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Introduction and result

Let V be a vector space over a field K endowed with a quadratic form @
andlet f: VxV — K, f(z,y) = Q(z+y) — Q(x) — Q(y) denote the associated
symmetric bilinear form. Hence f(z,z) = 2Q(z).

We assume that V+ = {z € V| f(z,5) =0 forall y€ V}={0}and V
is isotropic, i.e. Q(v) # 0 for some v € V' \ {0} and dimV' > 3.

Also, we assume for convenience from the beginning that V' is finite-dimen-
sional.

For any a € Vlet Cy :={a+v|veV, Q(v)=0} denote the ‘cone’ with
center a. Each cone has a unique center. The set of isotropic vectors of V is
C .= C().

For a mapping ¥: V — V we study the property

d) Qz—-y)=0 < Qxv—yyp)=0

for all z,y € V.
Using cones the property can be rephrased: y € C, if and only if yyp € Cypy,
for all z,y € V.



36 F. Kniippel, K. Nielsen

We quote a by now classical theorem.

1 Theorem (A. D. Alexandrov [1] and J. Lester [6]). Let ¢: V —
V' be a bijection satisfying property (d). Then there is a semilinear bijection
©: V.=V (with associated automorphism™ of K) and a number A € K \ {0}
such that

(1) ¥ = o1 where 7: V. — V is the translation v — v + 01,

(2) Q(xp) = \-Q(x) for all z,y € V.

The assertion holds true even when V has infinite dimension. A brief proof
to the theorem was published by E. M. Schréder [7].

We want to drop the assumption that v is a bijection and use only property
(d). We shall see that injectivity of ¢ can be proved without further assumptions.
However, surjectivity seems to be a major problem and our proof of the following
main result requires several arguments.

2 Theorem. Suppose that K is a field such that each monomorphism of K
18 surjective.
Let ¢: V — V satisfy

(d) Qr—y) =0 < Q—yp)=0

forallx,y e V.
Then one has a semilinear bijection ¢: V — V' (with associated automor-
phism = of K) and a number A € K \ {0} such that

(1) ¥ = o1 where 7: V. — V s the translation v — v + 01,

(2) Q(zp) = \-Q(x) for all z,y € V.

3 Remark. The assumption that each monomorphism of K is surjective
is necessary. Indeed, if ey,...,e, is a basis for V' such that f(e;,e;) is in the
prime field and ~ is a monomorphism of K then the mapping V — V|,
Arer + -+ Apen = Arer + - - - + \pey, satisfies property (d). Also the property
dim V' < oo cannot simply be deleted.

In the sequel we will prove the above result.

1 Basic arguments and propositions

A subvectorspace is called isotropic if it is spanned by its isotropic vectors.

A subset M C V is called a null set if Q(z —y) = 0 for all z,y € M. Hence
an affine subspace a+ U (where a € V and U is a subvectorspace of V') is a null
set if and only if Q(u) =0 for all u € U.
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A null subvectorspace U is also called a totally isotropic subvectorspace.
This means that Q(u) = 0 for each u € U.

Notation Forc e Vlet 7.: V — V, v7. = v + ¢ denote the translation
assigned to c.

For each mapping ¢: V' — V and a € V let ¥, := 7,97_4y.

Observe that 0y, = 0 for each @ € V and Vi, = Vi — arp. If 1) satisfies
property (d) then v, satisfies also (d).

Further, 1) is injective (surjective) if and only if v, is injective (surjective).

If o fulfills (z 4+ y)y = zp + yo for all z,y € V then ¢, = 1 for each a € V.

4 Lemma. Lety:V — V be a mapping with the property
(C) Caw C VQ/)

for each a € V (i.e. if the image of b contains the point aip then it contains the
cone whose center is ap). Then 1 is surjective.

PROOF. For each b € V the mapping 1 satisfies also property (c). Let
T :=Vg. Then 0 € T and C, C T for each a € T. This implies T' =V, hence
1o and also v is surjective. QED

5 Proposition. Let: V — V satisfy property (d) (see introduction). Then
¥ s injective.

PROOF. Let z,y € V such that x¢) = y. Put ¢ := 1,. Then ¢ satisfies
(d) and 0p = 0 = ap where a ;== x —y. As 0 = Q(0) = Q(ay) = Q(ap — 0p)
property (d) implies a € C. Each b € C fulfills Q(ap — bp) = Q(0 — b) = 0,
hence Q(a — b) = 0 and thus b € at. As (C) = V we conclude that V C a*,
hence a =0 and x = y. QED

6 Corollary. If v fulfills properties (d) and (c) then v is a bijection.

A physical interpretation The vectors of V' are results of physical ob-
servations (measurements) obtained by an observer A; each result w € V' cor-
responds to an ‘event’. A second observer B obtains w when he applies his
device to the same event.

Observer A watches a lightray joining two events if and only if the corre-
sponding measurements fulfill Q(x —y) = 0. The analogue interpretation applies
to observer B. Then (d) claims: A watches a lightray joining a pair of events if
and only if B watches a lightray joining the events.

Property (d) implies (due to the previous proposition): if observer A distin-
guishes two events with his device then B will also obtain distinct results for
the respective events.
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Surjectivity of ¢ means that both the devices of A and B have the same
range.

Assumptions In the sequel let ¢: V — V satisfy (d).

Hence 1) is injective by the previous proposition 5.

We will not assume surjectivity of .

The mapping ¢ := 1) satisfies (d) and 0p = 0 and it is also injective. In the
sequel we focus on ¢.

7 Lemma. (1) If S CV is a null set then Sy is also a null set.

(2) A mazimal null set of V is an affine subspace (mazimal refers to C). A
mazimal null set of V' containing 0 is a sub-vectorspace (of dimension
ind(V, f), the Witt-indez of (V,Q)).

(3) Let T be an affine null subspace. Then T = (S where S is the set of all
mazimal null subsets of V' containing T.

The proofs are straightforward.

8 Proposition. Let U and W be null subvectorspaces of V such thatU C W
(properly contained). Then (Uyp) C (W) (also properly contained).

PrOOF. We may assume that W = U @ (w) , w € W. Clearly, rad(U~) :=
UNU+ = U and w € UL\ (rad(U™)) is an isotropic vector. Hence U+ is spanned
by its isotropic vectors. Further, U ¢ w'. Hence there is some isotropic vector
v € U\ wt. This implies f(u,v) = 0 # f(w,v) for all u € U, hence Q(u—1v) =
0 # Q(w —v) and by (d) Q(up —vp) =0 # Q(wp —vy). Thus f(up,vp) =
0 # f(we,vy) for all u € U. We proved that (Uy) C vet and we ¢ vet. So
we & (Up) and W € (Up). QED

9 Corollary. Let U be a null subvectorspace of V.. Then dim(Uy) = dimU'.
In particular, (v)e C (vy) for each v € C.

Proor. Consider a proper chain Uy = O C U; C --- C Ui of maximal
length consisting of null subvectorspaces of V' where U = U; for some j. By the
previous proposition (Upp) = O C (Uyp) C --- C (Ugyp) is a proper chain of
totally isotropic subspaces. Hence

k < dim(Upp) < ind(V, f) = k

and therefore dim(U;p) = i = dim U;. - Our proof needs that ind(V, f) is finite.

QED

10 Corollary. LetT' = a+(v) be an affine null line. Then T'p C ap+ (ve,).
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PROOF. As ¢, satisfies the assumptions used for ¢ (namely (d) and 0p = 0)
the above corollary holds also true for ¢,. We conclude I'p = ap+ (V) 7o T_qp =
ap + (V)pq C ap + (Vpg).

11 Lemma. Letv € C (i.e. v is isotropic) and w € V.

(1) If w € C then
wloy & welovp

(2) If w & C then
wlov <= welop

PrROOF. (1) Wehave w € v & Q(v—w) =0 & Q(vp—wp) =0 & wp €
vpT, where we take into account that v and we are isotropic vectors.

(2) Clearly, w € v+ < Q(Av —w) = 0 for some A € K < Q((Av)g —wg) =0
for some A € K.
Now (Av)¢ € (v)¢ C (vp) by the previous corollary. Hence the last state-
ment in the above chain of equivalences implies that Q(u(ve) — we) =0
for some p € K. This holds true if and only if wp & ve™.

QED

12 Corollary. Let U be a totally isotropic subvectorspace of V.. Then |y :
U — (Uyp) is an injective mapping of U into (Up) such that dim U = dim(U¢)
and |y preserves collinearity (given in the affine spaces assigned to U respec-
tiwely to (Up)).

This is an immediate consequence of the previous two corollaries.

We will use the following theorem (see e.g [4] page 104, A.3.1) that is based
on a more general result by H. Schaeffer for 2-dimensional vector spaces.

Affine Collineation Theorem. Let U and W be n-dimensional vector
spaces over the same field K (n an integer > 2). Suppose that each monomor-
phism of K is surjective and |K| > 3.

Let a: U — W be an injective mapping that preserves collinearity and such
that U« is not contained in a hyperplane of W and 0a = 0.

Then « is is a semilinear bijection; i.e. there is an automorphism =~ of K

such that (z + y)a = za + ya and (Ax)a = A(za) for all z,y € V and A € K.

If K is finite then the mapping ¢ under investigation is a bijection. Hence
the condition |K| > 3 is irrelevant in our arguments.

The only monomorphism of R is the identity, hence the Affine Collineation
Theorem subsumes K = R.

The previous corollary and the Affine Collineation Theorem yield
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13 Lemma. Suppose that each monomorphism of K is surjective.

Let U be a totally isotropic subvectorspace of V' such that dimU > 2. Then
Uy is a totally isotropic subvectorspace of V' such that dim(Up) = dimU and
the restriction p|y: U — Uy is a semilinear bijection.

14 Corollary. Suppose that each monomorphism of K is surjective and
ind(V, f) > 2. Then (v)p = (vy) for each isotropic vector v.

PROOF. Select a 2-dimensional totally isotropic sub-vectorspace of V' con-
taining v and apply the previous lemma. QED

15 Lemma. Suppose that (v)e = (vy) for each v € C. Then allv € C and
w €V satisfy
(L) vilw <& ovplwp

In particular, vt = vt N V.

PRrROOF. We must only consider the case ’ =’ when w is anisotropic; cf. 11.
If the right-hand statement is not true then Q(u(vy) —wy) = 0 for some p € K.
The assumption (v)p = (vy) yields that u(ve) = (Av)p for some A € K, hence
Q((M)p —wp) =0 and by (d) Q(Av — w) = 0. This implies v £ w. QBED

16 Lemma. Let U and W be subvectorspaces of V such that U™ is isotropic
and U C W (properly contained). If (L) (for v € C and w € V') of the previous
lemma holds true then (Uyp) is properly contained in (W ).

PrOOF. We may assume that W = U @ (w). Then Ut € wt. As U™ is
spanned by a set of isotropic vectors we find an isotropic vector v € U+ \ w.
Hence v L v and w [ v for all w € U. Now (L) implies that uep L vy and
we L v for all u € U as v is isotropic. Hence (Uy) C vet but wp € W\ vp™ .
This implies W Z (Up). As (Uyp) C (W) the assertion follows.

17 Corollary. Let U be a subvectorspace of V such that UL is isotropic.
Suppose that (L) holds true. Then dim(Uy) < dimU.

PROOF. Select a basis zi,..., 2y, of isotropic vectors for UL. Put Z; :=
(21,...,2) for i € {0,...,m} and W; := Z;-. We obtain a proper chain U =
Wy C --- C Wy = V such that each VVZ-L = Z; is isotropic. The previous
lemma yields that (Ug) = (Wpe) C --- C (Woyp) = (V). Hence dim(Ugp) <
dimU.

18 Remark. We want to prove that (under the assumptions of our theorem)
© is a collineation.

Since 0 = 0 this implies that ¢ is a semilinear bijection of V.

Having accomplished this result standard arguments (which we will not re-
peat) provide a number A € K \ 0 such that Q(zp) = A - Q(x) for all z € V,
and the proof of our theorem is finished.
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2 The case of ind(V, f) > 2

19 Lemma. Suppose that K is a field such that each monomorphism of K
is surjective and ind(V, f) > 2.

Then (w)p C (wep) for each vector w € V.

For each affine line a+ (w) one has (a+ (w))e C ap + (wpq). In particular,
@ preserves collinearity in the affine space over V.

PROOF. As w™ is always isotropic the first assertion follows from the pre-
vious corollary. As to the second one we observe that ¢, fulfills the require-
ments imposed on ¢ and thus the assertion of the previous corollary. Hence
(a+ (w))p = ap + (w)pa € ap + (wea). QED

Consider the proof of 17 in the case U = 0, hence U+ =V and m = dim V..
Then

0= (Up) = Wnp) C--- C(Wop) = (V)

is a proper chain of sub-vector spaces of length m. Hence (V) = V. This obser-
vation and the previous corollary provide the requirements of the Collineation-
Theorem. Thus we proved

20 Proposition. Suppose that K is a field such that each monomorphism
of K is surjective and ind(V, f) > 2.
Then ¢: V — V is a semilinear bijection.

We have proved our theorem when ind(V, f) > 2.

3 The case of ind(V, f) =1

We assume that K is infinite; else injectivity of ¢ implies surjectivity and
our main result follows.
Further, we assume that each monomorphism of K to K is an automorphism.

21 Definition. A set X is called admissible if X C V' \ C' and |X| > 2 and
X is contained in an affine null line that intersects C.

If X C V is collinear and |X| > 2 let [X] denote the unique affine line
containing X.

If X is admissible then the affine line [X] is a null line and it intersects C'
in a unique point p(X) € C.

We call admissible sets X, Y parallel if the lines [X], [Y] are parallel.

Let I' = a 4+ (v) be an affine null line.

Then ' C Cor T'NC = ( or INC| = 1. The property ITNC| =1 is
equivalent to f(a,v) # 0.
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22 Remark. (1) Let I' = a+(v) be an affine null line such that [’'NC| = 1
(i.e. f(a,v) #0). Put X :=T\C. Then X is admissible and [X] =TI" and
p(X)=TnNnC.

(2) If X is admissible then X ¢ is admissible.
23 Definition. Let p: V\C — V \ C, v — Q(v) lv.
In a Euclidean plane, p is the reflection at the unit circle.
24 Lemma. (1) LetT' = a+ (v) be an affine null line.

IfTNC =0 then Tp=Q(a) ta+ (v).
If T’NC| =1 then we can assume that a € C and have

T\ C)p = [(f(a,v)) " v + (@] \ {(f(a,v)) v}

(2) Let X be admissible. Then Xp is admissible.

(8) Let X andY be admissible. Then X is parallel to'Y if and only if p(Xp),
p(Yp), 0 are collinear.

PRrROOF. Statement 1 follows from the definition of p.

Statement 2 follows immediately from 1.

We prove 3.

Put T':= [X] =a+ (v) and X := [Y] = b+ (w) where a,b,v,w € C.

Statement 1 reveals that the following statements are equivalent.

X is parallel to Y; T is parallel to X ; (v) = (w); p(Xp), p(Y p), 0 are collinear.

Put w:=ppp: V\ C — V \ C. Clearly w is injective and if X is admissible
then Xw is also admissible. QED

25 Lemma. Let X and Y be admissible. If X is parallel to Y then Xw is
parallel to Yw.

PROOF. Let X be parallel to Y. Then p(Xp), p(Y p), 0 are collinear (previous
lemma b)). There are (unique) affine null lines I' ; ¥ containing X p respectively
Yp,and I'NC = {p(Xp)}, XN C = {p(Yp)}. Now (Xp U {p(Xp)})p C 'y
and (as I' is a null line) the image 'y is contained in a (unique) null line that
intersects C' in a single point. Also the point p(Xp)y is contained in this line
and in C. Hence

(1) p(Xpp) = (p(Xp))p. Also p(Ypp) = (p(Yp))e.

As p(Xp),p(Yp), 0 are collinear and the common line is a null line, the image
points

(J3) (p(Xp))e, (p(Yp)), 0 = 0p are collinear.

Clearly, (j) and (jj) yield that p(Xpy), p(Y pp), 0 are collinear.

The previous lemma finally implies that X ppp is parallel to Y ppp. QED
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We proved that w is injective and the w-image of an admissible set is admis-
sible and that w preserves parallelity on the system of admissible sets.

If I is a null line then (I'\ C)w is contained in a null line.

If T is a null line with ['NC| =1 then (I' \ C)w is contained in a null line
with that property.

It is our objection to prove that w preserves collinearity on V' \ C.

26 Lemma. Let a,b,c € V' \ C such that b—a,c —a € C. Then a,b,c are
collinear if and only if aw, bw, cw are collinear.

PROOF. We may assume that a, b, ¢ are distinct.

Suppose that aw, bw, cw are collinear. Hence the three points lie on a null line.
Now 24, a), yields that awp = app, bpp, cpp lie on a null line. Due to property
(d) any two of the points ap, bp, cp are joined by null lines. As ind(V,Q) = 1
these points are collinear. Finally, 24, 1 implies that a, b, ¢ are collinear. QED

27 Lemma. Let H be a hyperbolic plane, H = (u,v) where u,v € C, and
m € H\ C such that m+u,m+v & C (for example m = u+ v when charK #
2). Let Y denote the affine plane containing mw, (m + u)w, (m + v)w. Then
(H\C)w CY and (H\ C)w contains a triplet of non-collinear points.

PRrROOF. The points mw, (m + u)w, (m + v)w are not collinear; cf. 26.

Let z = m+ pu+vv € H\ C. The set {m,m + v,m + vv} is admissible
(as it is contained in V' \ C' and in the null line a + (v) that intersects C' in a
unique point). Hence the w-image {mw, (m +v)w, (m +vv)w} is admissible and
in particular collinear. As two of the points lie in Y we obtain (m + vv)w € Y.

The sets {m,m + u} and {m + vv,x} are admissible and parallel. Hence
their images {mw, (m + v)w} and {(m + vv)w, zw} are admissible and parallel.
Clearly, {mw, (m + u)w} CY and as we proved (m + vv)w € Y it follows that
weY. QED

28 Lemma. Let H be a hyperbolic plane, H = (u,v) where u,v € C' and
A =a+H where a,a+u,a+v € V\C. Let Y denote the affine plane containing
aw, (a + u)w, (a +v)w. Then (A\ C)w C Y.

PROOF. We may assume that a € H+\ {0} (previous lemma and Q(a) # 0
as ind(V, f) = 1). Let © = a+ pu+vv € A\ C. As the anisotropic vectors a,
a+vv, a+v lie on an null line their w-images are collinear. Hence (a+vv)w € Y.
The admissible sets {a,a+u} and {a+vv,z} are parallel, hence their w-images
are also parallel. As {aw, (a + u)w} C A and (a + vv)w € A this yields zw €
A.

29 Lemma. Let ' = a+ (v) be any line. Then (I'\ C)w is contained in an
affine line.
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PROOF. We can assume that I' is not a null line; cf. 24.

Select a € T'\ C' and hyperbolic planes H, H' such that (v) = HNH' (here
we need dimV' > 3 and that (V, f) is isotropic). The previous lemma provides
planes Y)Y’ such that ((a + H) \ C)w C Y and ((a + H') \ C)w C Y'. As
(T'\ C)w CY NY’ it remains to prove that Y # Y’. Assume the contrary. We
write H = (u,w) and H' = (u/,w') where u, w, v, w" € C and a+u, aw, a+u’ ¢
C'. The three affine null lines joining aw to (a + u)w respectively to (a + w)w
respectively to (a + u/)w lie in the affine plane ¥ = Y’ and pass through a
common point. As ind(V, f) = 1 the three lines are not distinct. Suppose that
e.g. that (a + u)w, aw, (a + w)w lie on a common line (necessarily a null line).
Then by 26 a + u,a,a + w are collinear, a contradiction.

Sow: V\C — V\ C is an injective mapping with the property: if a,b,c €
V'\ C are collinear then aw, bw, cw are also collinear. QED

The following theorem is based on results of Rolfdieter Frank.

Projective Collineation Theorem. Let II be a projective space of finite
dimension > 2 over an infinite field K such that each monomorphism K — K
is an automorphism.

Let A C II (here II denotes the point-set of the projective space) such that

(1) Each line I" of II satisfies I' C A or I' N A is finite.
Let w: M :=1I'\ A — II be an injective mapping such that

(2) If a,b,c € M are collinear then aw, bw, cw are collinear.
(3) Mw contains a triplet of non-collinear points.

Then w is the restriction of a collineation IT — II.

We will first apply the theorem in order to solve our problem and give a
proof to the theorem in a subsequent section.

As the theorem requires a projective space we put V'’ := V x K and consider
the projective space II (projective extension of the affine space over V') over the
K-vectorspace V'.

Put A == {{(z,1)) | =ze€C}U{{(x,0)) |z eV} (so A is the union of
the affine isotropic points and the hyperplane at infinity).

Clearly, requirement 1 of the theorem holds true.

We have M =11\ A = {{(z,1)) | x € V,Q(x) # 0}, i.e. M consists of the
anisotropic affine points.

Define w: M — M, {(z,1)) — ((zw, 1)) where the w at the right side is the
mapping defined under the first lemma of this section. So the new mapping w
corresponds (in the projective extension) to the original w.
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We proved previously that w satisfies assumptions 2 and 3 of the theorem
(29 and 26).

Hence, by the above theorem, w admits an extension to a collineation of II.

Let w also denote such an extension.

Let z € V' \ {0} such that Q(x) = 0. Select a,b € V' \ C such that f(a,z) #
0# f(b,z) and a — b & (). Then (a+ (z)) \ C and (b+ (x)) \ C are distinct
admissible parallel sets (obtained from the two isotropic affine lines by deletion
of a single point respectively) and (by 24) the w-images are also admissible
parallel sets. In projective terms, this means that the projective point ((z,0))
(the intersection of the lines ((x,0)) + ((a,1)) and ((z,0)) + ((b,1))) has an w-
image on the hyperplane at infinity. As this hyperplane is spanned by points of
the form ((x,0)) where z € C' and as w is a collineation we proved:

(i) The collineation w maps the hyperplane at infinity H = {((z,0)) | z €
V'\ {0}} onto the hyperplane at infinity.

Hence we may restrict w to the affine points and we proved that the mapping
w: V\C — V\C as defined under the first lemma of this section admits an
extension to an automorphism (collineation) of the affine space over V.

Consider a projective line I' = ((z,0)) + ((0,1)) where x € C'\ {0} (i.e. an
affine null line passing through the origin together with its point at infinity).
Then I' € A. Hence Tw™! C A (else Tw™' N M # § and then T N M D
' N Mw # 0, which is not true as I' C A). Further, due to (i), the line Tw™!
is not contained in H (hyperplane at infinity) since I' is not contained in H ;
cf. (i). This (together with the definition of A and ind(V, f) = 1) implies that
Tw™! = ((y,0)) + ((0,1)) for some y € C'\ {0}. In particular, ' and also 'w™!
pass through the point ((0,1)). As we find distinct lines of the above type we
conclude

(ii) ((0,1))w = ((0,1)). In particular, if a,b € V' \ C and the points 0,a,b
of the affine space over V' are collinear (which means that the projective points
((0,1)),((a, 1)), ((b,1)) are collinear) then 0, aw, bw are collinear (here w denotes
the mapping defined under 24).

Now consider distinct collinear points 0,a,b € V. If a € C then 0p = 0, ayp,
by are collinear; cf. 10. So assume that a,b ¢ C. We have ayp = apwp and also
by = bpwp. The points 0, ap, bp are collinear (obvious from the definition of p).
Hence (ii) yields that 0, apw, bpw are also collinear. This implies obviously that
0, apwp = ayp, bpwp = by are collinear. We proved

(iii) Ty is contained in a line for each affine line I" through 0 € V.

The argument used already in 10 yields that ¢ maps each affine line into an
affine line, and the Affine Collineation Theorem implies that ¢ is a collineation
of the affine space over V. As said at the end of section 2 this finishes the proof.

30 Remark. The ‘Projective Collineation Theorem’ and our subsequent
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arguments are only used in order to prove statement (ii) ((0,1))w = ((0, 1)).

4 Proof of the Projective Collineation Theorem

In the sequel let I1 be a Desarguesian projective space of projective dimension
> 2 (i.e. at least a plane) and infinite order. Let II simultaneously denote the
point set of II.

We compile some technical tools used in [5].

Suppose that a non-trivial (i.e. non-discrete and more than 2 open sets exist)
topology is given on each line (considered as a set of points) such that perspec-
tivities between intersecting lines are continuous mappings. Such a system of
topologies is called a linear topology on II.

A subset M C II of projective points is called linearly open if for each line
I of IT the intersection I' N M is open (in the topology given on I').

Let X be any set. We call U:={U C X | X \U is finiteor U =0 }
the cofinite topology on X (U denotes the set of open subsets of X). If X is an
infinite set then the cofinite topology is non-trivial.

Each injective mapping X — Y is continuous with respect to the cofinite
topologies on X and Y.

31 Lemma. Fach line of Il endowed with its cofinite topology yields a linear
topology on I1. Let A\ C II be a set of points such that ' C A or I'N A is finite
for each line I' of II. Put M :=11\ A. Then M s linearly open.

Indeed, the first statement follows from our previous observations. If M NT°
is not open then I' N A is infinite, hence ' € A and M NT = ().

The lemma provides the basic assumption in Frank’s study [5], namely that
a linearly open set M is given in a projective space endowed with a linear
topology.

In the sequel let the assumptions of the Projective Collineation Theorem
hold true and M # ().

Let us take points x,y, z € M such that zw, yw, zw are noncollinear (prop-
erty (c)). Let £ denote the projective plane (subspace of II) containing x,y, z
and ' the projective plane containing zw,yw, zw. Then Lemma 5 (e) of [5]
asserts that

a,b,c collinear < aw,bw,cw collinear

for all a,b,c € M NA.

(In terms of [5] this means that w|yno is an embedding.)

Now Proposition 1 (a) of [5] supplies an extension of w|yno to a mapping
W' Q — Q' such that

. / / / :
a,b,c collinear < aw,bw’,cw’ collinear
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holds true for all a,b,c € Q. This yields that Quw’ is a subplane of €', and as
K does not contain a subfield isomorphic to K we conclude that Qw’ = €. In
other words, w’ is a collineation of 2 onto €)'.

Consider the line I joining x to y and let I be the line joining zw to yw.
The set M NT is open, hence I'\ (M NT) is finite (as € ' we have M NT # ().
Then I'w”\ (M NT")w' is finite. As Tw' =T" and (M NT)w’ = (M NT")w we have
that TV \ (M NT)w is finite. Hence (M NT)w is open (in I"). We proved:

There is a line I' of II such that (M NT')w is open (in the line containing
this set) and non-empty.

Now proposition 2 of [5] yields that w is induced by a semilinear mapping
n:V-vt

We claim that 7 is injective.

If kernel(n) is non-zero then kernel(n) contains a point (1-dimensional sub-
space of V') z € I\ M. Clearly there is a line (2-dimensional subspace of V')
I of IT through z such that I' Z A (join z to some point in M ). Hence I' N A is
finite and I" contains two distinct (in fact infinitely many) points r,s € M. As
w is injective rw, sw are distinct points in I'n, contradicting kernel(n) C I

Thus we obtained that 7 is a semilinear bijection and the induced collineation
extends w. The proof of our Projective Collineation Theorem is finished.
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"We do not need Frank’s proposition 2 in full generality. In our setting, w maps the linearly
open subset M of Il into the same projective space II. R. Frank’s proposition 2 requires
only the little Desargues-axiom for II and the assertion reads that w is the restriction of a
central projection (where the center is a projective subspace of II) followed by an isomorphism
of projective subspaces of II. As we assume that II is a Desarguesian projective space, a
composition of such mappings is induced by a semilinear mapping of the underlying vector
space.



