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Abstract. Assume that P is a parallelism in PG(3,K), for K a field, that admits a
collineation group G that fixes one spread ¥ and acts transitively on the remaining spreads of
P. If GG contains suitable central collineations of X then it is shown that the dual parallelism is
a parallelism that can never be isomorphic to the original. The results show that the Johnson
parallelisms of Hall or Knuth type, the Johnson-Pomareda parallelisms of type f and all of the
‘derived’ parallelisms produce dual parallelisms which are parallelisms but are nonisomorphic
to the original parallelism.
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Introduction

Recently, the author and the author with Pomareda have constructed a
variety of parallelisms in PG(2, K) where K is a field (see Johnson [4] chapter
18, Johnson [5] and Johnson and Pomareda [6]). In various of these examples
of parallelisms P, there is a unique Pappian spread > and an affine central
collineation group G of ¥ with axis ¢ which acts transitively on the spreads of
P — {Z}. (The other examples are related to such parallelisms by a ‘derivation’
process.)

In one case, the full central collineation group is employed and the remaining
spreads are Hall spreads. In the finite cases, not covered by the above, the
remaining spreads are derived Knuth semifield spreads. In the infinite cases, not
covered by the above, the remaining spreads are derived conical flock spreads
and there can be a variety of such examples.

In general, if — is a parallelism in PG(3, K), for K a field, then by applying
a duality d, there is a corresponding ‘dual parallelism’ I'd, that is, a covering of
the lines by a set of dual spreads. If all of the spreads of I' are dual spreads then
I'd is a parallelism. A major problem is to determine when I'0 is isomorphic to
I' in the case that I'd is a parallelism.

In the only study of this type considered, Pentilla and Williams |8] construct
an infinite class of finite parallelisms in PG(3, q) each admitting a group tran-
sitive on the spreads of the parallelism where the spreads are all Desarguesian.
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Pentilla and Williams are able to show that the dual parallelisms are always
non-isomorphic to the original parallelisms.

In this note, we show that all of the parallelisms P of the author or of
Johnson-Pomareda mentioned above have the property that Po is always non-
isomorphic to P thus generating a variety of completely new classes of paral-
lelisms. Moreover, there are classes of ‘derived’ parallelisms and all of their duals
are parallelisms which are not isomorphic to the original.

Actually, we provide a result which shows that any of the so-called finite ‘de-
ficiency one’ transitive parallelisms have dual structures that are parallelisms
and are non-isomorphic provided there is a sufficient central collineation sub-
group.

Our main result in the finite case is the following theorem.

Theorem 1. Let P be a parallelism in PG(3,q). Assume that there exists
a Desarguesian spread ¥ in P and an collineation group G of P which fizes 2
and a component £ of ¥ and acts transitively on the remaining spreads of P.

Assume that G contains an elation group ET of order ¢°.

(1) If G contains a homology of odd order with azis £ which does not fix
any spread of P — {X} then the dual parallelism PJ is a parallelism that is not
isomorphic to P.

(2) If g + 1 = 2% for some integer a and G contains a homology of order
20 > 8 then the dual parallelism P& is a parallelism that is not isomorphic to P.

For infinite parallelisms, we prove the following results.

Theorem 2. Let P be a parallelism of PG(3,K), for K a skewfield, con-
taining a spread ¥ and a central collineation group G~ of ¥ with affine azis

l.
If G~ acts two-transitively on the lines of ¥ — {{} then K is a field and the
dual parallelism P& is a parallelism that is not isomorphic to P.

Theorem 3. (1) Let P be a parallelism in PG(3, K) where K is a field of
odd or zero characteristic. Assume that G~ acts transitively on the spreads not
equal to T of the parallelism P and ¥ and a given spread p of P —{X} have the
following form:

Yrrx=0y==zx Yu,t € K, v a nonsquare in K

and

pf  z=0y==x z fiS) Vv, s € K,

f some funct;ﬁon on K such that
f(f(t)/v) is not identically ~t,
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where p* denotes the spread derived from p by replacing the opposite requlus to

0
:J:—O,y—mbo H_VHEK.

If ¥ is Pappian and G contains the full elation group with axis £ of > and
some homology with axis £ which does not fit any spread of the parallelism then
the parallelism is not isomorphic to the dual parallelism and the dual parallelism

s a parallelism.

(2) If P is one of the parallelisms of Johnson-Pomareda in PG(3, K) where
K is the field of real numbers and v = —1, then P is not isomorphic to the dual
parallelism and the dual parallelism is a parallelism.

Since the known examples of Johnson and Johnson and Pomareda fit one
of these situations, we have the following corollary., part of which was noted in

the previous theorem part (2).

Corollary 1. Let P be a parallelism in PG(3,K), for K a field.

If P is a Johnson parallelism of Hall type, or of Knuth type in [4] or [5] or
a Johnson-Pomareda parallelism of type f [6] then the dual parallelism Po is
not 1somorphic to P.

1 Background

In Johnson [5], the following result was proved.

Theorem 4. Let P be a parallelism in PG(3, K), for K a field, that admits
a Pappian spread ¥ and a collineation group G~ fixzing a line £ of X that acts
transitively on the remaining spreads of P.

(1) If K is finite and if G~ contains the full elation group with axis £ then
the spreads of P — {¥} are derived conical flock spreads.

(2) If G~ contains the full elation group with axis £ and for p a spread of
P — {X}, G, contains a non-trivial homology (i.e. homology in % ) then the
spreads of P — {¥} are derived conical flock spreads.

We note that in the above case, the dual parallelism is always a parallelism.

Theorem 5. Let P be a parallelism of PG(3,K), for K a field, whose
spreads are either conical flock spreads or derived conical flock spreads (by reg-
uli). Then the dual parallelism Po is a parallelism.

PROOF. Now it is shown in Johnson [3] that all conical flock spreads are
dual spreads. By Johnson [4], Theorem 24.1, p. 322, any derived conical flock
spread is a dual spread since we are deriving by the replacement of a regu-
lus in PG(3,K). Hence, in the situation of the result stated above, then all
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spreads of the parallelism P are dual spreads so that the dual parallelism P9 is
a parallelism. [QED]

Before we give the proof to our main result, we need to ask what effect a
duality will have on the collineation group of a spread.

Theorem 6. (see e.q. Johnson [2])
Let ¥ be a spread which is a dual spread. If coordinates are chosen so that
2. 18
r=0,y=zM for M in a set of matricesM,

then the dual spread X0 of X has spread set

r = 0,y=zM" for M in a set of matricesM,
where M denotes the transpose of M.

Theorem 7. (see e.g. Biliotti, Jha, Johnson [1])

Let w be a spread in PG(3,K), for K a field, such that the dual spread md s
a spread. Let C be an affine central collineation of m with oxis £. Let C = EH
where E is the normal elation subgroup with azxis £ and H 1is a homology group
with axis £ and coaxis co(H).

Then w6 has a collineation group C° = EK where £ is an elation group
isomorphic to E and K 1s a homology group with azis co(H) and coazis £.

By reference to the construction of Johnson in the following theorem, we
mean the construction given in [4], chapter 18 (also see list below).

Theorem 8. (Johnson and Pomareda [7]) If P admits as a collineation
group the full central collineation group G of ¥ with a given azis £ that acts
two-transitive on the remaining spread lines then

(1) ¥ is Pappian,

(2) P is a parallelism,

(3) the spreads of P — {£} are Hall, and

(4) G acts transitively on the spreads of P — {=%}.

(5) Moreover, P is one of the parallelisms of the construction of Johnson.

1.1 The Known Examples

The first two theorems are from Johnson [4].

Theorem 9. Let ¥ be a Pappian spread in PG(3, K) for K a field. Assume
that there exists a requlus R which is contained in at least two distinct Pappian
spreads ¥ and ¥'. Let L be a fized component of ¥ and let G denote the full
group of central collineations of the affine translation plane A associated with
>, with azis L.
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Consider the set of spreads {¥'g;g € G} and form the Hall spreads ¥'g by
derivation of each Rg. Let ¥'g denote the associated derived spreads that are
images under elements g of G5.

(1) £'g = Y'g; there is a group of ¥ acting transitively on the set of Hall
spreads.

(2) LU{ X'g ;g€ G} is a parallelism consisting of one Pappian spread and
the remaining spreads are Hall spreads.

Using the previous construction, we may obtain another parallelism by the
derivation of X and .

Theorem 10. Under the assumptions of the previous theorem, let ¥ denote
the Hall spread obtained by the derivation of R and let P denote the previously
constructed parallelism.

Then XU X' U{P—{Z, ¥'}} is a parallelism of PG(3,K).

Definition 1. For purposes of description, we shall refer to any paral-
lelism constructed via the central collineation group of a Pappian spread within
PG(3, K), a ‘Johnson parallelism of Hall type’. The parallelism constructed as
directly above shall be termed a ‘derived Johnson parallelism of Hall type’.

The following results in the finite case are from Johnson [5].

Theorem 11. Let q be odd equal to ;t:»zhE where z is an odd integer > 1.
Assume that 2% || (¢ — 1) then there exists a nonidentity automorphism o of

GF(q) such that 2% | (o — 1).

Let 9 and 1 be nonsquares of GF(q) such that the equation yot° = vt
implies that t = 0.

(1) Then, there exists a parallelism P., , of derived Knuth type with ¢° + g
derived Knuth planes and one Desarguesian plane.

(2) The collineation group of this parallelism contains the central collineation
group of the Desarguesian plane with fixed axis ¢ of order ¢*2%(q + 1).

Theorem 12. For each parallelism of type P, there is a parallelism con-
sisting of one Hall spread, one Knuth semifield spread, and q* + q — 1 derived
Knuth spreads. We shall call such parallelisms the ‘derived’ parallelisms of the
P~ o -parallelisms.

Definition 2. The parallelisms above shall be called the ‘Johnson paral-
lelism of Knuth type’ and the ‘derived Johnson parallelisms of Knuth type’.

The following results are from Johnson and Pomareda [6].
We let X9 be a spread in PG(3,R), defined by a function f:

c=0y=z|% T lvuter

] t U
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where f is a function such that f(¢) = ¢ implies that £ = 0 and f(0) = 0.
Thus, if a spread exists then the two spreads ¥; and s share exactly the
regulus D with partial spread:

-
r=0y== .

YVu € 'R.

u
0

Lemma 1. Let f be any continuous strictly increasing function on the field
of real numbers such that limg, .+ f(t) = £o0.

(1) Then X5 is a spread.

(2) Let G~ = EH~ where H™ denotes the homology group of 31 (or rather
the associated affine plane) whose elements are given by

u —t 0

t 0 2 2
<[] 1 ;U —i—t——1>.

0 0

and where E denotes the full elation group with azxis x = 0.
(2) Then G~ 1is transitive on the set of regquli of ¥1 that share x = 0.

Theorem 13. Under the above assumptions, assume also that f is sym-
metric with respect to the origin in the real Euclidean 2-space and f(t, +r) =
f(to) + 1 for some t, and r in the reals implies that r = 0.

Then 31 U X3g for all g € G~ and where ¥5 denotes the derived spread of
Yo by derivation of D, is a partial parallelism Py in PG(3,R).

Theorem 14. The above construction produces a parallelism if and only if
f(t) —t is surjective.

— O O O

o O =

We note in the following section on derived parallelisms that there is always
a set of derived parallelisms in this setting.

Definition 3. The parallelisms constructed above are called the ‘Johnson-
Pomareda parallelisms of type f’ and the ‘derived Johnson-Pomareda paral-

lelisms of type f’.

2 The Proofs of the Main Results

It now remains to show that P is not isomorphic to P0 when P is a paral-
lelism of the type stated in the main theorems listed in the introduction.

Assume that P§ is isomorphic to P by an element o of I'L(4, K'). The natural
duality of the projective space will map a spread X of the form z =0,y = 2z M
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into a spread of the form 2 = 0,y = M. Since ¥ is Pappian this spread
retains the form z = 0,y = zM*. Coordinates for ¥ can easily chosen so that

010 0
1 00 0
000 1
001 0

is a collineation of the projective space that reconfigures the spread into its
original form. Hence, we may assume that o leaves X invariant.

We are assuming that P admits the central collineation subgroup EFH of
G that also acts on ¥. The above results show that Po admits a collineation
eroup G containing the collineation group C° = £K where £ is an elation group
isomorphic to F and K is a homology group with axis co(H ) and coaxis £ with
220.

Assume that the parallelism is finite.

First assume that o leaves ¢ invariant. In this case, we have the following
group EHK acting as an automorphism group of X and P. The elation group
E* of order ¢? is partitioned into a set of ¢ + 1 subgroups of order ¢ — 1 each
of which fixes exactly g derived conical flock spreads. Any homology group H
permutes these elation groups. Let H have an affine homology h of prime order
u which does not fix a second spread of the parallelism. If the order of h divides
g — 1 but does not divide ¢ + 1, then h must fix one of the above elation groups
and permute the set of ¢ derived conical flock spreads fixed by the associated
elation group. Hence, h then would fix one of these spreads. So, it A does not
fix a spread other than ¥, it follows that the order of h must divide ¢ + 1 but
not ¢ — 1. We point out that if ¢ + 1 = 2% then the above argument requires
some refinement since then there is not such prime order u which divides g + 1
but not g — 1.

First assume that ¢ + 1 # 2%, so that there is a homology of order of prime
order u dividing ¢ + 1 but not ¢ — 1. We know that the order of G is divisible
by ¢*(q + 1). Represent the Desarguesian affine plane in the standard manner
and if the axis of the homology group is x = 0 and the co-axis is y = 0, then
we obtain an element of the matrix form: [ 9] for some a € GF(¢*), where the
order of a is u and GF(g?) is the field coordinatizing ¥. From the transpose
theorem given above, it follows that we not have an element of the same order
with axis y = 0 and co-axis z = 0 and of the matrix form: [} )| where b also
has order u. Since we are in a field GF(¢?), it follows that (a) = (b). Hence,
within the group there is a collineation of the following form: [§ Y] where ¢ has
order u. This is a kernel homology of the associated Desarguesian affine plane
with spread ¥. Now this group fixes every regulus of ¥ containing £ and hence




144 N. L. Johnson

fixes each derived regulus and thus fixes each derived conical flock spread; i.e.
fixes each spread of the parallelism (see Johnson [5] to see that the structure is
as claimed).

So, we have a kernel homology group of the associated Desarguesian affine
plane 7y, that acts as a collineation group of each derived flock spread. Moreover,
this group does not leave any Baer subplane of 7y invariant because if it did
the group would induce a kernel homology group on a subplane of order ¢ which
would force the group order to divide g — 1.

Hence, u® divides ¢ + 1. But, u® divides ¢ + 1 which divides ¢* — 1 and
(¢>+1,¢° = 1) = (2,¢° — 1), a contradiction since u is odd.

Now assume that ¢ + 1 = 2% In this setting, it follows that ¢ = p is an
odd prime. Let A be a homology of order 2¢ which does not fix a spread not
equal to X of the parallelism. Then, it follows that 2% > 4 since every involutory
homology fixes the standard regulus. Assume that, in fact, 2 > 8. The above
argument shows that there exists homologies of order 8 with axis z = 0 and
coaxis y = 0 and homologies of order 8 with axis y = 0 and coaxis x = 0 and
these generated a kernel homology of order 8 of the Desarguesian affine plane
my. As above, this group must fix each spread of the parallelism but can fix no
line of any spread. However, the involution in the cyclic kernel homology group
fixes all spread lines not in X but since 4 does not divide ¢ — 1, we are forced to
have 4 dividing ¢? + 1, a contradiction.

Now assume that the isomorphism o does not leave £ invariant. Then, clearly
there is a group isomorphic to SL(2, ¢%) generated by the elation groups. This
subgroup is normal and does not contain affine homologies so we have a group
of order divisible by u%¢?(q* — 1). Again, the above analysis shows that there is
a kernel homology group of order u® fixing a regulus and this implies a contra-
diction as above. This completes the proof in the finite case.

We now assume that the parallelism is infinite.

Lemma 2. (1) A parallelism of infinite Johnson type cannot admit the
kernel homology group of the fired Pappian spread.

(2) A parallelism of Johnson-Pomareda type cannot admit the kernel ho-
mology group of the fixed Pappian spread corresponding to the determinant 1
group.

PROOF. Suppose so. Then a kernel element g must fix each regulus net on
the special line and then fix each parallelism. This means that the group g
must act semi-regularly on each derived conical flock spread. But, in this case,
this means that in the conical flock spread, there is a collineation g which fixes
each component of a regulus net and fixes no other component. Moreover, the
collineation acting in I'L(4, K') on the conical flock spread is linear since it comes
from a kernel homology of ..
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Let the conical flock spread be given in the following form:

utg(t) f(O) |, L K

r=0y==zx ; "

.

where f and g are the defining functions on K. We are assuming that the regulus

fixed componentwise by g is the standard regulus. we may assume this without

loss of generality. Since g fixes the standard regulus componentwise, it follows
A0

that g = 0 A where

W+ ap,s bys |
S wo

A =

In the Johnson type, we have that the associated derived conical flock spreads
are Hall spreads so that the conical flock spreads are Pappian. This means that

(9(t), f(t)) = (aat,bit) Vt € K.

In the Johnson-Pomareda type, we have that
g(t) =0Vt e K.

Hence, for the Johnson type, we have, for all u,t € K:

- —1 r

w4+ a,s bys u+ait bit || w+ay,s bys |
i S w i t u || S W
Cut + att byt* ] . o x :

= _:* ¢ ;* for some u*, t* depending on u and t.

First assume that the isomorphism between the parallelism and dual paral-
lelism fixes the axis of the central collineation group. Moreover, since we have
the ‘full homology group’ with axis £ = 0 and coaxis y = 0 and the full homol-
ogy group with axis y = 0 and coaxis ¢ = 0, we would obtain the full kernel
homology group of ¥ acting on the parallelism and hence fixing all spreads of
the parallelism.

If the isomorphism does not leave £ invariant, since we have a full homology
group with axis ¢, the group generated is clearly GL(2, K?). Hence, here we also
obtain the full kernel homology group of X acting on the parallelism.

If we vary w, s, u,t and insist that the above images all belong to a second
Pappian spread ¥, it is straightforward (but a little long) to check out that the
only way this could occur is if a, = a1 and by = by; that is that ¥ = X', which
does not occur.
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If the parallelisms is a Johnson-Pomareda type, we must have:
w o—s 7 [ u f&) 1 [w —s
s w 't u || s w
— 1;* / S* ) for some u*, t* depending on u and t.

Now the group G is transitive on the components of ¥ —{£}, so if the isomor-
phism moves £ then the group generated is doubly transitive on the components
of 3. Then, there must be a homology group with determinant 1 (of the type
mentioned in the list of parallelism) with coaxis ¢ since the group is transi-
tive on the components. This means that we may assume that we have both
types of homology groups. So, we have a generated kernel homology group of
determinant 1 acting on the parallelism.

So, in any case, we always have a generated kernel homology group of de-
terminant 1 type acting on the parallelism.

In the above equation, we may assume that s # 0 for infinitely many kernel
type homologies.

Hence, we obtain:

17 T u fA) 1w —s

U S w

t
- (uw + st)w + (wf(t) + su)s

—
—————

_ —s(—su +wt) + (—sf(t) + wu)w
so that the (1,1)- and (2, 2)-entries are equal. This implies that
swf(t) = —swt

for all s, w such that w? + s? = 1. Hence, this implies that the two spreads
are equal, contrary to assumption. This shows that the Johnson type and the
Johnson-Pomareda type parallelisms are not isomorphic to their duals. The re-
sult given which characterizes the Johnson type parallelisms applies to complete
our first stated theorem for the infinite case. However, in the statement of the
second theorem for the infinite case, we did not assume the full extent of the
homology group, nor did we assume that the field K is the field of real numbers,
merely that the fixed spread is Pappian of the given form and the full elation
group exists and there is some homology with the same axis which does not fix
any spread. In particular, we may assume in the above equation that we have:

[ w ’}'5__1_11, f&) 1] w s
S w t u || s w

(uw — ’;«st)w + (wf(t) —ysu)s

vs(—su + wt) + (—sf(t) + wu)w

-
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which implies:
2ws f(t) = 2wsyt.

Now since the indicated kernel homology of the Pappian spread ¥ does not fix
another spread of the parallelism, it follows that we may assume that s # 0.
However, it may be possible that w = 0 in this more general setting, otherwise
we have the same contradiction as above or the characteristic is 2 which has
been excluded by assumption.

So, assume that w = 0. Then, we obtain:

0 s 10 fFOT[0 vs®

s 0 ] R 0 J|s 0
I

Cf@)/y 0

which implies that
F(f@)/v) =t Vie K.

We have excluded this possibility so we have the proof to the theorem. We note
that it might be possible for a function f to have this property and still satisty
the assumptions of Johnson-Pomareda. This completes the proots to the three
main theorems listed in the introduction. [QED

3 The Derived Parallelisms

For every parallelism of Johnson type or of Johnson-Pomareda type, there
is an associated parallelism called the ‘derived parallelism’,

The following in Johnson [5] illustrates the technique:

Let ¥ be any Pappian spread in PG(3, K) and let ¥’ any spread which
shares a regulus R with X such that ¥’ is derivable with respect to R. Assume
that there exists a subgroup G~ of the central collineation group G with fixed
axis L with the following properties:

(0) ¥ and ¥’ share exactly R,
(7) Every line skew to L and not in ¥ is in ¥'G™,
(i¢) : G~ is transitive on the reguli that share L and
(i12) a collineation g of G~ such that for L' € ¥’ then L'g € ¥’

implies that ¢ is a collineation of ¥'.
Let (Rg)™ denote the opposite regulus to Rg.

We shall call this construction the ‘regulus construction technique’
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Theorem 15. Under the above assumptions, ¥ U {(X'g — Rg) U (Rg)* for
all g € G~ is a parallelism of PG(3, K) consisting of one Pappian spread % and
the remaining spreads derived ¥'-spreads.

Theorem 16. Assume that X U {(X'g — Rg) U (Rg)*for all g € G™is a
parallelism. Then {£— R}UR*UY U{(X'g— Rg)U(Rg)* for all g € G~ —{1}}
is a parallelism. In this case, the spreads are Hall, ¥’ (undetermined) and derived
Y type spreads.

We call the second construction the ‘derived parallelism construction’. We
then ask the question of whether the dual parallelism of a derived parallelism is a
parallelism and, if so, whether this parallelism could be isomorphic to the origi-
nal derived parallelism. However, we don’t yet know that the original parallelism
(the pre-derived parallelism) has a dual parallelism which is also a parallelism.
So, anything that we say in general about the derived parallelisms will have
some hypothesis regarding the pre-derived parallelism.

We note that all spreads of the derived parallelism are either spreads of the
original parallelism with two exceptions: We have derived two of these spreads.
However, since the derivation is accomplished via a regulus, it follows that the
derived spreads are also dual spreads if and only if the original spreads are
dual spreads. Hence, if the original parallelism has a dual parallelism which is
also a parallelism then the derived parallelism has a dual parallelism which is a
parallelism. The question is now whether such a dual parallelism is isomorphic
to the derived parallelism.

Theorem 17. Let P be a parallelism in PG(2,K) which has been con-
structed by the requlus construction technique, for K 1is a field of order > 3.
Assume that there is a unique Pappian spread and that the remaining spreads
are all derived conical flock spreads. Let P* denote any derived parallelism. Then
there is a unique Hall spread, a unique conical flock spread and the remaining
spreads are derived conical flock spreads. We assume that for each requlus R of
Y. containing a fized line £ , there are exactly one spread pr of P containing the
opposite requlus R™.

Then the dual P is isomorphic to P if and only if the dual P*d is isomorphic
to P*.

PRrROOF. Let P = ZUpU(P—{p,X}) and P* = T*Up*U(P —{p, X}), where
> is the unique Pappian spread of P and p is a derived conical flock spread. We
assume that 2 and p* share a unique regulus R. Hence, in P*, there is a unique
conical flock spread p* and a Hall spread ¥*, although there may be other Hall
spreads. Then, in PJ, there is a unique Pappian spread 30 and there is a unique
Pappian spread p*d in P*0.

First assume that there is a unique Hall spread in P*. Then, if o is an
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isomorphism mapping P*d onto P* then o must map p*d onto p* and map 2*0
onto X* . Assuming that R is the regulus of X used in constructing %, this
implies that R*d maps to R* under o using Johnson and Pomareda [7]. Hence,
Réo = R which implies that >0c = X. But, since p* is the unique conical
flock spread in P, it follows that p*do = p* and since Rodo = R, we have that
pdo = p. Since the remaining spreads of P* are also spreads of P, it follows that
o induces an isomorphism from P4 onto P.

Assume that ¢ maps ¥*9d onto a Hall spread v of P*. Now let R denote the
regulus of ¥ obtained in the construction of X* and so R is in the conical flock
spread p*, and p* and X share exactly this regulus and no other components.
Let D* denote the unique regulus shared by the Pappian spread v* (obtained by
the derivation of v) and the Pappian spread ¥. By Johnson and Pomareda (7],
R*éo = D implying that Rdoc = D*. Hence, we have p*do = p* implying that p*
shares the regulus R, D* of ¥ so that we can only have R = D™ and so R* = D,
which, in turn, implies that v = ¥*. Thus, X*0c = X*. But, this implies that
poo = p and Y00 = X and, as above, this means that ¢ induces an isomorphism

from P*d onto P*. [QED]

Corollary 2. Let P be either a Johnson parallelism of Hall type, derived
Johnson parallelism of Hall type, Johnson parallelism of Knuth type, derived
Johnson parallelism of Knuth type, Johnson-Pomareda parallelism of type f or
deriwed Johnson-Pomareda parallelism of type f.

Then the dual parallelism P is a parallelism which is not isomorphic to P.

4 Maximal Partial Parallelisms

Let P be a partial parallelism which cannot be properly extended to a partial
parallelism. Then we say that P is a ‘maximal’ partial parallelism. In Johnson
and Pomareda [7], it is pointed out that one obtains a parallelism as above if and
only if the function has the property that f(¢)—t is surjective when K is the field
of real numbers. Since all of the spreads of the partial parallelism are derived
conical flock spreads or Pappian, it follows that the dual partial parallelism P4 is
also a partial parallelism which is maximal. The above arguments also show that
such a maximal partial parallelism cannot be isomorphic to its dual. Moreover,

the derived partial parallelism is also maximal and cannot be isomorphic to its
dual.

Theorem 18. In any Johnson-Pomareda maximal partial parallelism P,
any derived partial parallelism P* is a maximal partial parallelism and the duals
Po and P*0 are maximal partial parallelisms which are not isomorphic to P or
P* respectively.
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