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Abstract. For a monotone functional defined only on a closed convex cone in a quasi-ordered
Banach space it is shown that a version of Palais–Smale condition adapted to the quasi-order
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functionals is also studied.
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Introduction

Let (X, ‖ · ‖) be a real Banach space and let X∗ denote its dual. Given a
functional f : X → R, we recall that f is coercive if

f(u)→ +∞ as ‖u‖ → +∞. (1)

Another basic concept is the one of Palais–Smale condition. A Gâteaux
differentiable functional f : X → R is said to satisfy the Palais–Smale condition
if every sequence (vn) in X such that f(vn) is bounded and f ′(vn) → 0 in X∗

as n→ +∞ contains a subsequence which is strongly convergent in X.
The relationship between the coercivity property and the Palais–Smale con-

dition was extensively studied. A typical result in this direction is the one due
to Caklovic, Li and Willem [2] stating that under the assumption

f is Gâteaux differentiable and lower semicontinuous (in short l.s.c.), (2)

the Palais–Smale condition and the boundedness from below imply the coerciv-
ity. When f ∈ C1(X) this result was also established in Brézis and Nirenberg [1].
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An extension of the result in [2] for functionals satisfying (2) has been obtained
by Goeleven [4]. Specifically, the functional considered in [4] is required to be
of the form f = g + h, with

g is Gâteaux differentiable, l.s.c. and h is proper, convex, l.s.c., (3)

where an appropriate concept of Palais–Smale condition was introduced. A ver-
sion of this result was given by D. Motreanu and V. V. Motreanu [5] for the
case where f is supposed to admit the decomposition f = g + h with

g is locally Lipschitz and h is proper, convex, l.s.c. (4)

and the Palais–Smale condition given in [7], Chapter 3.
Notice that the l.s.c. property is crucial for all these developments (see (2),

(3), (4)). A natural question is if this property can be weakened but still preserv-
ing the nature of the results above. As shown in D. Motreanu, V. V. Motreanu
and M. Turinici [6], this question is answered in the affirmative in a quasi-
ordered context. Precisely, if X is endowed with a quasi-order ≤K generated by
a closed convex cone K, replacing the l.s.c. property by

f is ≤K-l.s.c. (5)

one shows that the Palais–Smale condition as formulated in [6] implies the
coercivity.

A relevant case in (5) is the situation where f is ≤K-decreasing. Unfortu-
nately, for such a functional the Palais–Smale condition used in [6] does not
hold and so for a ≤K-decreasing functional f the result in [6] is not applicable.

Since for a ≤K-decreasing (or, equivalently, ≤(−K)-increasing) functional the
global coercivity is not true, we can expect to have the coercivity on a prescribed
cone. The object of this paper is to study this conical coercivity. Our result in
this direction is stated in Theorem 4. This will be deduced from our main result
given in Theorem 3 which presents the asymptotic behavior of a functional
defined only on a cone. The basic tool for our main result is the order version
of Ekeland’s variational principle (see [3]) established in Turinici [8].

The rest of the paper is organized as follows. Section 1 is devoted to re-
calling the monotone variational principle. Section 2 contains our main result.
In Section 3 a suitable order version of Palais–Smale condition and our conical
coercivity result are given.

1 Monotone variational principle

Let (M,d) be a complete metric space endowed with a quasi-order ≤ (i.e.,
a reflexive and transitive relation on M) and let f : M → R a function. We say
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that the quasi-order ≤ is closed from the left if {y ∈ M | y ≤ x} is closed,
for each x ∈ M . The functional f is called ≤-increasing (in short, increasing)
if x, y ∈ M, x ≤ y ⇒ f(x) ≤ f(y). The quasi-order ≤ is said to be closed from
the right if the dual quasi-order ≥ is closed from the left. The functional f is
said ≤-decreasing (in short, decreasing) if −f is ≤-increasing.

The following result can be viewed as the monotone counterpart of Ekeland’s
variational principle [3], where the l.s.c. hypothesis is replaced by a monotone
assumption.

Theorem 1 (Turinici [8]). Assume that the quasi-order ≤ on a complete
metric space (M,d) is closed from the right and let f : M → R be a function
which is bounded from below and decreasing. Then, for each η > 0 and u ∈ M
there exists v = v(η, u) ∈M with

u ≤ v, ηd(u, v) ≤ f(u)− f(v), (6)

w ∈M, v ≤ w, w �= v ⇒ ηd(v, w) > f(v)− f(w). (7)

Remark 1. Ekeland’s variational principle [3] for real-valued functionals
can be obtained from Theorem 1 as follows. If (M,d) is a complete metric space
and f : M → R is bounded from below and l.s.c. on M , for a fixed η > 0 we
define

x ≤ y ⇐⇒ ηd(x, y) ≤ f(x)− f(y).

Clearly, ≤ is an (antisymmetric) quasi-order on M which is closed from the
right due to the l.s.c. assumption upon f . By the definition of quasi-order ≤
it is seen that f is decreasing. Hence Theorem 1 applies ensuring that for each
u ∈M we find v = v(η, u) ∈M satisfying (6) (which is just as in Ekeland’s vari-
ational principle) and (7). In order to get the conclusion of Ekeland’s variational
principle it remains to show that

w ∈M, w �= v ⇒ ηd(v, w) > f(v)− f(w).

Arguing by contradiction assume that there exists w ∈M \ {v} such that

ηd(v, w) ≤ f(v)− f(w) (8)

which is equivalent, according to the definition of ≤, to v ≤ w. Then (7) leads
to a contradiction with (8).

In the next Section the reformulation of Theorem 1 for increasing functions
is needed.

Theorem 2. Suppose that the quasi-order ≤ on a complete metric space
(M,d) is closed from the left and let f : M → R be a function which is bounded
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from below and increasing. Then, for each η > 0 and u ∈ M there exists v =
v(η, u) ∈M with

v ≤ u, ηd(u, v) ≤ f(u)− f(v), (9)

w ∈M, w ≤ v, w �= v ⇒ ηd(v, w) > f(v)− f(w). (10)

Proof. It is sufficient to apply Theorem 1 for the quasi-order ≥ (the dual
of the quasi-order ≤) on M and the function f . QED

2 Main result

Let (X, ‖ · ‖) be a real Banach space and let K be a closed convex cone, i.e.
K is a closed subset of X with the properties

K +K ⊆ K; λK ⊆ K, ∀λ ≥ 0.

The relation ≤K on X defined by

x ≤K y ⇐⇒ y − x ∈ K (11)

is a quasi-order on X. Given u ∈ K we introduce the subset H(u) of −K as
follows

H(u) = {h ∈ −K | u+ λh ∈ K for some λ > 0}. (12)

We see that H(u) is a convex subcone of −K with −u ∈ H(u).
For a function f : K → R and the elements u ∈ K, h ∈ H(u) we define the

h-directional derivative of f at u by

f ′(u;h) = lim
t→0+

1
t
(f(u+ th)− f(u)),

whenever this limit exists in R. We point out that the limit above makes sense
since u + th ∈ K for t > 0 sufficiently small. Indeed, if u ∈ K and h ∈ H(u)
then u+ λh ∈ K for some λ > 0, therefore

λ

t
u+ λh =

(
λ

t
− 1

)
u+ (u+ λh) ∈ K +K ⊆ K, for all t ∈]0, λ[,

or, equivalently, u+th ∈ K for 0 < t < λ. If there exists f ′(u;h) for all h ∈ H(u),
we say that f has a H(u)-directional derivative at u.

For each ρ > 0 denote

Kρ = {x ∈ K | ‖x‖ ≥ ρ}, K0
ρ = {x ∈ K | ‖x‖ > ρ}. (13)
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In the following we need a hypothesis which is related to the definition of
≤K in (11): there exists ρ > 0 such that

f is ≤K-increasing on Kρ, (14)
f has a H(u)-directional derivative at each point u of K0

ρ , (15)

f is bounded from below on Kρ. (16)

Some properties for the H(u)-directional derivative are derived in the lemma
below.

Lemma 1.

1) If (15) holds for some ρ > 0, then

ν(f ′(u);H(u)) := sup{(−f)′(u;h); h ∈ H(u), ‖h‖ = 1} (17)

is well defined (possibly equal to +∞) for each u ∈ K0
ρ .

2) If (14) and (15) hold for some ρ > 0, one has that

(−f)′(u;h) ≥ 0, ∀u ∈ K0
ρ , ∀h ∈ H(u),

so,
0 ≤ ν(f ′(u);H(u)) ≤ +∞, ∀u ∈ K0

ρ .

Proof.

1) Fix u ∈ K0
ρ . The set of constraints {h ∈ H(u); ‖h‖ = 1} is nonempty

because −u ∈ H(u) and u �= 0. Assumption (15) ensures that there exists
the H(u)-directional derivative of −f at u in R.

2) For fixed elements u ∈ K0
ρ and h ∈ H(u) we have that u + th ∈ Kρ if

t > 0 is small enough and, naturally, u+th ≤K u. Applying condition (14)
one obtains (−f)′(u;h) ≥ 0. Using (15), by part 1) we get also the last
assertion.

QED

The main result of this Section is the following.

Theorem 3. Let K be a closed convex cone in the Banach space X and let
f : K → R be a functional satisfying (14), (15), (16) (for some ρ > 0) together
with

α := lim inf
‖u‖→+∞

f(u) < +∞. (18)
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Then for every sequence (εn) ⊂ R+ with εn → 0+ there exists a sequence (vn) ⊂
K0

ρ (see (13)) satisfying

‖vn‖ → +∞, f(vn)→ α as n→ +∞ (19)

and
0 ≤ ν(f ′(vn);H(vn)) ≤ εn, for every n. (20)

Remark 2. We stress that in (18) the limit is for u ∈ K (here f is defined
only on K). The number ν(f ′(vn);H(vn)) in Theorem 3 exists by part 1) of
Lemma 1 and is known to be positive by part 2) of Lemma 1.

Proof of Theorem 3. Let us note that (18) can be expressed as

α = sup
σ>0

inf
u∈Kσ

f(u) < +∞. (21)

Denoting
m(σ) = inf

u∈Kσ

f(u), ∀σ > 0, (22)

by (21) and (22) one has
lim

σ→+∞
m(σ) = α. (23)

Fix a sequence (εn) ⊂ R+ with εn → 0+. For each integer n ≥ 1, equality (23)
enables us to determine some rn > max{n, ρ, 2εn} such that

m(σ) ≥ α− ε2
n, ∀σ ≥ rn. (24)

On the other hand, (21) and (22) imply

m(2rn) ≤ α < α+ ε2
n,

wherefrom there exists some point un ∈ K with

‖un‖ ≥ 2rn, f(un) < α+ ε2
n. (25)

Note that in view of rn > n one has

rn → +∞ as n→ +∞. (26)

Since
{y ∈ Krn | y ≤K x} = Krn ∩ (x+ (−K)),

the quasi-order≤K onKrn is closed from the left. By (14) and (16) it is clear that
Theorem 2 applies with M = Krn , f = f

∣∣
Krn

, η = εn, u = un ∈ Krn (cf. (25))
and for the quasi-order ≤K . Consequently, there exists a point vn ∈ Krn with

vn ≤K un, εn‖un − vn‖ ≤ f(un)− f(vn), (27)
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w ∈ Krn , w ≤K vn, w �= vn ⇒ εn‖vn − w‖ > f(vn)− f(w) (28)

(see the corresponding relations (9), (10) in Theorem 2). Using vn ∈ Krn

and (26), we see that ‖vn‖ → +∞ as n→ +∞. Further, (24), (22), (27) and (25)
imply

α− ε2
n ≤ m(rn) ≤ f(vn) ≤ f(un) < α+ ε2

n. (29)

Since εn → 0+, it follows that f(vn)→ α as n→ +∞, so (19) is fulfilled.
By (27) and (29) one has

εn‖un − vn‖ < 2ε2
n.

Then, taking into account the first part in (25) and rn > 2εn, we infer that

‖vn‖ ≥ ‖un‖ − ‖un − vn‖ > 2rn − 2εn > rn. (30)

It turns out that vn ∈ K0
ρ since rn > ρ.

Let h �= 0 be an arbitrary element of H(vn) (see (12)). There exists τn =
τn(h) > 0 such that vn + τnh ∈ K. The convexity of K entails vn + th ∈ K,
∀t ∈ [0, τn]. According to (30), for a possibly smaller τn > 0 we may suppose
that

‖vn + th‖ > rn, ∀t ∈ [0, τn].

Moreover, for all t ∈ [0, τn] we have vn+th ≤K vn, because h ∈ H(vn). Therefore,
for all t ∈]0, τn] we may set w = vn + th in (28). This yields

0 ≥ 1
t
(f(vn + th)− f(vn)) > −εn‖h‖, ∀t ∈]0, τn].

Letting t → 0+ implies 0 ≥ f ′(vn;h) ≥ −εn‖h‖. In view of (17), property (20)
follows. The proof is complete. QED

Remark 3. Theorem 3 is applicable for any ρ larger than the one used in
its statement. This is due to the hereditary character of conditions (14), (15),
(16).

3 Conical coercive functionals

In this Section we study the coercivity only on a cone, which is clearly weaker
than the coercivity on the whole space in (1).

Throughout the rest of the paper K stands for a closed convex cone in the
Banach space X.

We introduce a variant of Palais–Smale condition for a nonsmooth functional
which is defined only on the cone K.
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Definition 1. A function f : K → R satisfies the Palais–Smale condition
with respect to K and the number ρ > 0 if there exists a sequence (εn) ⊂ R+

with εn → 0+ such that each sequence (vn) ⊂ K verifying

(i) ‖vn‖ > ρ,

(ii) f(vn) bounded,

(iii) ν(f ′(vn);H(vn)) (see (17)) exists,

(iv) 0 ≤ ν(f ′(vn);H(vn)) ≤ εn,

for all n, contains a (strongly) convergent subsequence.

Remark 4. The Palais–Smale condition with respect to a closed convex
cone K and a number ρ > 0 formulated in Definition 1 is much weaker than the
usual Palais–Smale condition. Clearly, if f : X → R is a differentiable functional
satisfying the ordinary Palais–Smale condition then Definition 1 is verified for
K = X and every ρ > 0.

The coercivity along the cone is stated in the following.

Theorem 4. Let K be a closed convex cone in the Banach space X and let
the functional f : K → R satisfy (14), (15), (16) (for some ρ > 0) as well as
the Palais–Smale condition with respect to K and ρ in Definition 1. Then f is
coercive (on K), i.e. (1) holds for u ∈ K.

Proof. Arguing by contradiction, assume that (18) holds. Let (εn) ⊂ R+

with εn → 0+ be the sequence given by Definition 1. The imposed assumptions
allow to invoke Theorem 3. Applying Theorem 3 for (εn), a sequence (vn) ⊂ K0

ρ

is found such that (19) and (20) hold. Hence conditions (i)-(iv) in Definition 1
are verified. Then the Palais–Smale condition with respect to K and ρ guaran-
tees that (vn) contains a strongly convergent subsequence. This contradicts the
first part of (19), which completes the proof. QED

Remark 5. The fact that in the statement of Theorem 4 we assumed
that (14), (15), (16) and Definition 1 are satisfied with the same ρ > 0 is
not restrictive in view of the hereditary property pointed out in Remark 3.

Remark 6. Theorem 4 represents a conical version of the coercivity results
studied in other papers (Brézis and Nirenberg [1], Caklovic, Li and Willem [2],
Goeleven [4], D. Motreanu and V. V. Motreanu [5]). The reason for the ≤K-
monotonicity assumption is to compensate the difficulty of working only on a
cone K and with a much weaker form of Palais–Smale condition. Contrasting
to [6], here the ≤K-lower semicontinuity is not involved.
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Remark 7. The idea to consider in our setting functionals f : K → R

defined only on a closed convex cone K is inspired from a referee’s suggestion
for a previous version of the paper to deal with f : K ∪K− ∪ {0} → R.

Acknowledgements. The authors are grateful to the referee for the care-
ful reading and useful remarks.
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