Note di Matematica 21, n. 2, 2002/2003, 35-47.

A supplement to the Alexandrov–Lester Theorem

Frieder Knüppel

Mathematisches Seminar der Universität Kiel D-24118 Kiel, Germany knueppel@math.uni-kiel.de

Klaus Nielsen Rechenzentrum der Universität Kiel D-24118 Kiel, Germany nielsen@rz.uni-kiel.de

Received: 14 February 2002; accepted: 25 April 2002.

Abstract. Let V be the 4-dimensional Minkowski-space of special relativity over the reals with quadratic form Q. Consider a mapping $\psi: V \to V$ such that $Q(x-y) = 0 \iff Q(x\psi - y\psi) = 0$ for all $x, y \in V$. Under the assumption that ψ is a bijection Alexandrov's theorem states that ψ is a linear bijection followed by a translation. Our results imply (as a special case) that the assumption of ψ being a bijection can be dropped.

Keywords: distance-preserving mappings, collineations, orthogonal groups, special relativity.

MSC 2000 classification: 51N30; 51F25, 83A05, 51M05, 51P05.

Introduction and result

Let V be a vector space over a field K endowed with a quadratic form Q and let $f: V \times V \to K$, f(x, y) := Q(x+y) - Q(x) - Q(y) denote the associated symmetric bilinear form. Hence f(x, x) = 2Q(x).

We assume that $V^{\perp} = \{x \in V \mid f(x, y) = 0 \text{ for all } y \in V\} = \{0\}$ and V is isotropic, *i.e.* $Q(v) \neq 0$ for some $v \in V \setminus \{0\}$ and dim $V \ge 3$.

Also, we assume for convenience from the beginning that V is finite-dimensional.

For any $a \in V$ let $C_a := \{a + v \mid v \in V, \quad Q(v) = 0\}$ denote the 'cone' with center a. Each cone has a unique center. The set of isotropic vectors of V is $C := C_0$.

For a mapping $\psi \colon V \to V$ we study the property

(d) $Q(x-y) = 0 \quad \Leftrightarrow \quad Q(x\psi - y\psi) = 0$

for all $x, y \in V$.

Using cones the property can be rephrased: $y \in C_x$ if and only if $y\psi \in C_{x\psi}$, for all $x, y \in V$.

We quote a by now classical theorem.

1 Theorem (A. D. Alexandrov [1] and J. Lester [6]). Let $\psi: V \to V$ be a bijection satisfying property (d). Then there is a semilinear bijection $\varphi: V \to V$ (with associated automorphism⁻ of K) and a number $\lambda \in K \setminus \{0\}$ such that

(1) $\psi = \varphi \tau$ where $\tau \colon V \to V$ is the translation $v \mapsto v + 0\psi$,

(2) $Q(x\varphi) = \lambda \cdot \overline{Q(x)}$ for all $x, y \in V$.

The assertion holds true even when V has infinite dimension. A brief proof to the theorem was published by E. M. Schröder [7].

We want to drop the assumption that ψ is a bijection and use only property (d). We shall see that injectivity of ψ can be proved without further assumptions. However, surjectivity seems to be a major problem and our proof of the following main result requires several arguments.

2 Theorem. Suppose that K is a field such that each monomorphism of K is surjective.

Let $\psi \colon V \to V$ satisfy

(d)
$$Q(x-y) = 0 \quad \Leftrightarrow \quad Q(x\psi - y\psi) = 0$$

for all $x, y \in V$.

Then one has a semilinear bijection $\varphi \colon V \to V$ (with associated automorphism $\bar{f}(K)$ of K) and a number $\lambda \in K \setminus \{0\}$ such that

- (1) $\psi = \varphi \tau$ where $\tau \colon V \to V$ is the translation $v \mapsto v + 0\psi$,
- (2) $Q(x\varphi) = \lambda \cdot \overline{Q(x)}$ for all $x, y \in V$.

3 Remark. The assumption that each monomorphism of K is surjective is necessary. Indeed, if e_1, \ldots, e_n is a basis for V such that $f(e_i, e_j)$ is in the prime field and - is a monomorphism of K then the mapping $V \to V$, $\lambda_1 e_1 + \cdots + \lambda_n e_n \mapsto \overline{\lambda_1} e_1 + \cdots + \overline{\lambda_n} e_n$ satisfies property (d). Also the property dim $V < \infty$ cannot simply be deleted.

In the sequel we will prove the above result.

1 Basic arguments and propositions

A subvectorspace is called isotropic if it is spanned by its isotropic vectors.

A subset $M \subseteq V$ is called a null set if Q(x - y) = 0 for all $x, y \in M$. Hence an affine subspace a + U (where $a \in V$ and U is a subvector space of V) is a null set if and only if Q(u) = 0 for all $u \in U$.

A null subvectorspace U is also called a totally isotropic subvectorspace. This means that Q(u) = 0 for each $u \in U$.

Notation For $c \in V$ let $\tau_c \colon V \to V$, $v\tau_c = v + c$ denote the translation assigned to c.

For each mapping $\psi \colon V \to V$ and $a \in V$ let $\psi_a := \tau_a \psi \tau_{-a\psi}$.

Observe that $0\psi_a = 0$ for each $a \in V$ and $V\psi_a = V\psi - a\psi$. If ψ satisfies property (d) then ψ_a satisfies also (d).

Further, ψ is injective (surjective) if and only if ψ_a is injective (surjective). If ψ fulfills $(x+y)\psi = x\psi + y\psi$ for all $x, y \in V$ then $\psi_a = \psi$ for each $a \in V$.

4 Lemma. Let $\psi: V \to V$ be a mapping with the property

(c)
$$C_{a\psi} \subseteq V\psi$$

for each $a \in V$ (i.e. if the image of ψ contains the point $a\psi$ then it contains the cone whose center is $a\psi$). Then ψ is surjective.

PROOF. For each $b \in V$ the mapping ψ_b satisfies also property (c). Let $T := V\psi_0$. Then $0 \in T$ and $C_a \subseteq T$ for each $a \in T$. This implies T = V, hence ψ_0 and also ψ is surjective.

5 Proposition. Let $\psi: V \to V$ satisfy property (d) (see introduction). Then ψ is injective.

PROOF. Let $x, y \in V$ such that $x\psi = y\psi$. Put $\varphi := \psi_y$. Then φ satisfies (d) and $0\varphi = 0 = a\varphi$ where a := x - y. As $0 = Q(0) = Q(a\varphi) = Q(a\varphi - 0\varphi)$ property (d) implies $a \in C$. Each $b \in C$ fulfills $Q(a\varphi - b\varphi) = Q(0 - b) = 0$, hence Q(a - b) = 0 and thus $b \in a^{\perp}$. As $\langle C \rangle = V$ we conclude that $V \subseteq a^{\perp}$, hence a = 0 and x = y.

6 Corollary. If ψ fulfills properties (d) and (c) then ψ is a bijection.

A physical interpretation The vectors of V are results of physical observations (measurements) obtained by an observer A; each result $w \in V$ corresponds to an 'event'. A second observer B obtains $w\psi$ when he applies his device to the same event.

Observer A watches a lightray joining two events if and only if the corresponding measurements fulfill Q(x-y) = 0. The analogue interpretation applies to observer B. Then (d) claims: A watches a lightray joining a pair of events if and only if B watches a lightray joining the events.

Property (d) implies (due to the previous proposition): if observer A distinguishes two events with his device then B will also obtain distinct results for the respective events.

Surjectivity of ψ means that both the devices of A and B have the same range.

Assumptions In the sequel let $\psi: V \to V$ satisfy (d).

Hence ψ is injective by the previous proposition 5.

We will not assume surjectivity of ψ .

The mapping $\varphi := \psi_0$ satisfies (d) and $0\varphi = 0$ and it is also injective. In the sequel we focus on φ .

7 Lemma. (1) If $S \subseteq V$ is a null set then $S\varphi$ is also a null set.

- (2) A maximal null set of V is an affine subspace (maximal refers to \subseteq). A maximal null set of V containing 0 is a sub-vectorspace (of dimension ind(V, f), the Witt-index of (V, Q)).
- (3) Let T be an affine null subspace. Then $T = \bigcap S$ where S is the set of all maximal null subsets of V containing T.

The proofs are straightforward.

8 Proposition. Let U and W be null subvectorspaces of V such that $U \subset W$ (properly contained). Then $\langle U\varphi \rangle \subset \langle W\varphi \rangle$ (also properly contained).

PROOF. We may assume that $W = U \oplus \langle w \rangle$, $w \in W$. Clearly, $\operatorname{rad}(U^{\perp}) := U \cap U^{\perp} = U$ and $w \in U^{\perp} \setminus (\operatorname{rad}(U^{\perp}))$ is an isotropic vector. Hence U^{\perp} is spanned by its isotropic vectors. Further, $U^{\perp} \not\subseteq w^{\perp}$. Hence there is some isotropic vector $v \in U^{\perp} \setminus w^{\perp}$. This implies $f(u, v) = 0 \neq f(w, v)$ for all $u \in U$, hence $Q(u - v) = 0 \neq Q(w - v)$ and by (d) $Q(u\varphi - v\varphi) = 0 \neq Q(w\varphi - v\varphi)$. Thus $f(u\varphi, v\varphi) = 0 \neq f(w\varphi, v\varphi)$ for all $u \in U$. We proved that $\langle U\varphi \rangle \subseteq v\varphi^{\perp}$ and $w\varphi \notin v\varphi^{\perp}$. So $w\varphi \notin \langle U\varphi \rangle$ and $W\varphi \not\subseteq \langle U\varphi \rangle$.

9 Corollary. Let U be a null subvectorspace of V. Then $\dim \langle U\varphi \rangle = \dim U$. In particular, $\langle v \rangle \varphi \subseteq \langle v\varphi \rangle$ for each $v \in C$.

PROOF. Consider a proper chain $U_0 = O \subset U_1 \subset \cdots \subset U_k$ of maximal length consisting of null subvectorspaces of V where $U = U_j$ for some j. By the previous proposition $\langle U_0 \varphi \rangle = O \subset \langle U_1 \varphi \rangle \subset \cdots \subset \langle U_k \varphi \rangle$ is a proper chain of totally isotropic subspaces. Hence

$$k \le \dim \langle U_k \varphi \rangle \le \operatorname{ind}(V, f) = k$$

and therefore $\dim \langle U_i \varphi \rangle = i = \dim U_i$. - Our proof needs that $\operatorname{ind}(V, f)$ is finite. QED

10 Corollary. Let $\Gamma = a + \langle v \rangle$ be an affine null line. Then $\Gamma \varphi \subseteq a\varphi + \langle v\varphi_a \rangle$.

PROOF. As φ_a satisfies the assumptions used for φ (namely (d) and $0\varphi = 0$) the above corollary holds also true for φ_a . We conclude $\Gamma \varphi = a\varphi + \langle v \rangle \tau_a \varphi \tau_{-a\varphi} = a\varphi + \langle v \rangle \varphi_a \subseteq a\varphi + \langle v \varphi_a \rangle$.

11 Lemma. Let $v \in C$ (i.e. v is isotropic) and $w \in V$.

(1) If $w \in C$ then

$$w \perp v \quad \Leftrightarrow \quad w\varphi \perp v\varphi$$

(2) If $w \notin C$ then

$$w \perp v \quad \Leftarrow \quad w\varphi \perp v\varphi$$

PROOF. (1) We have $w \in v^{\perp} \Leftrightarrow Q(v-w) = 0 \Leftrightarrow Q(v\varphi - w\varphi) = 0 \Leftrightarrow w\varphi \in v\varphi^{\perp}$, where we take into account that $v\varphi$ and $w\varphi$ are isotropic vectors.

(2) Clearly, $w \notin v^{\perp} \Leftrightarrow Q(\lambda v - w) = 0$ for some $\lambda \in K \Leftrightarrow Q((\lambda v)\varphi - w\varphi) = 0$ for some $\lambda \in K$.

Now $(\lambda v)\varphi \in \langle v \rangle \varphi \subseteq \langle v \varphi \rangle$ by the previous corollary. Hence the last statement in the above chain of equivalences implies that $Q(\mu(v\varphi) - w\varphi) = 0$ for some $\mu \in K$. This holds true if and only if $w\varphi \notin v\varphi^{\perp}$.

QED

12 Corollary. Let U be a totally isotropic subvectorspace of V. Then $\varphi|_U$: $U \to \langle U\varphi \rangle$ is an injective mapping of U into $\langle U\varphi \rangle$ such that dim $U = \dim \langle U\varphi \rangle$ and $\varphi|_U$ preserves collinearity (given in the affine spaces assigned to U respectively to $\langle U\varphi \rangle$).

This is an immediate consequence of the previous two corollaries.

We will use the following theorem (see e.g [4] page 104, A.3.1) that is based on a more general result by H. Schaeffer for 2-dimensional vector spaces.

Affine Collineation Theorem. Let U and W be n-dimensional vector spaces over the same field K (n an integer ≥ 2). Suppose that each monomorphism of K is surjective and $|K| \geq 3$.

Let $\alpha: U \to W$ be an injective mapping that preserves collinearity and such that $U\alpha$ is not contained in a hyperplane of W and $0\alpha = 0$.

Then α is a semilinear bijection; *i.e.* there is an automorphism $\bar{}$ of K such that $(x + y)\alpha = x\alpha + y\alpha$ and $(\lambda x)\alpha = \bar{\lambda}(x\alpha)$ for all $x, y \in V$ and $\lambda \in K$.

If K is finite then the mapping φ under investigation is a bijection. Hence the condition $|K| \ge 3$ is irrelevant in our arguments.

The only monomorphism of \mathbb{R} is the identity, hence the Affine Collineation Theorem subsumes $K = \mathbb{R}$.

The previous corollary and the Affine Collineation Theorem yield

13 Lemma. Suppose that each monomorphism of K is surjective.

Let U be a totally isotropic subvectorspace of V such that $\dim U \ge 2$. Then $U\varphi$ is a totally isotropic subvectorspace of V such that $\dim(U\varphi) = \dim U$ and the restriction $\varphi|_U : U \to U\varphi$ is a semilinear bijection.

14 Corollary. Suppose that each monomorphism of K is surjective and $\operatorname{ind}(V, f) \geq 2$. Then $\langle v \rangle \varphi = \langle v \varphi \rangle$ for each isotropic vector v.

PROOF. Select a 2-dimensional totally isotropic sub-vectorspace of V containing v and apply the previous lemma. QED

15 Lemma. Suppose that $\langle v \rangle \varphi = \langle v \varphi \rangle$ for each $v \in C$. Then all $v \in C$ and $w \in V$ satisfy

 $(\bot) \quad v \perp w \quad \Leftrightarrow \quad v\varphi \perp w\varphi$

In particular, $v^{\perp}\varphi = v\varphi^{\perp} \cap V\varphi$.

PROOF. We must only consider the case $' \Rightarrow'$ when w is anisotropic; cf. 11. If the right-hand statement is not true then $Q(\mu(v\varphi) - w\varphi) = 0$ for some $\mu \in K$. The assumption $\langle v \rangle \varphi = \langle v\varphi \rangle$ yields that $\mu(v\varphi) = (\lambda v)\varphi$ for some $\lambda \in K$, hence $Q((\lambda v)\varphi - w\varphi) = 0$ and by (d) $Q(\lambda v - w) = 0$. This implies $v \not\perp w$.

16 Lemma. Let U and W be subvectorspaces of V such that U^{\perp} is isotropic and $U \subset W$ (properly contained). If (\perp) (for $v \in C$ and $w \in V$) of the previous lemma holds true then $\langle U\varphi \rangle$ is properly contained in $\langle W\varphi \rangle$.

PROOF. We may assume that $W = U \oplus \langle w \rangle$. Then $U^{\perp} \not\subseteq w^{\perp}$. As U^{\perp} is spanned by a set of isotropic vectors we find an isotropic vector $v \in U^{\perp} \setminus w^{\perp}$. Hence $u \perp v$ and $w \not\perp v$ for all $u \in U$. Now (\perp) implies that $u\varphi \perp v\varphi$ and $w\varphi \not\perp v\varphi$ for all $u \in U$ as v is isotropic. Hence $\langle U\varphi \rangle \subseteq v\varphi^{\perp}$ but $w\varphi \in W\varphi \setminus v\varphi^{\perp}$. This implies $W\varphi \not\subseteq \langle U\varphi \rangle$. As $\langle U\varphi \rangle \subseteq \langle W\varphi \rangle$ the assertion follows. QED

17 Corollary. Let U be a subvectorspace of V such that U^{\perp} is isotropic. Suppose that (\perp) holds true. Then $\dim \langle U\varphi \rangle \leq \dim U$.

PROOF. Select a basis z_1, \ldots, z_m of isotropic vectors for U^{\perp} . Put $Z_i := \langle z_1, \ldots, z_i \rangle$ for $i \in \{0, \ldots, m\}$ and $W_i := Z_i^{\perp}$. We obtain a proper chain $U = W_m \subset \cdots \subset W_0 = V$ such that each $W_i^{\perp} = Z_i$ is isotropic. The previous lemma yields that $\langle U\varphi \rangle = \langle W_m\varphi \rangle \subset \cdots \subset \langle W_0\varphi \rangle = \langle V\varphi \rangle$. Hence $\dim \langle U\varphi \rangle \leq \dim U$.

18 Remark. We want to prove that (under the assumptions of our theorem) φ is a collineation.

Since $0\varphi = 0$ this implies that φ is a semilinear bijection of V.

Having accomplished this result standard arguments (which we will not repeat) provide a number $\lambda \in K \setminus 0$ such that $Q(x\varphi) = \lambda \cdot \overline{Q(x)}$ for all $x \in V$, and the proof of our theorem is finished.

2 The case of $ind(V, f) \ge 2$

19 Lemma. Suppose that K is a field such that each monomorphism of K is surjective and $ind(V, f) \ge 2$.

Then $\langle w \rangle \varphi \subseteq \langle w \varphi \rangle$ for each vector $w \in V$.

For each affine line $a + \langle w \rangle$ one has $(a + \langle w \rangle)\varphi \subseteq a\varphi + \langle w\varphi_a \rangle$. In particular, φ preserves collinearity in the affine space over V.

PROOF. As w^{\perp} is always isotropic the first assertion follows from the previous corollary. As to the second one we observe that φ_a fulfills the requirements imposed on φ and thus the assertion of the previous corollary. Hence $(a + \langle w \rangle)\varphi = a\varphi + \langle w \rangle \varphi_a \subseteq a\varphi + \langle w \varphi_a \rangle.$

Consider the proof of 17 in the case U = 0, hence $U^{\perp} = V$ and $m = \dim V$. Then

$$0 = \langle U\varphi \rangle = \langle W_m\varphi \rangle \subset \cdots \subset \langle W_0\varphi \rangle = \langle V\varphi \rangle$$

is a proper chain of sub-vector spaces of length m. Hence $\langle V\varphi \rangle = V$. This observation and the previous corollary provide the requirements of the Collineation-Theorem. Thus we proved

20 Proposition. Suppose that K is a field such that each monomorphism of K is surjective and $ind(V, f) \ge 2$.

Then $\varphi \colon V \to V$ is a semilinear bijection.

We have proved our theorem when $ind(V, f) \ge 2$.

3 The case of ind(V, f) = 1

We assume that K is infinite; else injectivity of φ implies surjectivity and our main result follows.

Further, we assume that each monomorphism of K to K is an automorphism.

21 Definition. A set X is called admissible if $X \subseteq V \setminus C$ and $|X| \ge 2$ and X is contained in an affine null line that intersects C.

If $X \subseteq V$ is collinear and $|X| \ge 2$ let [X] denote the unique affine line containing X.

If X is admissible then the affine line [X] is a null line and it intersects C in a unique point $p(X) \in C$.

We call admissible sets X, Y parallel if the lines [X], [Y] are parallel.

Let $\Gamma = a + \langle v \rangle$ be an affine null line.

Then $\Gamma \subseteq C$ or $\Gamma \cap C = \emptyset$ or $|\Gamma \cap C| = 1$. The property $|\Gamma \cap C| = 1$ is equivalent to $f(a, v) \neq 0$.

- **22 Remark.** (1) Let $\Gamma = a + \langle v \rangle$ be an affine null line such that $|\Gamma \cap C| = 1$ (*i.e.* $f(a, v) \neq 0$). Put $X := \Gamma \setminus C$. Then X is admissible and $[X] = \Gamma$ and $p(X) = \Gamma \cap C$.
- (2) If X is admissible then $X\varphi$ is admissible.

23 Definition. Let $\rho: V \setminus C \to V \setminus C$, $v \mapsto Q(v)^{-1}v$.

In a Euclidean plane, ρ is the reflection at the unit circle.

24 Lemma. (1) Let $\Gamma = a + \langle v \rangle$ be an affine null line.

If $\Gamma \cap C = \emptyset$ then $\Gamma \rho = Q(a)^{-1}a + \langle v \rangle$.

If $|\Gamma \cap C| = 1$ then we can assume that $a \in C$ and have

$$(\Gamma \setminus C)\rho = [(f(a,v))^{-1}v + \langle a \rangle] \setminus \{(f(a,v))^{-1}v\}$$

- (2) Let X be admissible. Then $X\rho$ is admissible.
- (3) Let X and Y be admissible. Then X is parallel to Y if and only if $p(X\rho)$, $p(Y\rho)$, 0 are collinear.

PROOF. Statement 1 follows from the definition of ρ .

Statement 2 follows immediately from 1.

We prove 3.

Put $\Gamma := [X] = a + \langle v \rangle$ and $\Sigma := [Y] = b + \langle w \rangle$ where $a, b, v, w \in C$.

Statement 1 reveals that the following statements are equivalent.

X is parallel to Y; Γ is parallel to Σ ; $\langle v \rangle = \langle w \rangle$; $p(X\rho), p(Y\rho), 0$ are collinear. Put $\omega := \rho \varphi \rho$: $V \setminus C \to V \setminus C$. Clearly ω is injective and if X is admissible then $X\omega$ is also admissible.

25 Lemma. Let X and Y be admissible. If X is parallel to Y then $X\omega$ is parallel to $Y\omega$.

PROOF. Let X be parallel to Y. Then $p(X\rho), p(Y\rho), 0$ are collinear (previous lemma b)). There are (unique) affine null lines Γ , Σ containing $X\rho$ respectively $Y\rho$, and $\Gamma \cap C = \{p(X\rho)\}, \Sigma \cap C = \{p(Y\rho)\}$. Now $(X\rho \cup \{p(X\rho)\})\varphi \subseteq \Gamma\varphi$ and (as Γ is a null line) the image $\Gamma\varphi$ is contained in a (unique) null line that intersects C in a single point. Also the point $p(X\rho)\varphi$ is contained in this line and in C. Hence

(j) $p(X\rho\varphi) = (p(X\rho))\varphi$. Also $p(Y\rho\varphi) = (p(Y\rho))\varphi$.

As $p(X\rho), p(Y\rho), 0$ are collinear and the common line is a null line, the image points

(jj) $(p(X\rho))\varphi$, $(p(Y\rho))\varphi$, $0 = 0\varphi$ are collinear.

Clearly, (j) and (jj) yield that $p(X\rho\varphi)$, $p(Y\rho\varphi)$, 0 are collinear.

The previous lemma finally implies that $X\rho\varphi\rho$ is parallel to $Y\rho\varphi\rho$. QED

We proved that ω is injective and the ω -image of an admissible set is admissible and that ω preserves parallelity on the system of admissible sets.

If Γ is a null line then $(\Gamma \setminus C)\omega$ is contained in a null line.

If Γ is a null line with $|\Gamma \cap C| = 1$ then $(\Gamma \setminus C)\omega$ is contained in a null line with that property.

It is our objection to prove that ω preserves collinearity on $V \setminus C$.

26 Lemma. Let $a, b, c \in V \setminus C$ such that $b - a, c - a \in C$. Then a, b, c are collinear if and only if $a\omega, b\omega, c\omega$ are collinear.

PROOF. We may assume that a, b, c are distinct.

Suppose that $a\omega, b\omega, c\omega$ are collinear. Hence the three points lie on a null line. Now 24, a), yields that $a\omega\rho = a\rho\varphi, b\rho\varphi, c\rho\varphi$ lie on a null line. Due to property (d) any two of the points $a\rho, b\rho, c\rho$ are joined by null lines. As ind(V, Q) = 1these points are collinear. Finally, 24, 1 implies that a, b, c are collinear. QED

27 Lemma. Let H be a hyperbolic plane, $H = \langle u, v \rangle$ where $u, v \in C$, and $m \in H \setminus C$ such that $m + u, m + v \notin C$ (for example m = u + v when $charK \neq 2$). Let Y denote the affine plane containing $m\omega, (m + u)\omega, (m + v)\omega$. Then $(H \setminus C)\omega \subseteq Y$ and $(H \setminus C)\omega$ contains a triplet of non-collinear points.

PROOF. The points $m\omega$, $(m+u)\omega$, $(m+v)\omega$ are not collinear; cf. 26.

Let $x = m + \mu u + \nu v \in H \setminus C$. The set $\{m, m + v, m + \nu v\}$ is admissible (as it is contained in $V \setminus C$ and in the null line $a + \langle v \rangle$ that intersects C in a unique point). Hence the ω -image $\{m\omega, (m+v)\omega, (m+\nu v)\omega\}$ is admissible and in particular collinear. As two of the points lie in Y we obtain $(m + \nu v)\omega \in Y$.

The sets $\{m, m + u\}$ and $\{m + \nu v, x\}$ are admissible and parallel. Hence their images $\{m\omega, (m + u)\omega\}$ and $\{(m + \nu v)\omega, x\omega\}$ are admissible and parallel. Clearly, $\{m\omega, (m + u)\omega\} \subseteq Y$ and as we proved $(m + \nu v)\omega \in Y$ it follows that $x\omega \in Y$.

28 Lemma. Let H be a hyperbolic plane, $H = \langle u, v \rangle$ where $u, v \in C$ and A = a + H where $a, a + u, a + v \in V \setminus C$. Let Y denote the affine plane containing $a\omega, (a + u)\omega, (a + v)\omega$. Then $(A \setminus C)\omega \subseteq Y$.

PROOF. We may assume that $a \in H^{\perp} \setminus \{0\}$ (previous lemma and $Q(a) \neq 0$ as $\operatorname{ind}(V, f) = 1$). Let $x = a + \mu u + \nu v \in A \setminus C$. As the anisotropic vectors a, $a + \nu v$, a + v lie on an null line their ω -images are collinear. Hence $(a + \nu v)\omega \in Y$. The admissible sets $\{a, a + u\}$ and $\{a + \nu v, x\}$ are parallel, hence their ω -images are also parallel. As $\{a\omega, (a + u)\omega\} \subseteq A$ and $(a + \nu v)\omega \in A$ this yields $x\omega \in A$.

29 Lemma. Let $\Gamma = a + \langle v \rangle$ be any line. Then $(\Gamma \setminus C)\omega$ is contained in an affine line.

PROOF. We can assume that Γ is not a null line; cf. 24.

Select $a \in \Gamma \setminus C$ and hyperbolic planes H, H' such that $\langle v \rangle = H \cap H'$ (here we need dim $V \geq 3$ and that (V, f) is isotropic). The previous lemma provides planes Y, Y' such that $((a + H) \setminus C)\omega \subseteq Y$ and $((a + H') \setminus C)\omega \subseteq Y'$. As $(\Gamma \setminus C)\omega \subseteq Y \cap Y'$ it remains to prove that $Y \neq Y'$. Assume the contrary. We write $H = \langle u, w \rangle$ and $H' = \langle u', w' \rangle$ where $u, w, u', w' \in C$ and $a+u, a+w, a+u' \notin C$. The three affine null lines joining $a\omega$ to $(a + u)\omega$ respectively to $(a + w)\omega$ respectively to $(a + u')\omega$ lie in the affine plane Y = Y' and pass through a common point. As $\operatorname{ind}(V, f) = 1$ the three lines are not distinct. Suppose that e.g. that $(a + u)\omega, a\omega, (a + w)\omega$ lie on a common line (necessarily a null line). Then by 26 a + u, a, a + w are collinear, a contradiction.

So $\omega: V \setminus C \to V \setminus C$ is an injective mapping with the property: if $a, b, c \in V \setminus C$ are collinear then $a\omega, b\omega, c\omega$ are also collinear.

The following theorem is based on results of Rolfdieter Frank.

Projective Collineation Theorem. Let Π be a projective space of finite dimension ≥ 2 over an infinite field K such that each monomorphism $K \to K$ is an automorphism.

Let $\triangle \subset \Pi$ (here Π denotes the point-set of the projective space) such that

(1) Each line Γ of Π satisfies $\Gamma \subseteq \Delta$ or $\Gamma \cap \Delta$ is finite.

Let $\omega \colon M := \Pi \setminus \bigtriangleup \to \Pi$ be an injective mapping such that

- (2) If $a, b, c \in M$ are collinear then $a\omega, b\omega, c\omega$ are collinear.
- (3) $M\omega$ contains a triplet of non-collinear points.

Then ω is the restriction of a collineation $\Pi \to \Pi$.

We will first apply the theorem in order to solve our problem and give a proof to the theorem in a subsequent section.

As the theorem requires a projective space we put $V' := V \times K$ and consider the projective space Π (projective extension of the affine space over V) over the K-vectorspace V'.

Put $\triangle := \{ \langle (x,1) \rangle \mid x \in C \} \cup \{ \langle (x,0) \rangle \mid x \in V \}$ (so \triangle is the union of the affine isotropic points and the hyperplane at infinity).

Clearly, requirement 1 of the theorem holds true.

We have $M := \Pi \setminus \Delta = \{ \langle (x,1) \rangle \mid x \in V, Q(x) \neq 0 \}$, *i.e.* M consists of the anisotropic affine points.

Define $\omega: M \to M$, $\langle (x,1) \rangle \mapsto \langle (x\omega,1) \rangle$ where the ω at the right side is the mapping defined under the first lemma of this section. So the new mapping ω corresponds (in the projective extension) to the original ω .

We proved previously that ω satisfies assumptions 2 and 3 of the theorem (29 and 26).

Hence, by the above theorem, ω admits an extension to a collineation of Π . Let ω also denote such an extension.

Let $x \in V \setminus \{0\}$ such that Q(x) = 0. Select $a, b \in V \setminus C$ such that $f(a, x) \neq 0 \neq f(b, x)$ and $a - b \notin \langle x \rangle$. Then $(a + \langle x \rangle) \setminus C$ and $(b + \langle x \rangle) \setminus C$ are distinct admissible parallel sets (obtained from the two isotropic affine lines by deletion of a single point respectively) and (by 24) the ω -images are also admissible parallel sets. In projective terms, this means that the projective point $\langle (x, 0) \rangle$ (the intersection of the lines $\langle (x, 0) \rangle + \langle (a, 1) \rangle$ and $\langle (x, 0) \rangle + \langle (b, 1) \rangle$) has an ω -image on the hyperplane at infinity. As this hyperplane is spanned by points of the form $\langle (x, 0) \rangle$ where $x \in C$ and as ω is a collineation we proved:

(i) The collineation ω maps the hyperplane at infinity $H = \{ \langle (x,0) \rangle \mid x \in V \setminus \{0\} \}$ onto the hyperplane at infinity.

Hence we may restrict ω to the affine points and we proved that the mapping $\omega: V \setminus C \to V \setminus C$ as defined under the first lemma of this section admits an extension to an automorphism (collineation) of the affine space over V.

Consider a projective line $\Gamma = \langle (x,0) \rangle + \langle (0,1) \rangle$ where $x \in C \setminus \{0\}$ (*i.e.* an affine null line passing through the origin together with its point at infinity). Then $\Gamma \subseteq \Delta$. Hence $\Gamma \omega^{-1} \subseteq \Delta$ (else $\Gamma \omega^{-1} \cap M \neq \emptyset$ and then $\Gamma \cap M \supseteq \Gamma \cap M \omega \neq \emptyset$, which is not true as $\Gamma \subseteq \Delta$). Further, due to (i), the line $\Gamma \omega^{-1}$ is not contained in H (hyperplane at infinity) since Γ is not contained in H; cf. (i). This (together with the definition of Δ and ind(V, f) = 1) implies that $\Gamma \omega^{-1} = \langle (y,0) \rangle + \langle (0,1) \rangle$ for some $y \in C \setminus \{0\}$. In particular, Γ and also $\Gamma \omega^{-1}$ pass through the point $\langle (0,1) \rangle$. As we find distinct lines of the above type we conclude

(ii) $\langle (0,1) \rangle \omega = \langle (0,1) \rangle$. In particular, if $a, b \in V \setminus C$ and the points 0, a, b of the affine space over V are collinear (which means that the projective points $\langle (0,1) \rangle, \langle (a,1) \rangle, \langle (b,1) \rangle$ are collinear) then $0, a\omega, b\omega$ are collinear (here ω denotes the mapping defined under 24).

Now consider distinct collinear points $0, a, b \in V$. If $a \in C$ then $0\varphi = 0, a\varphi$, $b\varphi$ are collinear; cf. 10. So assume that $a, b \notin C$. We have $a\varphi = a\rho\omega\rho$ and also $b\varphi = b\rho\omega\rho$. The points 0, $a\rho$, $b\rho$ are collinear (obvious from the definition of ρ). Hence (ii) yields that 0, $a\rho\omega$, $b\rho\omega$ are also collinear. This implies obviously that 0, $a\rho\omega\rho = a\varphi$, $b\rho\omega\rho = b\varphi$ are collinear. We proved

(iii) $\Gamma \varphi$ is contained in a line for each affine line Γ through $0 \in V$.

The argument used already in 10 yields that φ maps each affine line into an affine line, and the Affine Collineation Theorem implies that φ is a collineation of the affine space over V. As said at the end of section 2 this finishes the proof.

30 Remark. The 'Projective Collineation Theorem' and our subsequent

arguments are only used in order to prove statement (ii) $\langle (0,1) \rangle \omega = \langle (0,1) \rangle$.

4 Proof of the Projective Collineation Theorem

In the sequel let Π be a Desarguesian projective space of projective dimension ≥ 2 (*i.e.* at least a plane) and infinite order. Let Π simultaneously denote the point set of Π .

We compile some technical tools used in [5].

Suppose that a non-trivial (*i.e.* non-discrete and more than 2 open sets exist) topology is given on each line (considered as a set of points) such that perspectivities between intersecting lines are continuous mappings. Such a system of topologies is called a linear topology on Π .

A subset $M \subseteq \Pi$ of projective points is called linearly open if for each line Γ of Π the intersection $\Gamma \cap M$ is open (in the topology given on Γ).

Let X be any set. We call $\mathbf{U} := \{U \subseteq X \mid X \setminus U \text{ is finite or } U = \emptyset \}$ the cofinite topology on X (**U** denotes the set of open subsets of X). If X is an infinite set then the cofinite topology is non-trivial.

Each injective mapping $X \to Y$ is continuous with respect to the cofinite topologies on X and Y.

31 Lemma. Each line of Π endowed with its cofinite topology yields a linear topology on Π . Let $\triangle \subset \Pi$ be a set of points such that $\Gamma \subseteq \triangle$ or $\Gamma \cap \triangle$ is finite for each line Γ of Π . Put $M := \Pi \setminus \triangle$. Then M is linearly open.

Indeed, the first statement follows from our previous observations. If $M \cap \Gamma$ is not open then $\Gamma \cap \Delta$ is infinite, hence $\Gamma \subseteq \Delta$ and $M \cap \Gamma = \emptyset$.

The lemma provides the basic assumption in Frank's study [5], namely that a linearly open set M is given in a projective space endowed with a linear topology.

In the sequel let the assumptions of the Projective Collineation Theorem hold true and $M \neq \emptyset$.

Let us take points $x, y, z \in M$ such that $x\omega, y\omega, z\omega$ are noncollinear (property (c)). Let Ω denote the projective plane (subspace of Π) containing x, y, zand Ω' the projective plane containing $x\omega, y\omega, z\omega$. Then Lemma 5 (e) of [5] asserts that

a, b, c collinear $\Leftrightarrow a\omega, b\omega, c\omega$ collinear

for all $a, b, c \in M \cap \Omega$.

(In terms of [5] this means that $\omega|_{M\cap\Omega}$ is an embedding.)

Now Proposition 1 (a) of [5] supplies an extension of $\omega|_{M\cap\Omega}$ to a mapping $\omega' \colon \Omega \to \Omega'$ such that

$$a, b, c$$
 collinear $\Leftrightarrow a\omega', b\omega', c\omega'$ collinear

holds true for all $a, b, c \in \Omega$. This yields that $\Omega \omega'$ is a subplane of Ω' , and as K does not contain a subfield isomorphic to K we conclude that $\Omega \omega' = \Omega'$. In other words, ω' is a collineation of Ω onto Ω' .

Consider the line Γ joining x to y and let Γ' be the line joining $x\omega$ to $y\omega$. The set $M \cap \Gamma$ is open, hence $\Gamma \setminus (M \cap \Gamma)$ is finite (as $x \in \Gamma$ we have $M \cap \Gamma \neq \emptyset$). Then $\Gamma \omega' \setminus (M \cap \Gamma) \omega'$ is finite. As $\Gamma \omega' = \Gamma'$ and $(M \cap \Gamma) \omega' = (M \cap \Gamma) \omega$ we have that $\Gamma' \setminus (M \cap \Gamma) \omega$ is finite. Hence $(M \cap \Gamma) \omega$ is open (in Γ'). We proved:

There is a line Γ of Π such that $(M \cap \Gamma)\omega$ is open (in the line containing this set) and non-empty.

Now proposition 2 of [5] yields that ω is induced by a semilinear mapping $\eta \colon V \to V.^1$

We claim that η is injective.

If kernel(η) is non-zero then kernel(η) contains a point (1-dimensional subspace of V') $z \in \Pi \setminus M$. Clearly there is a line (2-dimensional subspace of V') Γ of Π through z such that $\Gamma \not\subseteq \Delta$ (join z to some point in M). Hence $\Gamma \cap \Delta$ is finite and Γ contains two distinct (in fact infinitely many) points $r, s \in M$. As ω is injective $r\omega, s\omega$ are distinct points in $\Gamma\eta$, contradicting kernel(η) $\subseteq \Gamma$.

Thus we obtained that η is a semilinear bijection and the induced collineation extends ω . The proof of our Projective Collineation Theorem is finished.

References

- [1] A. D. ALEXANDROV: (Seminar report) Uspehi Mat. Nauk. 5 (1950), no. 3 (37), 187.
- [2] A. D. ALEXANDROV: Mappings of Spaces with Families of Cones and Space-Time-Transformations, Annali di Matematica 103 (1975), 229–257.
- [3] F. S. BECKMAN, D. A. QUARLES JR.: On isometries of Euclidean Spaces, Proc. Amer. Math. Soc. 4 (1953), 810–815.
- [4] W. BENZ: Geometrische Transformationen. Wissenschaftsverlag Mannheim 1992
- [5] R. FRANK: Ein lokaler Fundamentalsatz für Projektionen, Geom. Ded. 44 (1992), 53-66.
- [6] J. LESTER: Cone preserving mappings for quadratic cones over arbitrary fields, Canad. J. Math. 29 (1977), 1247–1253.
- [7] E. M. SCHRÖDER: Ein einfacher Beweis des Satzes von Alexandrov-Lester, Journ. Geom 37 (1990), 153–158.

¹We do not need Frank's proposition 2 in full generality. In our setting, ω maps the linearly open subset M of Π into the same projective space Π . R. Frank's proposition 2 requires only the little Desargues-axiom for Π and the assertion reads that ω is the restriction of a central projection (where the center is a projective subspace of Π) followed by an isomorphism of projective subspaces of Π . As we assume that Π is a Desarguesian projective space, a composition of such mappings is induced by a semilinear mapping of the underlying vector space.