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Abstract. The concept of ‘critical deficiency’ of a finite net is generalized to the infinite
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Introduction

Let N be a finite net of order q2 and degree q2−q. Such a net is said to have
‘critical deficiency’. In [8], Ostrom showed that there are at most two extensions
of a net of critical deficiency to an affine plane and if there are two then these
affine planes are derivable and one plane is the derivate of the other.

Of course, infinite derivable affine planes are very much of interest so, in this
note, we explore what might be a definition of ‘critical deficiency’ of infinite nets.
If there are two extensions, we would want these affine planes to share all lines
but lines on a net capable of containing a Baer subplane.

We recall that a subplane of a projective plane is said to be a ‘point-Baer
subplane’ if and only if every point of the plane is incident with a line of the
subplane. Similarly, a subplane is said to be a ‘line-Baer subplane’ if and only if
every line of the plane is incident with a point of the subplane. An affine subplane
of an affine plane is point-Baer or line-Baer if and only if the corresponding
projective extension of the subplane is point-Baer or line-Baer in the projective
extension of the plane.

In the finite case, we may define a net of ‘critical deficiency’ without assuming
that the net may be embedded in an affine plane let alone two affine planes. But,
when there are two extensions, there is an associated Baer subplane of either
extension which extends the net. In the infinite case, we essentially require the
existence of at least a point-Baer subplane to come to grips with the notion of
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critical deficiency.
Hence, we may arrive at the following definition:

1 Definition. Let N be an arbitrary net such that there exists an affine
plane π1 which extends it. If there exists a point-Baer subplane πo of π1 of
π1 −N , such that each line of π either intersects the projective closure of πo or
of N , we shall say that the net N is of ‘critical deficiency’.

In the finite case, there is no distinction between point-Baer and line-Baer
subplanes and, in such a case, the order of N must be a square q2. Further-
more, it follows immediately that the net N has degree q2 − q and is of critical
deficiency.

In Johnson [6], it is noted that there exist derivable nets in non-derivable
affine planes. Furthermore, it is shown there that any derivable net may be
extended to an affine plane. If the planes are non-derivable, the planes are nec-
essarily infinite, so the natural conclusions on nets of critical deficiency become
more complicated in the infinite case. We separate the questions as follows:

(1) If M is a derivable net that is extended to two distinct affine planes π1

and π2, are the planes derivable?

(2) Are two planes extending a net of critical deficiency derivable and derivates
of each other?

In this note, we are able to deal with question (2) when the two planes comes
from spreads in PG(3,K) for K a skewfield.

More generally, we have considered the following question in the finite case
in a recent work on finite nets which are transversal-free (see Jha and Johnson
[1]):

Let π1 be a translation plane with point-Baer subplane πo. Let N
denote the net defined by the components of πo and let Sπo denote the
set of all Baer subplanes of the net N . Then does M = (π1 −N) ∪ Sπo

correspond to a maximal partial spread?
We note that it is not even clear that we obtain a corresponding net in this

case as we might not obtain a partial spread let alone a maximal partial spread.
In previous work (see e.g. Jha and Johnson [3]), the authors note that it is

possible to consider maximal partial spreads, called quasifibrations, which are
always infinite. In this note, we show that Bruen’s construction for maximal
partial spreads holds in the case that the spreads are in PG(3,K) for K a
skewfield and answer the question above in this setting. So, we show that if
there is one point-Baer subplane then any other extensions by K-subspaces are
also point-Baer subplanes.
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1 The Main Structure Theorem

2 Theorem. Let N be a net of critical deficiency arising from a partial
spread in PG(3,K), K a skewfield, and π1 is a translation plane with spread
in PG(3,K) extending N where the associated point-Baer subplane πo is a 2-
dimensional left K-subspace.

Then any extension net N+ meeting the lines of π1 in exactly N and defined
by a partial spread in PG(3,K) is obtained by adjoining Baer subplanes of π1−N
to N .

If N+ is an affine plane then K is a field and the adjoined net defines a
regulus in PG(3,K) so that N+ = π2 and π1 are derivates of each other.

Proof. Let πo be a point-Baer subplane of πo as in the definition of critical
deficiency and let M denote the net of π1 containing πo. Let E2 be any 2-
dimensional K-subspace which extends N . We claim E2 shares all components
of M . To see this, we require a vector based argument.

Since πo is a 2-dimensional (left) K-subspace, we may choose bases for the
spread of π1 such that the net M contains components x = 0, y = 0, y = x,
and E2 = 〈(0, 1, 0, 0), (0, 0, 0, 1)〉. It then follows that the net M has components

x = 0, y = x

[
u f(u,w)
0 w

]
for all w ∈ K where u ∈ K and f is a function on

K ×K.
Now E2 is a 2-dimensional subspace so, by Johnson [6], E2 is a line-Baer

subplane of π1. Hence, the subplane intersects M at least three components.
We re-choose the basis so that the two subplanes πo and E2 share x = 0, y = 0
and y = x and since the subplanes are 2-dimensional K-subspaces, it follows
that E2 has the form Ts,t = 〈(s, t, 0, 0), (0, 0, s, t)〉 where not both s and t are zero.
We consider the 1-dimensional subspace T v

s,t = 〈(s, t, sv, tv)〉 for fixed v ∈ K.
Note that T v

s,t must lie on some subset of the components of M which have the

form x = 0, y = x
[
u f(u,w)
0 w

]
. We may assume that s �= 0. Hence, we must

have the intersection component defined by (s, t)
[
u f(u,w)
0 w

]
= (sv, tv).

Since s is non-zero, it follows that u = v. Furthermore, sf(u,w) + tw = tv.
First assume that t = 0. Then sf(u,w) = 0 so that f(u,w) = 0.

Without loss of generality, we may choose a second subplane to have basis
such that E2 = Ts,0 without alternating our basic coordinatization. Hence, the

coordinates that Ts,0 intersects have the general form x = 0, y = x
[
v 0
0 w

]
for

all v ∈ K and for certain w′s in K. To show that Ts,0 intersects all components
of M , we need to show that w takes on all elements of K. Note that since



52 V. Jha, N. J. Johnson

we obtain a partial spread, it follows that w = g(v) for some function g of
K and since the difference of matrices is non-singular, it follows that g is also
1 − 1. Suppose that there is a component of M which E2 does not intersect.

Then there is such a component of the form y = x

[
u f(u,w)
0 w

]
. But, E2

intersects y = x

[
u 0
0 g(u)

]
and the difference of the associated matrics is[

0 f(u,w)
0 w − g(w)

]
which must be non-singular. Thus, w = g(w) and f(u,w) = 0.

So, it follows that E2 and πo share all of their components as subplanes. It then
follows immediately from Jha and Johnson [4], Prop. 43, that these line-Baer
subplanes are also point-Baer subplanes; the subplanes are Baer subplanes of
the associated translation plane π1.

Now assume that N is contained in two translation planes π1 and π2 with
spreads in PG(3,K).

Now suppose that there are exactly two components inM . Then every point
on x = 0 of M is in the union of two 1-dimensional subspaces. Since x = 0 is a
2-dimensional subspace, this is impossible.

Hence, there are at least three subplanes of M .
Since πo = T0,1 and E2 = T1,0 share all of their components, we may assume

that the three subplanes share at least three components which we take as x = 0,
y = 0, y = x. It then follows easily that any third subplane must have the form

Ts,t for st �= 0. Hence, we must have that (s, t)
[
u 0
0 g(u)

]
= (sv, tv) which

implies that u = v = g(u) so that Ts,t intersects all of the components ofM and

furthermore that M has the form x = 0, y = x
[
u 0
0 u

]
for all u ∈ K.

Hence, it follows (see e.g. Johnson [7]) that M is a derivable net and the
components of π2− π1 are the Baer subplanes of M which we have pointed out
are also Baer subplanes of π1. Hence, π1 is derivable and the derivation of M
produces π2. Since the derivable net is also a regulus, it follows that K is a field.
This proves all parts of the theorem. QED

2 Maximal Partial Spreads

Applying the result of the previous section to the construction of maximal
partial spreads in PG(3,K), we obtain:

3 Theorem. Let N be a net of critical deficiency in a translation plane
π with spread in PG(3,K), where the defining point-Baer subplane πo is a left
2-dimensional K-subspace and let Sπo denote the set of Baer subplanes of π−N
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incident with the zero vector which are left 2-dimensional K-subspaces.
Then (π −N) ∪ Sπo is a maximal partial spread in PG(3,K).

Proof. This follows immediately from the previous theorem. QED

In the finite case, we know that there when there is one Baer subplane of a
net defined by the components of the subplane, then there are either 1, 2 or q+1
Baer subplanes incident with the zero vector which are K = GF (q)-subspaces.
In the finite case, when there are q + 1 subplanes, the net is a regulus. In the
infinite case, we have more variety as when K is a skewfield which is not a
field, even when the net is a pseudo-regulus net since it is not the case that all
Baer subplanes are K-subspaces when we restrict ourselves to having say ‘left’
K-subspaces.

For pseudo-regulus nets over a skewfield K, the set of Baer subplanes which
are are 2-dimensional left K-subspaces corresponds to the projective line over
Z(K).

4 Theorem. Let π be a translation plane with spread in PG(3,K) where
K is a skewfield. Assume that πo is a point-Baer subplane of π which is a left
K-subspace. Let M denote the set defined by the components of πo. Let Sπo

denote the set of point-Baer subplanes of M which are left K-subspaces.
Then Sπo consists of either 1 or 2 point-Baer subplanes or corresponds to

PG(1, Z(K)) and, in all cases, (π − M)∪Sπo is a maximal partial spread in
PG(3,K).

3 Examples

5 Definition. If Sπo has i-point-Baer subplanes which are K-subspaces, we
shall say that the corresponding maximal partial spread constructed as above
is of ‘type i’.

We note that K could be of finite characteristic p and conceivably Z(K)
could be finite. In this case, the corresponding maximal partial spreads are of
type 1 + |Z(K)|.

In particular, it is possible that there are maximal partial spreads of type
1 + pj for any j and prime p.

In Jha and Johnson [2], the authors construct examples of what are called
‘skew Hall’ planes whose spreads are in PG(3,K), for K a skewfield which is
not a field, and which admit a variety of derivable nets all of which produce
maximal partial spreads of type 1 + |Z(K)|.

When K is a field which admits a quadratic field extension F, there is an
extension procedure called ‘lifting’ which produces spreads in PG(3, F ) from
spreads in PG(3,K). In the infinite case, there is a more general geometric
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object of related interest termed a ‘quasifibration’ which is either a spread or a
proper maximal partial spread. It is noted in Johnson [5] that quasifibrations
may be ‘lifted’.

6 Theorem (Johnson [5]). Let π be translation net with quasifibration S
in PG(3, F ), for F a field. Assume that there is a quadratic extension field K
with basis {1, θ} such that θ2 = θα+β for α, β ∈ F . Choose any quasiquasifield
(coordinate structure for the translation net associated with the quasifibration)
and write the quasifibration as follows:

x = 0, y = x
[
g(t, u) h(t, u)− αg(t, u) = f(t, u)
t u

]
∀t, u ∈ F

where g, f and unique functions on F × F and h is defined as noted via α.
Define F (θt+ u) = −g(t, u)θ + h(t, u).
Then

x = 0, y = x
[
θt+ u F (θs+ v)
θs+ v (θt+ u)σ

]
∀t, u, s, v ∈ F

is a quasibration SL in PG(3, q2) called the quasifibration ‘algebraically lifted’
from S.

Furthermore, SL is a spread if and only if S is a spread.
We note that there is a derivable net

x = 0, y = x
[
w 0
0 wσ

]
∀w ∈ K

and σ the involution in GalFK

which contains exactly two Baer subplanes which are K-subspaces.

Hence, we obtain:

7 Theorem. Let π be any translation plane with spread (resp. quasifibra-
tion) in PG(3,K) for K a field which admits a quadratic field extension F .
Then, any spread-set representation of the spread (resp. quasifibration) of π may
be lifted to a spread (resp. quasifibration) in PG(3,K) which admits a derivable
net D such that there are exactly two Baer subplanes of the net D that are
K-subspaces. This construction produces maximal partial spreads (resp. quasifi-
brations) of type 2 for any field K admitting a quadratic field extension.
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