms,k as a projective space isomorphic to PG(3,K1) admits
a parallelism containing the parallelism induced by R and let Pms,k

denote the
set of spreads not equal to the induced spread. Denote by SPms,k

Λ the symmetric
group on Pms,k

permuting the spreads, a set of cardinality Λ and let ms,k
t , for

t ∈ Λ denote the spreads of Pms,k
.

For i ∈ Λ, denote by λPms,k

(i) the action of the associated permutation on
the element i. Hence, we are considering a family of groups isomorphic to SΛ

and acting on Λ considered as Pms,k
.

(1) For each ms,k choose a permutation λPms,k

∈ SPms,k

Λ . Denote by the

symbol ms,k

λPms,k
(i)
, the spread ms,k

j in Pms,k
chosen by j = λPms,k

(i).

Then, for each s ∈ Ω and spread Ms of P in PG(F − 1,K2); for each

λPms,k

∈ SPms,k

Λ , and for each i ∈ Λ,

ΓMs

{λPms,k
(i)}

=
{
ms,k

λPms,k
(i)
;ms,k ∈Ms

}
is a line spread of PG(V − 1,K1).

(2) Γ{λPms,k } = R∪ i∈Λ

{
ΓMs

{λPms,k
(i)}

;
}

is a line parallelism of PG(V −
1,K1).

(3) From each parallelism of PG(V − 1,K2), and for each parallelism of
each line as a projective space isomorphic to PG(3,K1) containing the induced
spread of each spread not equal to R, there is a corresponding line parallelism
of PG(V − 1,K1). The cardinality of line parallelisms obtained is this way is

((cardSΛ)card ∆)card Ω.
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Proof. To prove (1), we need to show that every point P of PG(V −1,K1)
is incident with a unique line of ΓMs

{λPms,k
(i)}

. Every point P is incident with a

unique line gP of R which is, as a point, on a unique line m of M. Now m is
isomorphic to PG(3,K1) and contains gP . Furthermore, mi is a spread in m
and each point P is incident with exactly one line of each spread mi for each
i ∈ λ. Hence, ΓMs

{λPms,k
(i)}

is a line spread. This proves (1).

We note, by the index assumption, that no line of mi is in R.

To show that Γ{λPms,k } = R∪ i∈Λ

{
ΓMs

{λPms,k
(i)}

;
}

is a line parallelism, we

need to show that every line L which is not inR is in a unique spread of the form
ΓMs

{λPms,k
(i)}

. We know that L is in a unique 〈g, h〉K2
for g, �= h of R. Moreover,

since 〈g, h〉K2
is a line of R, and P is a parallelism of R where R is the set

of points of PG(V − 1,K2), it follows that there is a unique spread M of P
containing 〈g, h〉K2

= m as a line. But, m is isomorphic to PG(3,K1) and the
assumed parallelism of m contains R | m. Since L is a line not in R, it follows
that there is a unique spread mj of m containing L. Thus, every line L is in
exactly one spread of the form ΓMs

{λPms,k
(i)}

. This completes the proof of part

(2).
To obtain a line parallelism, we choose a fixed permutation from each sym-

metric group of each parallelism of PG(3,K1) arising from each line of each
spread not equal to R of the parallelism P. This proves (3). QED

The following corollary show how parallelisms ‘grow’ using the construction.
8 Corollary. In the finite case and K1 isomorphic to GF (q), Λ = q + q2

(the number of spreads minus 1 in a parallelism of PG(3, q)) so that Sq+q2 has
cardinality (q + q2)!. With K2 isomorphic to GF (q2) and V a 2d-dimensional
GF (q2)-space, a line spread in PG(d− 1, q2) has (q2d − 1)/(q4 − 1) lines and a
parallelism has ((q4d − 1)(q4d − q2))/((q4 − 1)(q4 − q2)) line spreads. Hence,

card∆ = (q4d − 1)/(q4 − 1)

and
cardΩ = ((q4d − 1)(q4d − q2))/((q4 − 1)(q4 − q2)).

Hence,
(1) the number of possible line parallelisms of PG(4d− 1, q) constructed as

above is

(((q + q2)!)

(
q4d−1

q4−1

)(
q2(2d−1)−1

q2−1

)
.

(2) Assume that for d = 2, there is a parallelism of PG(3, q2) containing
a regular spread R and there is a parallelism of PG(3, q) containing a regular
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spread. Then there are

(((q + q2)!)

(
q8−1

q4−1

)(
q2(3)−1

q2−1

)
= (((q + q2)!)(q

4+1)(1+q2+q4).

parallelisms in PG(23 − 1, q) each of which contains the regular spread induced
from R. Let q = h2 and reapply the process constructing in PG(24−1,

√
q) then

from each of

((q + q2)!)

(
q8−1

q4−1

)(
q2(3)−1

q2−1

)

parallelisms of PG(23 − 1, q) there are

((h+ h2)!)

(
h4d−1

h4−1

)(
h2(2d−1)−1

h2−1

)
= (((

√
q + q)!)(q

2+1)(1+q+q2)

line parallelisms of PG(24 − 1,
√
q).

Hence, there are

((
√
q + q)!)(q

2+1)(1+q+q2))((q+q2)!)(q4+1)(1+q2+q4)

possible line parallelisms of PG(24 − 1,
√
q).

3 Some Parallelisms Containing
Desarguesian Spreads

In this section, we mention some of the results and constructions on paral-
lelisms that may be used to construct a vast number of new infinite examples
of line parallelisms in higher dimensional spaces; i.e. applications of the gener-
alization of Beutelspacher’s construction.

We note that if K2 and K1 are fields, and V is a 2-dimensional K2-vector
space, then R is a Pappian spread in PG(3,K1) and within this spread K1 cor-
responds to a regulus. Hence, when the skewfields are fields, we are considering
those (line) spreads of PG(3,K1) that contain a given regular spread Σ.

There are many new examples of parallelisms in PG(3, q) admitting a given
regular parallelism, and we shall review a few of the various constructions.

The examples considered in Beutelspacher [1] basically involve a particular
example due to Denniston [3] using the Klein quadric. In particular, there is
a unique Desarguesian spread R in the parallelisms. Beutelspacher constructs
these parallelisms using a different method. In this case, the remaining spreads
of the parallelisms in PG(3, q) − R are taken to be to be Hall spreads, and it
is more or less implicit in Beutelspacher that the parallelisms are isomorphic,
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although Beutelspacher does not exclude the possibility that the parallelisms
are of the same basic type but still not isomorphic.

In Johnson [4], there is a construction of a class of parallelisms in PG(3,K1),
where K1 is a field that admits a quadratic extension fieldK2, using the full cen-
tral collineation group with fixed affine axis of a corresponding Pappian affine
plane coordinatized by K2 with spread Σ within PG(3,K1). Although the par-
allelisms obtained are of the same general type as the Denniston/Beutelspacher
parallelisms, the group construction allows a enumeration of isomorphism types.
The following constuctions are in [4].

9 Theorem. Let Σ be any Pappian spread in PG(3,K), where K is a field.
Let R be any regulus in the spread and L any line of R. Assume there exists a
second Pappian spread Σ′ in PG(3,K) containing R ( i.e. K not GF (2)).

Let L′ denote a line of Σ′ which is not in the spread of Σ.
Let G denote the full central collineation group of Σ with axis L.
Then, {Σ′g; g ∈ G} is a set of Desarguesian partial spreads which cover the

lines which are skew to L and not in Σ.

10 Theorem. Let Σ be a Pappian spread in PG(3,K) for K a field. Assume
that there exists a regulus R which is contained in at least two distinct Pappian
spreads Σ and Σ′. Let E be a fixed component of Σ and let G denote the full
group of central collineations of the affine translation plane A associated with
Σ with axis E.

Consider the set of spreads {Σ′g; g ∈ G} and form the Hall spreads Σ′g by
derivation of each Rg.

(1) Σ′g = Σ′g; there is a group of Σ acting transitively on the set of Hall
spreads.

(2) Σ ∪ {Σ′g; g ∈ G} is a parallelism consisting of one Pappian spread and
the remaining Hall spreads.

Using the previous construction, we may obtain another parallelism by the
derivation of Σ and Σ′.

11 Theorem. Under the assumptions of the previous theorem, let Σ denote
the Hall spread obtained by the derivation of R.

Then Σ ∪ Σ′ ∪ {Σ′g for g �= 1 of G} is a parallelism of PG(3,K).

We have mentioned previously the Denniston and Beutelspacher construc-
tions of parallelisms with one Desarguesian spread and the remaining spreads
of the parallelism are Hall. We shall see that there are a great variety of such
parallelisms. One benefit of the construction technique given in the previous
subsection is that we may determine the isomorphism classes of the parallelisms.

The results of the rest of this section are in Johnson and Pomareda [8].
The isomorphism results basically rely on the following connections between
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the collineation groups of Desarguesian and Hall spreads.
12 Theorem. Let π be a Pappian plane with spread in PG(3,K), for K

a field. If |K| > 3 then the full collineation group of a Hall plane constructed
from π by derivation of a regulus net R is the group inherited from π; the full
collineation group leaves the regulus net R invariant.

13 Corollary. Let π∗ and ρ∗ denote two Hall affine planes with spreads in
PG(3,K), for K a field, and let π and ρ denote the associated Pappian planes
which construct the indicated planes, respectively, by derivation of the regulus
nets Rπ and Rρ with opposite regulus nets R∗

π and R∗
ρ.

If |K| > 3 and π∗ is isomorphic to ρ∗ by a mapping σ then σ maps the
regulus net R∗

π onto the regulus net R∗
ρ.

14 Remark. We note that we shall distinguish notationally between a
spread R and the affine plane defined by the spread by using πR to denote
the plane. More generally, the translation net defined by a partial spread Z
shall be denoted by πZ .

15 Theorem. Let K be a field of cardinality > 3 and let Σ, Σ′, and Σ
′′

denote Pappian spreads containing a regulus R where Σ′ and Σ′′ are distinct
from Σ and let E denote the axis of the central collineation group G of πΣ.

Let PΣ,Σ′ = Σ∪{Σ′g; g ∈ G} and PΣ,Σ
′′ = Σ∪{ Σ′′

g; g ∈ G} be parallelisms
in PG(3,K).

(1) If σ is an isomorphism from PΣ,Σ′ onto PΣ,Σ′′ then σ is a collineation
of the Pappian plane πΣ which leaves invariant E and may be assumed to leave
πR invariant and maps Σ

′
onto Σ

′′
.

(2) Furthermore, we may assume that σ leaves at least three parallel classes
of πR invariant which implies that σ is an element of a group isomorphic to
ΓL(1,K2)/GL(1,K) where K2 denotes the quadratic extension of K correspond-
ing to the Pappian plane πΣ.

16 Corollary. Let K be any field for which there exists a quadratic field
extension K2. Let Q denote the set of all quadratic field extensions of K.

Then the group ΓL(1,K2)/GL(1,K) acts as a (not necessarily faithful) per-
mutation group on Q and the orbits not equal to K2 define the isomorphism
classes of the parallelisms PΣ,Σ′ where Σ is the Pappian spread defined by K2.

In the finite case and, for example, when K is the field of real numbers, all
quadratic field extensions are isomorphic. Since any such Pappian spread may
be embedded into PG(3,K), we see that the isomorphisms may be taken within
ΓL(4,K). However, when there exist non-isomorphic quadratic extensions, we
obtain other non-isomorphic parallelisms.

17 Corollary. Let Σ and ∆ denote Pappian spreads in PG(3,K), for K a
field of cardinality > 3. Let RΣ and R∆ denote reguli in Σ and ∆ respectively.
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Let Σ′ and ∆′ denote Pappian spreads distinct from Σ and ∆ respectively and
containing RΣ and R∆ respectively. Form the parallelisms PΣ,Σ

′ and P∆,∆
′ .

Then the two parallelisms are not isomorphic in any of the following situa-
tions:

(1) The field K2
Σ coordinatizing πΣ is not isomorphic to the field K2

∆ coor-
dinatizing π∆.

(2) Assuming that Σ and ∆ are isomorphic, the field K2
Σ′ coordinatizing πΣ

′

is not isomorphic to the field K2
∆

′ coordinatizing π∆
′ .

(3) Assuming that Σ and ∆ are isomorphic, identify Σ and ∆ under the
isomorphism. The field K2

Σ′ coordinatizing πΣ
′ and the field K2

∆′ coordinatizing
π∆

′ are in distinct ΓL(1,K2)/GL(1,K) orbits.

Using the above result in the finite case, the following may be obtained:

18 Theorem. If K . GF (q) then the number of mutually non-isomorphic
parallelisms is at least

1 + [(q − 3)/2r] for q odd or
[(q/2− 1)/2r] for q even

where q = pr for r a positive integer and p a prime.
If q = p, an odd prime, then the number of mutually non-isomorphic paral-

lelisms is exactly (p− 1)/2.

Any parallelism obtained via the group construction given above will be
called a ‘Johnson parallelism’.

We now consider parallelisms of the second class of parallelism constructed.
That is, let Σ denote the Hall spread obtained by the derivation of R and let P
denote the previously constructed parallelism.

Then Σ ∪Σ′ ∪ {P−{Σ, Σ′}} is a parallelism of PG(3,K). We shall call this
a parallelism P∗ ‘derived’ from P.

We first note that any such parallelism P∗ admits a collineation group iso-
morphic to GR.

We now ask if there is any enumeration process for the derived Johnson
parallelisms. We first note the following theorem:

19 Theorem. Any parallelism Σ ∪ Σ′ ∪ {P−{Σ, Σ′}} = P∗ admits GR as
a collineation group that fixes Σ and Σ′ for R a regulus contained in Pappian
spreads Σ and Σ′

Furthermore, if |K| > 3 then the full collineation group must leave Σ and Σ′

invariant and permute the set of reguli {Rg; g ∈ G}.
20 Corollary. Assume that |K| > 3.
Let Σ′ and Σ′′ be Pappian spreads distinct from Σ and containing R.
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Form the two parallelisms Σ ∪ Σ′ ∪ {P−{Σ, Σ′}} = P∗
Σ′ and parallelism

Σ ∪ Σ′′ ∪ {P−{Σ, Σ′′}} = P∗
Σ′′.

Then any isomorphism from P∗
Σ′ onto P∗

Σ′′ must map Σ′ onto Σ′′ maps Σ
onto Σ, permutes the set {Rg ; g ∈ G} and leaves the axis of G invariant.

21 Corollary. Assume that |K| > 3. Two derived parallelisms are isomor-
phic if and only if the two original parallelisms are isomorphic.

That is, P∗
Σ′ is isomorphic to P∗

Σ′ if and only if the parallelism PΣ′ is iso-
morphic to PΣ′′.

22 Theorem. A derived parallelism P∗ cannot be isomorphic to P.
We now have:

23 Theorem. Let P∗ be a derived Johnson parallelism in PG(3, q) for q >
3.

(1) Then the full projective collineation group HP∗ of P∗ is a collineation
subgroup of ΓL(2, GF (q2)) which fixes a derivable net R and a component E of
R. This group contains a central collineation group C of order q(q−1) with axis
E that acts 2-transitively on the components of R− E.

(2) HP∗is a subgroup of C ·GalGF (q2).

Hence, we have the following conclusions:

24 Conclusion. If q is odd pr for p an odd prime then there are at least
2(1+ [(q−3)/2r] mutually non-isomorphic parallelisms in PG(3, q) constructed
as above.

If q is an odd prime then there are exactly p − 1 mutually non-isomorphic
parallelisms in PG(3, q) obtained by the group and derivation constructions.

25 Conclusion. If q is even, there are at least 2[(q/2 − 1)/2r] mutually
non-isomophic parallelisms obtained by the group and derivation constructions.

26 Theorem. Let K be an infinite field which admits a non-square. Let the
automorphism group have cardinality Ao.

(1) Then there are at least cardK/Ao mutually non-isomorphic parallelisms.
(2) Let K be any subfield of the reals. Then there are at least cardK mutually

non-isomorphic parallelisms.
In particular, if K is the field of real numbers then there are 2κomutually

non-isomorphic parallelisms.
(3) If K is the field of real numbers then there are 2χo mutually non-

isomorphic group Johnson parallelisms and 2χo mutually non-isomorphic de-
rived Johnson parallelisms in PG(3,K).

27 Theorem. Let K be a skewfield and Σ a spread in PG(3,K). As-
sume that there exists a partial parallelism P containing Σ that admits as a
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collineation group a central collineation group G of Σ with axis E that acts two-
transitively on the remaining lines of Σ.

Then
(1) Σ is Pappian,
(2) the spreads of P−{Σ} are Hall and
(3) P is a Johnson parallelism.

4 Applications of Beutelspacher’s Construction

We have noted that whenK1 is infinite, line parallelisms are essentially ubiq-
uitous by Beutelspacher. On the other hand, there is little control on the spreads
in the sense that there is essentially no knowledge or classification regarding the
spreads or the parallelisms. The previous section gives a construction of a large
variety of line parallelisms in PG(3,K1), where K1 is an arbitrary field that
admits a quadratic field extension K2. Furthermore, there are classification re-
sults using collineation groups that may potentially be used in the extension of
parallelisms in higher dimensional projective spaces.

Using the extension theorem, we can construct line parallelisms in projective
spaces as follows:

Assume that there is a set of fields K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kk ⊆ Kk+1 such
that Ki+1 is a quadratic extension of Ki for i = 1, 2, . . . , k. To begin, assume
that k = 5.

To construct a line parallelism of PG(23 − 1,K1), we consider K4 as a K2-
vector space and take the Pappian spread of all 1-dimensional K2-subspaces of
K4. This becomes a Pappian spread S4 of PG(23−1,K1). Any two components
g and h of S4 generate a 2-dimensionalK2-subspace which becomes a PG(3,K1)
and S4 induces a Pappian spread in PG(3,K1) coordinatizable by K2. By the
method of the previous section, we may first choose any line parallelism of
such a PG(3,K1) that contains a Pappian spread coordinatizable by K2 and
consider that spread induced by S4. We then may choose any line parallelism P2

of PG(22 − 1,K2). Since, K3 exists, our previous method allows the existence
of a line parallelism here. Hence, we have obtained a variety of parallelisms in
PG(23 − 1,K1) by the extension of Beutelspacher’s construction.

Since k = 5 in our initial situation, we may also construct a variety of
parallelisms in PG(23 − 1,K2). To continue, take K5 as a K2-vector space of
dimension 23 and form the set of 1-dimensional K2-subspaces of K5 which then
becomes a Pappian line spread S5 of PG(24 − 1,K1). This Pappian line spread
also induces in any associated PG(3,K1) determined by two components g and
h the Pappian line spread coordinatizable by K2. Another application of the
extension theorem produces a line parallelism in PG(24 − 1,K1).
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So, in the general case z = 1, 2, . . . , k, we may similarly construct line par-
allelisms in PG(2a − 1,K1) for a = 2, 3, . . . , k − 1.

28 Theorem. (1) Let K1 be a field and K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kk ⊆ Kk+1

such that Ki+1 is a quadratic field extension of Ki for i = 1, 2, . . . , k. Assume
that Vz is a 2z-dimensional Kz-vector space. Then, there exist line parallelisms
in PG(2z − 1,K1) for all z = 2, . . . , k.

(2) If there is an infinite sequence of fields each a quadratic extension field
of the previous then then exist line parallelisms in PG(2z−1,K1) for all positive
integers z.

(3) If there is another sequence K1 = K ′
1 ⊆ K ′

2 ⊆ K ′
3 ⊆ · · · ⊆ K ′

k ⊆ K ′
k+1,

such that K ′
i+1 is a quadratic field extension of K ′

i, then, there exist another set
of line parallelisms in PG(2z − 1,K1), for all z = 2, 3, . . . , k.

If K2 is not isomorphic to K ′
2 and the parallelisms are chosen so that there is

a unique Pappian spread R and R′ in a parallelism using the corresponding se-
quence then none of these line parallelisms can be isomorphic to their analogues
of (1).

Proof. Assume that there is an infinite sequence of fields. Whenever there
is a construction of a line parallelism in PG(2a − 1,K1), there is an analogous
construction in PG(2a−1,K2). Then using the line parallelism in PG(2a−1,K2)
together with a choice of parallelism for each associated PG(3,K1) containing
a spread induced from a Pappian line spread of PG(2a+1 − 1,K1) taken as
constructed from the 1-dimensionalK2-subspaces ofKa+2, there is a constructed
line parallelism in PG(2a+1 − 1,K1).

If we have a parallelism of PG(2a − 1,K1) containing R and a parallelism
of PG(2a − 1,K1) containing R′ but all other spreads are non-Pappian then
an isomorphism from one to the other must map R onto R′, implying that
PG(V −1,K2) is isomorphic to PG(V −1,K ′

2), for an appropriate vector space
V , which, in turn, implies that K2 is isomorphic to K ′

2. QED

29 Example. Let K1 be the field of rational numbers. Then there are
κo-distinct infinite sequences of fields each a quadratic extension of the pre-
vious field. Each such sequence provides a set of line parallelisms as above.
Furthermore, there are choices of infinitely mutually non-isomorphic subfields
K2 quadratic over K1. Any such sequence with the choice of exactly one Pap-
pian spread within the parallelism produces an infinite number of mutually
non-isomorphic line parallelisms of each order.
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5 Final Remarks

We have shown that given any field K that admits a quadratic extension
F , there are a variety of line parallelisms in PG(3,K) each containing a Pap-
pian spread. However, there are many other examples of such line parallelisms
containing a Pappian spread in the author’s work and in the construction meth-
ods of the author and Pomareda (see Johnson [6], and Johnson-Pomareda [10],
[7], [9]). Hence, we have not attempted to give any sort of classification of the
tremendous variety of line parallelisms that may be constructed using the ex-
tension of Beutelspacer’s theorem.

We end with a problem:
30 Problem. Using isomorphism conditions of PG(3, L), for various fields

L, determine conditions that ensure that the parallelisms constructed in higher
dimensional projective spaces are mutually non-isomorphic.

References

[1] A. Beutelspacher: On parallelisms in finite projective spaces, Geometriae Dedicata 3
(1974), 35–40.

[2] A. Beutelspacher: Parallelismen in unendlichen projektiven Räumen endlicher Dimen-
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