A supplement to the Alexandrov-Lester Theorem

Frieder Knüppel
Mathematisches Seminar der Universität Kiel
D-24118 Kiel, Germany
knueppel@math.uni-kiel.de

Klaus Nielsen
Rechenzentrum der Universität Kiel
D-24118 Kiel, Germany
nielsen@rz.uni-kiel.de

Received: 14 February 2002; accepted: 25 April 2002.

Abstract

Let V be the 4 -dimensional Minkowski-space of special relativity over the reals with quadratic form Q. Consider a mapping $\psi: V \rightarrow V$ such that $Q(x-y)=0 \quad \Leftrightarrow \quad Q(x \psi-$ $y \psi)=0$ for all $x, y \in V$. Under the assumption that ψ is a bijection Alexandrov's theorem states that ψ is a linear bijection followed by a translation. Our results imply (as a special case) that the assumption of ψ being a bijection can be dropped.

Keywords: distance-preserving mappings, collineations, orthogonal groups, special relativity.
MSC 2000 classification: 51N30; 51F25, 83A05, 51M05, 51P05.

Introduction and result

Let V be a vector space over a field K endowed with a quadratic form Q and let $f: V \times V \rightarrow K, f(x, y):=Q(x+y)-Q(x)-Q(y)$ denote the associated symmetric bilinear form. Hence $f(x, x)=2 Q(x)$.

We assume that $V^{\perp}=\{x \in V \mid f(x, y)=0$ for all $y \in V\}=\{0\}$ and V is isotropic, i.e. $Q(v) \neq 0$ for some $v \in V \backslash\{0\}$ and $\operatorname{dim} V \geq 3$.

Also, we assume for convenience from the beginning that V is finite-dimensional.

For any $a \in V$ let $C_{a}:=\{a+v \mid v \in V, \quad Q(v)=0\}$ denote the 'cone' with center a. Each cone has a unique center. The set of isotropic vectors of V is $C:=C_{0}$.

For a mapping $\psi: V \rightarrow V$ we study the property
(d) $Q(x-y)=0 \quad \Leftrightarrow \quad Q(x \psi-y \psi)=0$
for all $x, y \in V$.
Using cones the property can be rephrased: $y \in C_{x}$ if and only if $y \psi \in C_{x \psi}$, for all $x, y \in V$.

We quote a by now classical theorem.
1 Theorem (A. D. Alexandrov [1] and J. Lester [6]). Let $\psi: V \rightarrow$ V be a bijection satisfying property (d). Then there is a semilinear bijection $\varphi: V \rightarrow V$ (with associated automorphism ${ }^{-}$of K) and a number $\lambda \in K \backslash\{0\}$ such that
(1) $\psi=\varphi \tau$ where $\tau: V \rightarrow V$ is the translation $v \mapsto v+0 \psi$,
(2) $Q(x \varphi)=\lambda \cdot \overline{Q(x)}$ for all $x, y \in V$.

The assertion holds true even when V has infinite dimension. A brief proof to the theorem was published by E. M. Schröder [7].

We want to drop the assumption that ψ is a bijection and use only property (d). We shall see that injectivity of ψ can be proved without further assumptions. However, surjectivity seems to be a major problem and our proof of the following main result requires several arguments.

2 Theorem. Suppose that K is a field such that each monomorphism of K is surjective.

Let $\psi: V \rightarrow V$ satisfy

$$
\text { (d) } Q(x-y)=0 \quad \Leftrightarrow \quad Q(x \psi-y \psi)=0
$$

for all $x, y \in V$.
Then one has a semilinear bijection $\varphi: V \rightarrow V$ (with associated automorphism - of $K)$ and a number $\lambda \in K \backslash\{0\}$ such that
(1) $\psi=\varphi \tau$ where $\tau: V \rightarrow V$ is the translation $v \mapsto v+0 \psi$,
(2) $Q(x \varphi)=\lambda \cdot \overline{Q(x)}$ for all $x, y \in V$.

3 Remark. The assumption that each monomorphism of K is surjective is necessary. Indeed, if e_{1}, \ldots, e_{n} is a basis for V such that $f\left(e_{i}, e_{j}\right)$ is in the prime field and - is a monomorphism of K then the mapping $V \rightarrow V$, $\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n} \mapsto \overline{\lambda_{1}} e_{1}+\cdots+\overline{\lambda_{n}} e_{n}$ satisfies property (d). Also the property $\operatorname{dim} V<\infty$ cannot simply be deleted.

In the sequel we will prove the above result.

1 Basic arguments and propositions

A subvectorspace is called isotropic if it is spanned by its isotropic vectors.
A subset $M \subseteq V$ is called a null set if $Q(x-y)=0$ for all $x, y \in M$. Hence an affine subspace $a+U$ (where $a \in V$ and U is a subvectorspace of V) is a null set if and only if $Q(u)=0$ for all $u \in U$.

A null subvectorspace U is also called a totally isotropic subvectorspace. This means that $Q(u)=0$ for each $u \in U$.

Notation For $c \in V$ let $\tau_{c}: V \rightarrow V, v \tau_{c}=v+c$ denote the translation assigned to c.

For each mapping $\psi: V \rightarrow V$ and $a \in V$ let $\psi_{a}:=\tau_{a} \psi \tau_{-a \psi}$.
Observe that $0 \psi_{a}=0$ for each $a \in V$ and $V \psi_{a}=V \psi-a \psi$. If ψ satisfies property (d) then ψ_{a} satisfies also (d).

Further, ψ is injective (surjective) if and only if ψ_{a} is injective (surjective). If ψ fulfills $(x+y) \psi=x \psi+y \psi$ for all $x, y \in V$ then $\psi_{a}=\psi$ for each $a \in V$.
4 Lemma. Let $\psi: V \rightarrow V$ be a mapping with the property

$$
\text { (c) } \quad C_{a \psi} \subseteq V \psi
$$

for each $a \in V$ (i.e. if the image of ψ contains the point $a \psi$ then it contains the cone whose center is $a \psi$). Then ψ is surjective.

Proof. For each $b \in V$ the mapping ψ_{b} satisfies also property (c). Let $T:=V \psi_{0}$. Then $0 \in T$ and $C_{a} \subseteq T$ for each $a \in T$. This implies $T=V$, hence ψ_{0} and also ψ is surjective. QED

5 Proposition. Let $\psi: V \rightarrow V$ satisfy property (d) (see introduction). Then ψ is injective.

Proof. Let $x, y \in V$ such that $x \psi=y \psi$. Put $\varphi:=\psi_{y}$. Then φ satisfies (d) and $0 \varphi=0=a \varphi$ where $a:=x-y$. As $0=Q(0)=Q(a \varphi)=Q(a \varphi-0 \varphi)$ property (d) implies $a \in C$. Each $b \in C$ fulfills $Q(a \varphi-b \varphi)=Q(0-b)=0$, hence $Q(a-b)=0$ and thus $b \in a^{\perp}$. As $\langle C\rangle=V$ we conclude that $V \subseteq a^{\perp}$, hence $a=0$ and $x=y$.

6 Corollary. If ψ fulfills properties (d) and (c) then ψ is a bijection.

A physical interpretation The vectors of V are results of physical observations (measurements) obtained by an observer A; each result $w \in V$ corresponds to an 'event'. A second observer B obtains $w \psi$ when he applies his device to the same event.

Observer A watches a lightray joining two events if and only if the corresponding measurements fulfill $Q(x-y)=0$. The analogue interpretation applies to observer B. Then (d) claims: A watches a lightray joining a pair of events if and only if B watches a lightray joining the events.

Property (d) implies (due to the previous proposition): if observer A distinguishes two events with his device then B will also obtain distinct results for the respective events.

Surjectivity of ψ means that both the devices of A and B have the same range.

Assumptions In the sequel let $\psi: V \rightarrow V$ satisfy (d).
Hence ψ is injective by the previous proposition 5 .
We will not assume surjectivity of ψ.
The mapping $\varphi:=\psi_{0}$ satisfies (d) and $0 \varphi=0$ and it is also injective. In the sequel we focus on φ.

7 Lemma. (1) If $S \subseteq V$ is a null set then $S \varphi$ is also a null set.
(2) A maximal null set of V is an affine subspace (maximal refers to \subseteq). A maximal null set of V containing 0 is a sub-vectorspace (of dimension $\operatorname{ind}(V, f)$, the Witt-index of $(V, Q))$.
(3) Let T be an affine null subspace. Then $T=\bigcap S$ where S is the set of all maximal null subsets of V containing T.
The proofs are straightforward.
8 Proposition. Let U and W be null subvectorspaces of V such that $U \subset W$ (properly contained). Then $\langle U \varphi\rangle \subset\langle W \varphi\rangle$ (also properly contained).

Proof. We may assume that $W=U \oplus\langle w\rangle, w \in W$. Clearly, $\operatorname{rad}\left(U^{\perp}\right):=$ $U \cap U^{\perp}=U$ and $w \in U^{\perp} \backslash\left(\operatorname{rad}\left(U^{\perp}\right)\right)$ is an isotropic vector. Hence U^{\perp} is spanned by its isotropic vectors. Further, $U^{\perp} \nsubseteq w^{\perp}$. Hence there is some isotropic vector $v \in U^{\perp} \backslash w^{\perp}$. This implies $f(u, v)=0 \neq f(w, v)$ for all $u \in U$, hence $Q(u-v)=$ $0 \neq Q(w-v)$ and by (d) $Q(u \varphi-v \varphi)=0 \neq Q(w \varphi-v \varphi)$. Thus $f(u \varphi, v \varphi)=$ $0 \neq f(w \varphi, v \varphi)$ for all $u \in U$. We proved that $\langle U \varphi\rangle \subseteq v \varphi^{\perp}$ and $w \varphi \notin v \varphi^{\perp}$. So $w \varphi \notin\langle U \varphi\rangle$ and $W \varphi \nsubseteq\langle U \varphi\rangle$. QED

9 Corollary. Let U be a null subvectorspace of V. Then $\operatorname{dim}\langle U \varphi\rangle=\operatorname{dim} U$. In particular, $\langle v\rangle \varphi \subseteq\langle v \varphi\rangle$ for each $v \in C$.

Proof. Consider a proper chain $U_{0}=O \subset U_{1} \subset \cdots \subset U_{k}$ of maximal length consisting of null subvectorspaces of V where $U=U_{j}$ for some j. By the previous proposition $\left\langle U_{0} \varphi\right\rangle=O \subset\left\langle U_{1} \varphi\right\rangle \subset \cdots \subset\left\langle U_{k} \varphi\right\rangle$ is a proper chain of totally isotropic subspaces. Hence

$$
k \leq \operatorname{dim}\left\langle U_{k} \varphi\right\rangle \leq \operatorname{ind}(V, f)=k
$$

and therefore $\operatorname{dim}\left\langle U_{i} \varphi\right\rangle=i=\operatorname{dim} U_{i}$. - Our proof needs that $\operatorname{ind}(V, f)$ is finite. QED

10 Corollary. Let $\Gamma=a+\langle v\rangle$ be an affine null line. Then $\Gamma \varphi \subseteq a \varphi+\left\langle v \varphi_{a}\right\rangle$.

Proof. As φ_{a} satisfies the assumptions used for φ (namely (d) and $0 \varphi=0$) the above corollary holds also true for φ_{a}. We conclude $\Gamma \varphi=a \varphi+\langle v\rangle \tau_{a} \varphi \tau_{-a \varphi}=$ $a \varphi+\langle v\rangle \varphi_{a} \subseteq a \varphi+\left\langle v \varphi_{a}\right\rangle$.

11 Lemma. Let $v \in C$ (i.e. v is isotropic) and $w \in V$.
(1) If $w \in C$ then

$$
w \perp v \quad \Leftrightarrow \quad w \varphi \perp v \varphi
$$

(2) If $w \notin C$ then

$$
w \perp v \Leftarrow w \varphi \perp v \varphi
$$

Proof. (1) We have $w \in v^{\perp} \Leftrightarrow Q(v-w)=0 \Leftrightarrow Q(v \varphi-w \varphi)=0 \Leftrightarrow w \varphi \in$ $v \varphi^{\perp}$, where we take into account that $v \varphi$ and $w \varphi$ are isotropic vectors.
(2) Clearly, $w \notin v^{\perp} \Leftrightarrow Q(\lambda v-w)=0$ for some $\lambda \in K \Leftrightarrow Q((\lambda v) \varphi-w \varphi)=0$ for some $\lambda \in K$.
Now $(\lambda v) \varphi \in\langle v\rangle \varphi \subseteq\langle v \varphi\rangle$ by the previous corollary. Hence the last statement in the above chain of equivalences implies that $Q(\mu(v \varphi)-w \varphi)=0$ for some $\mu \in K$. This holds true if and only if $w \varphi \notin v \varphi^{\perp}$.

12 Corollary. Let U be a totally isotropic subvectorspace of V. Then $\left.\varphi\right|_{U}$: $U \rightarrow\langle U \varphi\rangle$ is an injective mapping of U into $\langle U \varphi\rangle$ such that $\operatorname{dim} U=\operatorname{dim}\langle U \varphi\rangle$ and $\left.\varphi\right|_{U}$ preserves collinearity (given in the affine spaces assigned to U respectively to $\langle U \varphi\rangle$).

This is an immediate consequence of the previous two corollaries.
We will use the following theorem (see e.g [4] page 104, A.3.1) that is based on a more general result by H . Schaeffer for 2-dimensional vector spaces.

Affine Collineation Theorem. Let U and W be n-dimensional vector spaces over the same field K (n an integer ≥ 2). Suppose that each monomorphism of K is surjective and $|K| \geq 3$.

Let $\alpha: U \rightarrow W$ be an injective mapping that preserves collinearity and such that $U \alpha$ is not contained in a hyperplane of W and $0 \alpha=0$.

Then α is is a semilinear bijection; i.e. there is an automorphism ${ }^{-}$of K such that $(x+y) \alpha=x \alpha+y \alpha$ and $(\lambda x) \alpha=\bar{\lambda}(x \alpha)$ for all $x, y \in V$ and $\lambda \in K$.

If K is finite then the mapping φ under investigation is a bijection. Hence the condition $|K| \geq 3$ is irrelevant in our arguments.

The only monomorphism of \mathbb{R} is the identity, hence the Affine Collineation Theorem subsumes $K=\mathbb{R}$.

The previous corollary and the Affine Collineation Theorem yield

13 Lemma. Suppose that each monomorphism of K is surjective.
Let U be a totally isotropic subvectorspace of V such that $\operatorname{dim} U \geq 2$. Then $U \varphi$ is a totally isotropic subvectorspace of V such that $\operatorname{dim}(U \varphi)=\operatorname{dim} U$ and the restriction $\left.\varphi\right|_{U}: U \rightarrow U \varphi$ is a semilinear bijection.

14 Corollary. Suppose that each monomorphism of K is surjective and $\operatorname{ind}(V, f) \geq 2$. Then $\langle v\rangle \varphi=\langle v \varphi\rangle$ for each isotropic vector v.

Proof. Select a 2-dimensional totally isotropic sub-vectorspace of V containing v and apply the previous lemma.

15 Lemma. Suppose that $\langle v\rangle \varphi=\langle v \varphi\rangle$ for each $v \in C$. Then all $v \in C$ and $w \in V$ satisfy

$$
(\perp) \quad v \perp w \quad \Leftrightarrow \quad v \varphi \perp w \varphi
$$

In particular, $v^{\perp} \varphi=v \varphi^{\perp} \cap V \varphi$.
Proof. We must only consider the case ${ }^{\prime} \Rightarrow^{\prime}$ when w is anisotropic; cf. 11. If the right-hand statement is not true then $Q(\mu(v \varphi)-w \varphi)=0$ for some $\mu \in K$. The assumption $\langle v\rangle \varphi=\langle v \varphi\rangle$ yields that $\mu(v \varphi)=(\lambda v) \varphi$ for some $\lambda \in K$, hence $Q((\lambda v) \varphi-w \varphi)=0$ and by (d) $Q(\lambda v-w)=0$. This implies $v \not \perp w$. QED

16 Lemma. Let U and W be subvectorspaces of V such that U^{\perp} is isotropic and $U \subset W$ (properly contained). If (\perp) (for $v \in C$ and $w \in V$) of the previous lemma holds true then $\langle U \varphi\rangle$ is properly contained in $\langle W \varphi\rangle$.

Proof. We may assume that $W=U \oplus\langle w\rangle$. Then $U^{\perp} \nsubseteq w^{\perp}$. As U^{\perp} is spanned by a set of isotropic vectors we find an isotropic vector $v \in U^{\perp} \backslash w^{\perp}$. Hence $u \perp v$ and $w \not \perp v$ for all $u \in U$. Now (\perp) implies that $u \varphi \perp v \varphi$ and $w \varphi \not \perp v \varphi$ for all $u \in U$ as v is isotropic. Hence $\langle U \varphi\rangle \subseteq v \varphi^{\perp}$ but $w \varphi \in W \varphi \backslash v \varphi^{\perp}$. This implies $W \varphi \nsubseteq\langle U \varphi\rangle$. As $\langle U \varphi\rangle \subseteq\langle W \varphi\rangle$ the assertion follows. QED

17 Corollary. Let U be a subvectorspace of V such that U^{\perp} is isotropic. Suppose that (\perp) holds true. Then $\operatorname{dim}\langle U \varphi\rangle \leq \operatorname{dim} U$.

Proof. Select a basis z_{1}, \ldots, z_{m} of isotropic vectors for U^{\perp}. Put $Z_{i}:=$ $\left\langle z_{1}, \ldots, z_{i}\right\rangle$ for $i \in\{0, \ldots, m\}$ and $W_{i}:=Z_{i}^{\perp}$. We obtain a proper chain $U=$ $W_{m} \subset \cdots \subset W_{0}=V$ such that each $W_{i}^{\perp}=Z_{i}$ is isotropic. The previous lemma yields that $\langle U \varphi\rangle=\left\langle W_{m} \varphi\right\rangle \subset \cdots \subset\left\langle W_{0} \varphi\right\rangle=\langle V \varphi\rangle$. Hence $\operatorname{dim}\langle U \varphi\rangle \leq$ $\operatorname{dim} U$.

18 Remark. We want to prove that (under the assumptions of our theorem) φ is a collineation.

Since $0 \varphi=0$ this implies that φ is a semilinear bijection of V.
Having accomplished this result standard arguments (which we will not repeat) provide a number $\lambda \in K \backslash 0$ such that $Q(x \varphi)=\lambda \cdot \overline{Q(x)}$ for all $x \in V$, and the proof of our theorem is finished.

2 The case of $\operatorname{ind}(V, f) \geq 2$

19 Lemma. Suppose that K is a field such that each monomorphism of K is surjective and $\operatorname{ind}(V, f) \geq 2$.

Then $\langle w\rangle \varphi \subseteq\langle w \varphi\rangle$ for each vector $w \in V$.
For each affine line $a+\langle w\rangle$ one has $(a+\langle w\rangle) \varphi \subseteq a \varphi+\left\langle w \varphi_{a}\right\rangle$. In particular, φ preserves collinearity in the affine space over V.

Proof. As w^{\perp} is always isotropic the first assertion follows from the previous corollary. As to the second one we observe that φ_{a} fulfills the requirements imposed on φ and thus the assertion of the previous corollary. Hence $(a+\langle w\rangle) \varphi=a \varphi+\langle w\rangle \varphi_{a} \subseteq a \varphi+\left\langle w \varphi_{a}\right\rangle . \quad$ QED

Consider the proof of 17 in the case $U=0$, hence $U^{\perp}=V$ and $m=\operatorname{dim} V$. Then

$$
0=\langle U \varphi\rangle=\left\langle W_{m} \varphi\right\rangle \subset \cdots \subset\left\langle W_{0} \varphi\right\rangle=\langle V \varphi\rangle
$$

is a proper chain of sub-vector spaces of length m. Hence $\langle V \varphi\rangle=V$. This observation and the previous corollary provide the requirements of the CollineationTheorem. Thus we proved

20 Proposition. Suppose that K is a field such that each monomorphism of K is surjective and $\operatorname{ind}(V, f) \geq 2$.

Then $\varphi: V \rightarrow V$ is a semilinear bijection.
We have proved our theorem when $\operatorname{ind}(V, f) \geq 2$.

3 The case of ind $(V, f)=1$

We assume that K is infinite; else injectivity of φ implies surjectivity and our main result follows.

Further, we assume that each monomorphism of K to K is an automorphism.
21 Definition. A set X is called admissible if $X \subseteq V \backslash C$ and $|X| \geq 2$ and X is contained in an affine null line that intersects C.

If $X \subseteq V$ is collinear and $|X| \geq 2$ let $[X]$ denote the unique affine line containing X.

If X is admissible then the affine line $[X]$ is a null line and it intersects C in a unique point $p(X) \in C$.

We call admissible sets X, Y parallel if the lines $[X],[Y]$ are parallel.
Let $\Gamma=a+\langle v\rangle$ be an affine null line.
Then $\Gamma \subseteq C$ or $\Gamma \cap C=\emptyset$ or $|\Gamma \cap C|=1$. The property $|\Gamma \cap C|=1$ is equivalent to $f(a, v) \neq 0$.

22 Remark. (1) Let $\Gamma=a+\langle v\rangle$ be an affine null line such that $|\Gamma \cap C|=1$ (i.e. $f(a, v) \neq 0$). Put $X:=\Gamma \backslash C$. Then X is admissible and $[X]=\Gamma$ and $p(X)=\Gamma \cap C$.
(2) If X is admissible then $X \varphi$ is admissible.

23 Definition. Let $\rho: V \backslash C \rightarrow V \backslash C, v \mapsto Q(v)^{-1} v$.
In a Euclidean plane, ρ is the reflection at the unit circle.
24 Lemma. (1) Let $\Gamma=a+\langle v\rangle$ be an affine null line.
If $\Gamma \cap C=\emptyset$ then $\Gamma \rho=Q(a)^{-1} a+\langle v\rangle$.
If $|\Gamma \cap C|=1$ then we can assume that $a \in C$ and have

$$
(\Gamma \backslash C) \rho=\left[(f(a, v))^{-1} v+\langle a\rangle\right] \backslash\left\{(f(a, v))^{-1} v\right\}
$$

(2) Let X be admissible. Then $X \rho$ is admissible.
(3) Let X and Y be admissible. Then X is parallel to Y if and only if $p(X \rho)$, $p(Y \rho), 0$ are collinear.
Proof. Statement 1 follows from the definition of ρ.
Statement 2 follows immediately from 1.
We prove 3.
Put $\Gamma:=[X]=a+\langle v\rangle$ and $\Sigma:=[Y]=b+\langle w\rangle$ where $a, b, v, w \in C$.
Statement 1 reveals that the following statements are equivalent.
X is parallel to $Y ; \Gamma$ is parallel to $\Sigma ;\langle v\rangle=\langle w\rangle ; p(X \rho), p(Y \rho), 0$ are collinear.
Put $\omega:=\rho \varphi \rho: V \backslash C \rightarrow V \backslash C$. Clearly ω is injective and if X is admissible then $X \omega$ is also admissible.
$Q E D$
25 Lemma. Let X and Y be admissible. If X is parallel to Y then $X \omega$ is parallel to $Y \omega$.

Proof. Let X be parallel to Y. Then $p(X \rho), p(Y \rho), 0$ are collinear (previous lemma b)). There are (unique) affine null lines Γ, Σ containing $X \rho$ respectively $Y \rho$, and $\Gamma \cap C=\{p(X \rho)\}, \Sigma \cap C=\{p(Y \rho)\}$. Now $(X \rho \cup\{p(X \rho)\}) \varphi \subseteq \Gamma \varphi$ and (as Γ is a null line) the image $\Gamma \varphi$ is contained in a (unique) null line that intersects C in a single point. Also the point $p(X \rho) \varphi$ is contained in this line and in C. Hence
(j) $p(X \rho \varphi)=(p(X \rho)) \varphi$. Also $p(Y \rho \varphi)=(p(Y \rho)) \varphi$.

As $p(X \rho), p(Y \rho), 0$ are collinear and the common line is a null line, the image points
$(\mathrm{jj})(p(X \rho)) \varphi,(p(Y \rho)) \varphi, 0=0 \varphi$ are collinear.
Clearly, (j) and (jj) yield that $p(X \rho \varphi), p(Y \rho \varphi), 0$ are collinear.
The previous lemma finally implies that $X \rho \varphi \rho$ is parallel to $Y \rho \varphi \rho$. QED

We proved that ω is injective and the ω-image of an admissible set is admissible and that ω preserves parallelity on the system of admissible sets.

If Γ is a null line then $(\Gamma \backslash C) \omega$ is contained in a null line.
If Γ is a null line with $|\Gamma \cap C|=1$ then $(\Gamma \backslash C) \omega$ is contained in a null line with that property.

It is our objection to prove that ω preserves collinearity on $V \backslash C$.
26 Lemma. Let $a, b, c \in V \backslash C$ such that $b-a, c-a \in C$. Then a, b, c are collinear if and only if $a \omega, b \omega, c \omega$ are collinear.

Proof. We may assume that a, b, c are distinct.
Suppose that $a \omega, b \omega, c \omega$ are collinear. Hence the three points lie on a null line. Now 24, a), yields that $a \omega \rho=a \rho \varphi, b \rho \varphi, c \rho \varphi$ lie on a null line. Due to property (d) any two of the points $a \rho, b \rho, c \rho$ are joined by null lines. As $\operatorname{ind}(V, Q)=1$ these points are collinear. Finally, 24, 1 implies that a, b, c are collinear. QED

27 Lemma. Let H be a hyperbolic plane, $H=\langle u, v\rangle$ where $u, v \in C$, and $m \in H \backslash C$ such that $m+u, m+v \notin C$ (for example $m=u+v$ when char $K \neq$ 2). Let Y denote the affine plane containing $m \omega,(m+u) \omega,(m+v) \omega$. Then $(H \backslash C) \omega \subseteq Y$ and $(H \backslash C) \omega$ contains a triplet of non-collinear points.

Proof. The points $m \omega,(m+u) \omega,(m+v) \omega$ are not collinear; cf. 26.
Let $x=m+\mu u+\nu v \in H \backslash C$. The set $\{m, m+v, m+\nu v\}$ is admissible (as it is contained in $V \backslash C$ and in the null line $a+\langle v\rangle$ that intersects C in a unique point). Hence the ω-image $\{m \omega,(m+v) \omega,(m+\nu v) \omega\}$ is admissible and in particular collinear. As two of the points lie in Y we obtain $(m+\nu v) \omega \in Y$.

The sets $\{m, m+u\}$ and $\{m+\nu v, x\}$ are admissible and parallel. Hence their images $\{m \omega,(m+u) \omega\}$ and $\{(m+\nu v) \omega, x \omega\}$ are admissible and parallel. Clearly, $\{m \omega,(m+u) \omega\} \subseteq Y$ and as we proved $(m+\nu v) \omega \in Y$ it follows that $x \omega \in Y$.

28 Lemma. Let H be a hyperbolic plane, $H=\langle u, v\rangle$ where $u, v \in C$ and $A=a+H$ where $a, a+u, a+v \in V \backslash C$. Let Y denote the affine plane containing $a \omega,(a+u) \omega,(a+v) \omega$. Then $(A \backslash C) \omega \subseteq Y$.

Proof. We may assume that $a \in H^{\perp} \backslash\{0\}$ (previous lemma and $Q(a) \neq 0$ as $\operatorname{ind}(V, f)=1$). Let $x=a+\mu u+\nu v \in A \backslash C$. As the anisotropic vectors a, $a+\nu v, a+v$ lie on an null line their ω-images are collinear. Hence $(a+\nu v) \omega \in Y$. The admissible sets $\{a, a+u\}$ and $\{a+\nu v, x\}$ are parallel, hence their ω-images are also parallel. As $\{a \omega,(a+u) \omega\} \subseteq A$ and $(a+\nu v) \omega \in A$ this yields $x \omega \in$ A.

29 Lemma. Let $\Gamma=a+\langle v\rangle$ be any line. Then $(\Gamma \backslash C) \omega$ is contained in an affine line.

Proof. We can assume that Γ is not a null line; cf. 24.
Select $a \in \Gamma \backslash C$ and hyperbolic planes H, H^{\prime} such that $\langle v\rangle=H \cap H^{\prime}$ (here we need $\operatorname{dim} V \geq 3$ and that (V, f) is isotropic). The previous lemma provides planes Y, Y^{\prime} such that $((a+H) \backslash C) \omega \subseteq Y$ and $\left(\left(a+H^{\prime}\right) \backslash C\right) \omega \subseteq Y^{\prime}$. As $(\Gamma \backslash C) \omega \subseteq Y \cap Y^{\prime}$ it remains to prove that $Y \neq Y^{\prime}$. Assume the contrary. We write $H=\langle u, w\rangle$ and $H^{\prime}=\left\langle u^{\prime}, w^{\prime}\right\rangle$ where $u, w, u^{\prime}, w^{\prime} \in C$ and $a+u, a+w, a+u^{\prime} \notin$ C. The three affine null lines joining $a \omega$ to $(a+u) \omega$ respectively to $(a+w) \omega$ respectively to $\left(a+u^{\prime}\right) \omega$ lie in the affine plane $Y=Y^{\prime}$ and pass through a common point. As $\operatorname{ind}(V, f)=1$ the three lines are not distinct. Suppose that $e . g$. that $(a+u) \omega, a \omega,(a+w) \omega$ lie on a common line (necessarily a null line). Then by $26 a+u, a, a+w$ are collinear, a contradiction.

So $\omega: V \backslash C \rightarrow V \backslash C$ is an injective mapping with the property: if $a, b, c \in$ $V \backslash C$ are collinear then $a \omega, b \omega, c \omega$ are also collinear. $\overline{Q E D}$

The following theorem is based on results of Rolfdieter Frank.
Projective Collineation Theorem. Let Π be a projective space of finite dimension ≥ 2 over an infinite field K such that each monomorphism $K \rightarrow K$ is an automorphism.

Let $\triangle \subset \Pi$ (here Π denotes the point-set of the projective space) such that
(1) Each line Γ of Π satisfies $\Gamma \subseteq \triangle$ or $\Gamma \cap \triangle$ is finite.

Let $\omega: M:=\Pi \backslash \triangle \rightarrow \Pi$ be an injective mapping such that
(2) If $a, b, c \in M$ are collinear then $a \omega, b \omega, c \omega$ are collinear.
(3) $M \omega$ contains a triplet of non-collinear points.

Then ω is the restriction of a collineation $\Pi \rightarrow \Pi$.
We will first apply the theorem in order to solve our problem and give a proof to the theorem in a subsequent section.

As the theorem requires a projective space we put $V^{\prime}:=V \times K$ and consider the projective space Π (projective extension of the affine space over V) over the K-vectorspace V^{\prime}.

Put $\triangle:=\{\langle(x, 1)\rangle \quad \mid \quad x \in C\} \cup\{\langle(x, 0)\rangle \mid x \in V\}$ (so \triangle is the union of the affine isotropic points and the hyperplane at infinity).

Clearly, requirement 1 of the theorem holds true.
We have $M:=\Pi \backslash \triangle=\{\langle(x, 1)\rangle \mid x \in V, Q(x) \neq 0\}$, i.e. M consists of the anisotropic affine points.

Define $\omega: M \rightarrow M,\langle(x, 1)\rangle \mapsto\langle(x \omega, 1)\rangle$ where the ω at the right side is the mapping defined under the first lemma of this section. So the new mapping ω corresponds (in the projective extension) to the original ω.

We proved previously that ω satisfies assumptions 2 and 3 of the theorem (29 and 26).

Hence, by the above theorem, ω admits an extension to a collineation of Π.
Let ω also denote such an extension.
Let $x \in V \backslash\{0\}$ such that $Q(x)=0$. Select $a, b \in V \backslash C$ such that $f(a, x) \neq$ $0 \neq f(b, x)$ and $a-b \notin\langle x\rangle$. Then $(a+\langle x\rangle) \backslash C$ and $(b+\langle x\rangle) \backslash C$ are distinct admissible parallel sets (obtained from the two isotropic affine lines by deletion of a single point respectively) and (by 24) the ω-images are also admissible parallel sets. In projective terms, this means that the projective point $\langle(x, 0)\rangle$ (the intersection of the lines $\langle(x, 0)\rangle+\langle(a, 1)\rangle$ and $\langle(x, 0)\rangle+\langle(b, 1)\rangle)$ has an ω image on the hyperplane at infinity. As this hyperplane is spanned by points of the form $\langle(x, 0)\rangle$ where $x \in C$ and as ω is a collineation we proved:
(i) The collineation ω maps the hyperplane at infinity $H=\{\langle(x, 0)\rangle \mid x \in$ $V \backslash\{0\}\}$ onto the hyperplane at infinity.

Hence we may restrict ω to the affine points and we proved that the mapping $\omega: V \backslash C \rightarrow V \backslash C$ as defined under the first lemma of this section admits an extension to an automorphism (collineation) of the affine space over V.

Consider a projective line $\Gamma=\langle(x, 0)\rangle+\langle(0,1)\rangle$ where $x \in C \backslash\{0\}$ (i.e. an affine null line passing through the origin together with its point at infinity). Then $\Gamma \subseteq \triangle$. Hence $\Gamma \omega^{-1} \subseteq \triangle$ (else $\Gamma \omega^{-1} \cap M \neq \emptyset$ and then $\Gamma \cap M \supseteq$ $\Gamma \cap M \omega \neq \emptyset$, which is not true as $\Gamma \subseteq \triangle$). Further, due to (i), the line $\Gamma \omega^{-1}$ is not contained in H (hyperplane at infinity) since Γ is not contained in H; cf. (i). This (together with the definition of \triangle and $\operatorname{ind}(V, f)=1$) implies that $\Gamma \omega^{-1}=\langle(y, 0)\rangle+\langle(0,1)\rangle$ for some $y \in C \backslash\{0\}$. In particular, Γ and also $\Gamma \omega^{-1}$ pass through the point $\langle(0,1)\rangle$. As we find distinct lines of the above type we conclude
(ii) $\langle(0,1)\rangle \omega=\langle(0,1)\rangle$. In particular, if $a, b \in V \backslash C$ and the points $0, a, b$ of the affine space over V are collinear (which means that the projective points $\langle(0,1)\rangle,\langle(a, 1)\rangle,\langle(b, 1)\rangle$ are collinear) then $0, a \omega, b \omega$ are collinear (here ω denotes the mapping defined under 24).

Now consider distinct collinear points $0, a, b \in V$. If $a \in C$ then $0 \varphi=0, a \varphi$, $b \varphi$ are collinear; cf. 10 . So assume that $a, b \notin C$. We have $a \varphi=a \rho \omega \rho$ and also $b \varphi=b \rho \omega \rho$. The points $0, a \rho, b \rho$ are collinear (obvious from the definition of ρ). Hence (ii) yields that $0, a \rho \omega, b \rho \omega$ are also collinear. This implies obviously that $0, a \rho \omega \rho=a \varphi, b \rho \omega \rho=b \varphi$ are collinear. We proved
(iii) $\Gamma \varphi$ is contained in a line for each affine line Γ through $0 \in V$.

The argument used already in 10 yields that φ maps each affine line into an affine line, and the Affine Collineation Theorem implies that φ is a collineation of the affine space over V. As said at the end of section 2 this finishes the proof.

30 Remark. The 'Projective Collineation Theorem' and our subsequent
arguments are only used in order to prove statement (ii) $\langle(0,1)\rangle \omega=\langle(0,1)\rangle$.

4 Proof of the Projective Collineation Theorem

In the sequel let Π be a Desarguesian projective space of projective dimension ≥ 2 (i.e. at least a plane) and infinite order. Let Π simultaneously denote the point set of Π.

We compile some technical tools used in [5].
Suppose that a non-trivial (i.e. non-discrete and more than 2 open sets exist) topology is given on each line (considered as a set of points) such that perspectivities between intersecting lines are continuous mappings. Such a system of topologies is called a linear topology on Π.

A subset $M \subseteq \Pi$ of projective points is called linearly open if for each line Γ of Π the intersection $\Gamma \cap M$ is open (in the topology given on Γ).

Let X be any set. We call $\mathbf{U}:=\{U \subseteq X \mid \quad X \backslash U$ is finite or $U=\emptyset \quad\}$ the cofinite topology on $X(\mathbf{U}$ denotes the set of open subsets of $X)$. If X is an infinite set then the cofinite topology is non-trivial.

Each injective mapping $X \rightarrow Y$ is continuous with respect to the cofinite topologies on X and Y.

31 Lemma. Each line of Π endowed with its cofinite topology yields a linear topology on Π. Let $\triangle \subset \Pi$ be a set of points such that $\Gamma \subseteq \triangle$ or $\Gamma \cap \triangle$ is finite for each line Γ of Π. Put $M:=\Pi \backslash \triangle$. Then M is linearly open.

Indeed, the first statement follows from our previous observations. If $M \cap \Gamma$ is not open then $\Gamma \cap \triangle$ is infinite, hence $\Gamma \subseteq \triangle$ and $M \cap \Gamma=\emptyset$.

The lemma provides the basic assumption in Frank's study [5], namely that a linearly open set M is given in a projective space endowed with a linear topology.

In the sequel let the assumptions of the Projective Collineation Theorem hold true and $M \neq \emptyset$.

Let us take points $x, y, z \in M$ such that $x \omega, y \omega, z \omega$ are noncollinear (property (c)). Let Ω denote the projective plane (subspace of Π) containing x, y, z and Ω^{\prime} the projective plane containing $x \omega, y \omega, z \omega$. Then Lemma 5 (e) of [5] asserts that

$$
a, b, c \quad \text { collinear } \Leftrightarrow a \omega, b \omega, c \omega \quad \text { collinear }
$$

for all $a, b, c \in M \cap \Omega$.
(In terms of [5] this means that $\left.\omega\right|_{M \cap \Omega}$ is an embedding.)
Now Proposition 1 (a) of [5] supplies an extension of $\left.\omega\right|_{M \cap \Omega}$ to a mapping $\omega^{\prime}: \Omega \rightarrow \Omega^{\prime}$ such that

$$
a, b, c \quad \text { collinear } \quad \Leftrightarrow \quad a \omega^{\prime}, b \omega^{\prime}, c \omega^{\prime} \quad \text { collinear }
$$

holds true for all $a, b, c \in \Omega$. This yields that $\Omega \omega^{\prime}$ is a subplane of Ω^{\prime}, and as K does not contain a subfield isomorphic to K we conclude that $\Omega \omega^{\prime}=\Omega^{\prime}$. In other words, ω^{\prime} is a collineation of Ω onto Ω^{\prime}.

Consider the line Γ joining x to y and let Γ^{\prime} be the line joining $x \omega$ to $y \omega$. The set $M \cap \Gamma$ is open, hence $\Gamma \backslash(M \cap \Gamma$) is finite (as $x \in \Gamma$ we have $M \cap \Gamma \neq \emptyset$). Then $\Gamma \omega^{\prime} \backslash(M \cap \Gamma) \omega^{\prime}$ is finite. As $\Gamma \omega^{\prime}=\Gamma^{\prime}$ and $(M \cap \Gamma) \omega^{\prime}=(M \cap \Gamma) \omega$ we have that $\Gamma^{\prime} \backslash(M \cap \Gamma) \omega$ is finite. Hence $(M \cap \Gamma) \omega$ is open (in Γ^{\prime}). We proved:

There is a line Γ of Π such that $(M \cap \Gamma) \omega$ is open (in the line containing this set) and non-empty.

Now proposition 2 of [5] yields that ω is induced by a semilinear mapping $\eta: V \rightarrow V .^{1}$

We claim that η is injective.
If $\operatorname{kernel}(\eta)$ is non-zero then $\operatorname{kernel}(\eta)$ contains a point (1-dimensional subspace of $\left.V^{\prime}\right) z \in \Pi \backslash M$. Clearly there is a line (2-dimensional subspace of V^{\prime}) Γ of Π through z such that $\Gamma \nsubseteq \triangle($ join z to some point in $M)$. Hence $\Gamma \cap \triangle$ is finite and Γ contains two distinct (in fact infinitely many) points $r, s \in M$. As ω is injective $r \omega, s \omega$ are distinct points in $\Gamma \eta$, contradicting $\operatorname{kernel}(\eta) \subseteq \Gamma$.

Thus we obtained that η is a semilinear bijection and the induced collineation extends ω. The proof of our Projective Collineation Theorem is finished.

References

[1] A. D. Alexandrov: (Seminar report) Uspehi Mat. Nauk. 5 (1950), no. 3 (37), 187.
[2] A. D. Alexandrov: Mappings of Spaces with Families of Cones and Space-TimeTransformations, Annali di Matematica 103 (1975), 229-257.
[3] F. S. Beckman, D. A. Quarles Jr.: On isometries of Euclidean Spaces, Proc. Amer. Math. Soc. 4 (1953), 810-815.
[4] W. Benz: Geometrische Transformationen. Wissenschaftsverlag Mannheim 1992
[5] R. Frank: Ein lokaler Fundamentalsatz für Projektionen, Geom. Ded. 44 (1992), 53-66.
[6] J. Lester: Cone preserving mappings for quadratic cones over arbitrary fields, Canad. J. Math. 29 (1977), 1247-1253.
[7] E. M. Schröder: Ein einfacher Beweis des Satzes von Alexandrov-Lester, Journ. Geom 37 (1990), 153-158.

[^0]
[^0]: ${ }^{1}$ We do not need Frank's proposition 2 in full generality. In our setting, ω maps the linearly open subset M of Π into the same projective space Π. R. Frank's proposition 2 requires only the little Desargues-axiom for Π and the assertion reads that ω is the restriction of a central projection (where the center is a projective subspace of Π) followed by an isomorphism of projective subspaces of Π. As we assume that Π is a Desarguesian projective space, a composition of such mappings is induced by a semilinear mapping of the underlying vector space.

