On simultaneous approximation

Yusuf Karakus
University of Çukurova, Faculty of Arts and Sciences, Department of Mathematics, 01330 Adana Turkey
yusufk@mail.cu.edu.tr

Received: 4 December 1998; accepted: 4 December 2001.

Abstract

In this paper first we give two different definitions for best simultaneous L_{p} approximation to n functions and study the relation between best simultaneous approximation and best L_{p} approximations to the arithmetic mean of n functions. In addition we consider the definition and the theorem about the simultaneous approximation to n (n odd) functions in the "sum" norm.

Keywords: approximation, simultaneous, Banach space.
MSC 2000 classification: 41A28.
Holland, McCabe, Phillips and Sahney in [1] considered the best simultaneous L_{1} approximation and studied the relation between the best simultaneous approximation and the L_{1} approximations to the arithmetic mean of n functions. Phillips and Sahney [4] gave results for the L_{1} and L_{2} norms. The problem of the simultaneous approximation to an arbitrary number of functions was discussed by Holland and Sahney [3], who generalized the results in [4] for the L_{2} norm. Ling [5] has considered for two functions the simultaneous Chebyshev approximation in the "sum" norm.

We now examine two possible definitions of best simultaneous L_{p} approximation to n functions and explore whether, for any of these definitions the best simultaneous approximation coincides with the best L_{p} approximation to the arithmetic mean of the n functions.

Definition 1. Let $p \geq 1$ be a real number and $S \subset L_{p}[\mathrm{a}, \mathrm{b}]$ a non-empty set of real-valued functions. Let us assume that real valued functions f_{1}, \ldots, f_{n} and $s \in S$ are L_{p} integrable. If there exists an element $s^{*} \in S$ such that

$$
\begin{equation*}
\inf _{s \in S} \sum_{k=1}^{n}\left\|f_{k}-s\right\|_{p}^{p}=\sum_{k=1}^{n}\left\|f_{k}-s^{*}\right\|_{p}^{p} \tag{1}
\end{equation*}
$$

then s^{*} is said to be a best simultaneous approximation to the functions f_{1}, \ldots, f_{n} in the L_{p} norm. If the infimum is attained in (1), then this number is called the degree of the best simultaneous approximation.

Remark 1. Phillips and Sahney [4] showed that the best simultaneous approximation to two functions in the sense of Definition 1 does coincide with the best L_{2} approximation to the arithmetic mean of two function for $p=2$.

We now take as a lemma the Theorem 16 in [2].
Lemma 1. For $p>1$ and positive real numbers a_{1}, \ldots, a_{n} there exists the inequality

$$
\begin{equation*}
a_{1}^{p}+\cdots+a_{n}^{p} \geq n\left(\frac{a_{1}+\cdots+a_{n}}{n}\right)^{p} \tag{2}
\end{equation*}
$$

where the equality is true only for $a_{1}=\cdots=a_{n}$.
Theorem 1. Let s and $f_{i}, i=1, \ldots, n$ be as defined in the Definition 1. If $p>1$ is a real number, then

$$
\begin{equation*}
\inf _{s \in S} \sum_{k=1}^{n}\left\|f_{k}-s\right\|_{p}^{p} \geq \inf _{s \in S}\left\{n\left\|\frac{1}{n} \sum_{k=1}^{n} f_{k}-s\right\|_{p}^{p}\right\} . \tag{3}
\end{equation*}
$$

Proof. If we take $a_{k}=\left|f_{k}(x)-s(x)\right|$ in the inequality (2), we obtain

$$
\begin{aligned}
\sum_{k=1}^{n}\left|f_{k}(x)-s(x)\right|^{p} & \geq n\left(\frac{1}{n} \sum_{k=1}^{n}\left|f_{k}(x)-s(x)\right|\right)^{p} \\
& \geq n\left|\frac{\mid\left(f_{1}(x)-s(x)\right)+\cdots+\left(f_{n}(x)-s(x)\right)}{n}\right|^{p} \\
& =n\left|\frac{1}{n} \sum_{k=1}^{n} f_{k}(x)-s(x)\right|^{p}
\end{aligned}
$$

By integrating both side of this inequality from a to b and by taking the infimum over all $s \in S$, we have the result of Theorem 1. If $f_{i}(x) \neq f_{j}(x)$ for $i \neq j$, then from (3) we have

$$
\begin{equation*}
\inf _{s \in S} \sum_{k=1}^{n}\left\|f_{k}-s\right\|_{p}^{p} \geq \inf _{s \in S}\left\{n\left\|\frac{1}{n} \sum_{k=1}^{n} f_{k}-s\right\|_{p}^{p}\right\} . \tag{4}
\end{equation*}
$$

This completes the proof of Theorem 1.
QED
Theorem 1 says that, the degree of the best L_{p} approximation to the arithmetic mean is bounded above by the degree of the best simultaneous approximation in the sense of Definition 1.

The following counterexample shows that, in general, the best simultaneous approximation in the sense of Definition 1 does not coincide with the best L_{p} approximation to the arithmetic mean.

Counterexample 1. Let $p=3$. Choose $f_{1}(x)=0$ and $f_{2}(x)=x$ on $[0,1]$ and let S be the set of real numbers. The best simultaneous approximation to f_{1} and f_{2} from S in the sense of Definition 1 is the number $s_{1}^{*}=0,31290841$, whereas the best L_{3} approximation to $\left(f_{1}+f_{2}\right) / 2$ is the number $s_{2}^{*}=0,25$.

Definition 2. Let $p \geq 1$ be a real number and $S \subset L_{p}[a, b]$ a non-empty set of real-valued functions.Let us assume that real-valued functions f_{1}, \ldots, f_{n} and $s \in S$ are L_{p} integrable. If there exists an element $s^{*} \in S$ such that

$$
\begin{equation*}
\inf _{s \in S} \max _{k}\left\|f_{k}-s\right\|_{p}^{p}=\max _{k}\left\|f_{k}-s^{*}\right\|_{p}^{p}, \quad k=1, \ldots, n \tag{5}
\end{equation*}
$$

then s^{*} is called to be a best simultaneous approximation to the functions f_{1}, \ldots, f_{n} in the L_{p} norm.

Theorem 2. Let $f_{i}, i=1, \ldots, n$ and s be as defined above. If $p>1$ is a real number, then

$$
\begin{equation*}
\inf _{s \in S}\left\|\frac{1}{n} \sum_{k=1}^{n} f_{k}-s\right\|_{p}^{p} \leq \inf _{s \in S} \max _{k}\left\|f_{k}-s\right\|_{p}^{p} \tag{6}
\end{equation*}
$$

Proof. From Lemma 1 and Theorem 1,

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{k=1}^{n} f_{k}-s\right\|_{p}^{p} & \leq \frac{1}{n} \sum_{k=1}^{n}\left\|f_{k}-s\right\|_{p}^{p} \\
& \leq \frac{1}{n}\left[n \cdot \max _{k}\left\|f_{k}-s\right\|_{p}^{p}\right] \\
& =\max \left\|f_{k}-s\right\|_{p}^{p}, k=1, \ldots, n
\end{aligned}
$$

and the proof is completed by taking the infimum over S.
The Theorem 2 says that the degree of the best L_{p} approximation to the arithmetic mean is bounded above by the degree of the best simultaneous approximation in the sense of Definition 2.

We now give a counterexample to show that the best simultaneous approximation in the sense of Definition 2 does not, in general, coincide with the best L_{p} approximation to the arithmetic mean.

Counterexample 2. Let $p=2$. Choose f_{1}, f_{2} and S as in Counterexample 1. The best simultaneous approximation to f_{1} and f_{2} in the sense of Definition 2 , is the constant function $s_{1}^{*}=1 / 3$, whereas the best L_{2} approximation to $\left(f_{1}+f_{2}\right) / 4$ is $s_{2}^{*}=1 / 4$.

Ling [5] gave the following definition and theorem.
Definition 3. Let S be a non-empty set of real-valued functions defined on the interval $[a, b]$. For two real-valued functions f_{1} and f_{2} if there exists an $s^{*} \in S$ such that

$$
\inf _{s \in S}\left|\left\|\left|f_{1}-s\right|+\left|f_{2}-s\right|\right\|=\left\|\left|f_{1}-s^{*}\right|+\left|f_{2}-s^{*}\right|\right\|\right.
$$

we say that s^{*} is a best simultaneous approximation to f_{1} and f_{2} in the "sum" norm. Where

$$
\|g\|=\sup _{x \in[a, b]}|g(x)| .
$$

Theorem 3.

(1) if

$$
\inf _{s \in S}\left\|\frac{f_{1}+f_{2}}{2}-s\right\| \geq \frac{1}{2}\left\|f_{1}-f_{2}\right\|
$$

then

$$
\inf _{s \in S}\left\|\left|f_{1}-s\right|+\left|f_{2}-s\right|\right\|=2 \inf _{s \in S}\left\|\frac{f_{1}+f_{2}}{2}-s\right\| .
$$

(2) if

$$
\inf _{s \in S}\left\|\frac{f_{1}+f_{2}}{2}-s\right\|<\frac{1}{2}\left\|f_{1}-f_{2}\right\|,
$$

then

$$
\inf _{s \in S}\left\|\left|f_{1}-s\right|+\left|f_{2}-s\right|\right\|=\left\|f_{1}-f_{2}\right\| .
$$

The Theorem 3(1) says that, the problem simultaneous approximation to f_{1} and f_{2} in the "sum" norm is, with one restriction, equivalent to approximating the arithmetic mean.

Definition 4. Let X be Banach space and let $S \subset X, S \neq \Phi$. For any $x \in X$ if there exists an element $s^{*} \in S$ such that

$$
\begin{equation*}
\inf _{s \in S}\|x-s\|=\left\|x-s^{*}\right\| \tag{7}
\end{equation*}
$$

then we say that s^{*} is the best approximation to x by elements of S.
Definition 5. Let $B[a, b]$ be the set of bounded real-valued functions defined on the interval $[a, b]$. Let $S \subset B[a, b], S \neq \Phi$ and $F=\left\{f_{1}, \ldots, f_{n}\right\} \subset$ $B[a, b]$. If there exists an element $s^{*} \in S$ such that

$$
\begin{equation*}
\inf _{s \in S}\left\|\sum_{i=1}^{n}\left|f_{i}-s\right|\right\|=\left\|\sum_{i=1}^{n}\left|f_{i}-s^{*}\right|\right\| \tag{8}
\end{equation*}
$$

then we say that s^{*} is the best simultaneous approximation to the functions f_{1}, \ldots, f_{n} (or to F) in the "sum" norm by elements of S.

Theorem 4. Let $F=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq B[a, b]$ where n is an odd integer. For $x \in[a, b]$, let $d^{*}(x)=\left(f_{1}^{*}(x), \ldots, f_{n}^{*}(x)\right)$ be the rearrangement of $d(x)=$ $\left(f_{1}(x), \ldots, f_{n}(x)\right)$ such that $f_{1}^{*}(x) \leq f_{2}^{*}(x) \leq \cdots \leq f_{n}^{*}(x)$. Define $c(F):[a, b] \rightarrow$ R by $c(F)(x)=f_{(n+1) / 2}^{*}(x)$.

Let $S=\left\{s \in B[a, b] \left\lvert\, f_{\frac{n+1}{2}-1}^{*}(x) \leq s(x) \leq f_{\frac{n+1}{2}+1}^{*}(x)\right.\right\}$. Then an element $s^{*} \in S$ is a best approximation to $c(F)$ if and only if it is a best simultaneous approximation to F in the sense Definition 5.

We now take as a lemma a special case of the Lemma 3.1 in [6].
Lemma 2. For every $d=\left(d_{i}\right)_{1 \leq i \leq n} \in R^{n}, t \in R$ and the odd natural number n let

$$
\begin{equation*}
\Phi_{1}(d, t)=\sum_{i=1}^{n}\left|d_{i}-t\right| \tag{9}
\end{equation*}
$$

The equation

$$
\begin{equation*}
\Phi_{1}\left(d, t_{1}(d)\right)=\inf _{t \in R} \Phi_{1}(d, t) \tag{10}
\end{equation*}
$$

has a unique solution $t_{1}(d)$ continuously depending on $d \in R^{n}$ and $\Phi_{1}(d, t)$ is a strictly monotone function of $\left|t-t_{1}(d)\right|$.

Proof. Proof of Theorem 4 Let $d=d(x)=\left(d_{i}\right)_{1 \leq i \leq n}$ and $d^{*}=d^{*}(x)=$ $\left(d_{i}^{*}\right)_{1 \leq i \leq n}$ be as defined in the statement of Theorem 4. For the odd natural number n Milman [6] showed that

$$
\begin{equation*}
t_{1}(d)=d_{(n+1) / 2}^{*} \tag{11}
\end{equation*}
$$

On the other hand the assumptions of Theorem 4 imply

$$
\begin{equation*}
t_{1}(d)=c(F)(x)=f_{(n+1) / 2}^{*}(x) \tag{12}
\end{equation*}
$$

Let $s_{1}=s^{*}$ be a best approximation to $c(F)$ and suppose that s_{2} any element of S. Then from Definition 4 we have

$$
\begin{equation*}
\left|s_{1}(x)-c(F)(x)\right|=\min _{j=1,2}\left\{\left|s_{j}(x)-c(F)(x)\right|\right\} \tag{13}
\end{equation*}
$$

On the other hand, using the strict monotonicity of $\Phi_{1}(d, t)$ as a function of $\left|t-t_{1}(d)\right|$, from (9) and (13) we obtain

$$
\begin{equation*}
\sum_{i=1}^{n}\left|f_{i}(x)-s_{1}(x)\right| \leq \min _{j=1,2}\left\{\sum_{i=1}^{n}\left|f_{i}(x)-s_{j}(x)\right|\right\} \tag{14}
\end{equation*}
$$

On taking the supremum both sides of this inequality over $[a, b]$, we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{n}\left|f_{i}-s_{1}\right|\right\| \leq \min _{j=1,2}\left\{\left\|\sum_{i=1}^{n}\left|f_{i}-s_{j}\right|\right\|\right\} \tag{15}
\end{equation*}
$$

The inequality (15) says that $s^{*}=s_{1}$ is a best simultaneous approximation to the functions f_{1}, \ldots, f_{n} in the "sum" norm.

Now assume that $s_{1}=s^{*}$ is a best simultaneous approximation of F and s_{2} any element of S. If we take

$$
\left|f_{i}(x)-s_{j}(x)\right|=\frac{\left|c(F)(x)-s_{j}(x)\right|}{n}
$$

in the inequality (14), we obtain

$$
\begin{equation*}
\left|s_{1}(x)-c(F)(x)\right| \leq \min _{j=1,2}\left\{\left|s_{j}(x)-c(F)(x)\right|\right\} \tag{16}
\end{equation*}
$$

On taking the supremum over $[a, b]$, we find

$$
\begin{equation*}
\left\|s_{1}-c(F)\right\| \leq \min _{j=1,2}\left\{\left\|s_{j}-c(F)\right\|\right\} \tag{17}
\end{equation*}
$$

Hence $s^{*}=s_{1}$ is a best approximation to $c(F)$.

References

[1] A. S. B. Holland, J. H. McCabe, G. M. Phillips, B. N. Sahney: Best Simultaneous L_{1} Approximations, Journal of Approximation Theory 24 (1978), 361-365.
[2] G. H. Hardy, J. E. Littlewood, G. Polye: Inequalities, London-New York, Melbourne, 1978.
[3] A. S. B. Holland, B. N. Sahney: Some Remarks on Best Simultaneous Approximation with Application (A. G. Law and B. N. Sahney, Eds.), Academic Press, New York (1976), 332-337.
[4] G. M. Phillips, B. N. Sahney: Best Simultaneous Approximation in the L_{1} and L_{2} norms in Theory of Approximation with Applications (A. G. Law and B. N. Sahney, Eds.), Academic Press, New York (1976), 213-218.
[5] W. H. Ling: On Simultaneous Chebyshev Approximation in the "sum" Norm, Proc. Amer. Mat. Soc. 48 (1975), 185-188.
[6] P. D. Milman: Best Simultaneous Approximation in Normed Linear Spaces, Journal of Approximation Theory 20 (1977), 223-238.

