Riemannian manifolds structured by a T-parallel exterior recurrent connection

Filip Defever
Departement Industriële Wetenschappen en Technologie, Katholieke Hogeschool Brugge-Oostende, Zeedijk 101, 8400 Oostende, Belgium

Radu Rosca
59 Avenue Emile Zola, 75015 Paris, France

Received: 22 February 2001; accepted: 8 November 2001.

Abstract. Geometrical and structural properties are proved for Riemannian manifolds which are equipped with a T-parallel exterior recurrent connection.

Keywords: Exterior recurrent forms, T-parallel connection.

MSC 2000 classification: 53B20.

Introduction

Riemannian manifolds structured by a T-parallel connection have been defined in [9] and have also been studied in [6]. Let M be a $2m$-dimensional C^∞-manifold and ∇ be the Levi-Civita connection. We recall that if M carries a globally defined vector field $T(T^A)$ and the connection forms satisfy

$$\theta^A_B = \langle T, e_B \wedge e_A \rangle,$$

where \wedge denotes the wedge product of vector fields, then one says that M is structured by a T-parallel connection. In the present paper we assume in addition that θ^A_B are exterior recurrent forms [2], which means that

$$d\theta^A_B = 2\alpha \wedge \theta^A_B,$$

where $\alpha = T^\flat$, (2)

having T^\flat as recurrence form. This implies that the curvature forms Θ^A_B are also exterior recurrent. In consequence of this fact, we adopt the terminology that M is structured by a T-parallel exterior recurrent connection.

For the above mentioned structures, we prove the following properties:

(i) T is a concurrent vector field and defines an infinitesimal conformal transformation of θ^A_B and Θ^A_B and the differential system ∇_{e_A} corresponding to the vector basis $\mathcal{O} = \{e_A\}$ admits an infinitesimal transformation with generator T;
(ii) $\|T\|^2$ is an isoparametric function [13], and an eigenfunction of Δ having $4(2m + \|T\|^2)$ as eigenvalue;

(iii) if V is any parallel vector field, one has by the Weitzenböck formula that

$$(\Delta T) V = -4m\|T\|^2 g(T, V);$$

(iv) if

$$\Theta^{(p)}_{u^1, \ldots, u^{2p}} = \Theta^{u_2}_{u_1} \wedge \Theta^{u_3}_{u_2} \wedge \cdots \wedge \Theta^{2p}_{2p-1}$$

denotes the Bianchi forms (in the sense of Tachibana [12]), these forms are exterior recurrent with $3(2m - 1)\alpha$ as recurrence form;

(v) any vector field X such that

$$\nabla X = X \wedge T$$

is a skew symmetric Killing vector field [11] and X defines an infinitesimal transformation of the conformal symplectic form Ω, i.e.

$$\mathcal{L}_X \Omega = -2g(X, T)\Omega.$$

In Section 4 we consider some properties of the tangent bundle manifold TM having the manifold M, studied in Section 3, as basis. On TM the canonical vector field $V(V^A) (A = 1, \cdots 2m)$ is called the Liouville vector field [3], and the complete lift [14] Ω^C of the structure 2-form of rank $4m$ on TM is given by

$$\Omega^C = \sum dV^a \wedge \omega^a + \omega^a \wedge dV^{a^*}, \quad a = 1, \cdots m; a^* = a + m. \quad (3)$$

In Section 3, the following relation will be derived (see formula (24)):

$$d\omega^A = \alpha \wedge \omega^A.$$

By exterior differentiation of (3), and taking into account the above formula, one gets

$$d\Omega^C = \alpha \wedge \Omega^C; \quad (4)$$

and

$$\mathcal{L}_V \Omega^C = \Omega^C. \quad (5)$$

The above equations express that the 2-form Ω^C is a homogeneous 2-form of class 1 [4] on TM. Next, the Liouville form μ (i.e. $\mu = V^\flat$) is expressed by

$$\mu = \sum V^A \omega^A \quad A = 1, \cdots 2m \quad (6)$$
On manifolds with \mathcal{T}-parallel exterior recurrent connection

and one finds by exterior differentiation that

$$d\mu = \alpha \wedge \mu + \psi,$$

where we have set

$$\psi = \sum dV^A \wedge \omega^A.$$ \hspace{1cm} (8)

One also derives that

$$\mathcal{L}_V \psi = \psi,$$ \hspace{1cm} (9)

and this shows that, like Ω^C, the form ψ is a homogeneous 2-form of class 1. Moreover, making use of the vertical operator i_v of Godbillon [3], one calculates that

$$i_v \psi = 0,$$ \hspace{1cm} (10)

which together with (9) proves that ψ is a Finslerian form. In addition, if \mathcal{T}^V denotes the vertical lift of \mathcal{T}, one also finds that

$$\mathcal{L}_{\mathcal{T}^V} \psi = 0,$$

which shows that \mathcal{T}^V defines an infinitesimal automorphism of ψ. Some other properties regarding the principal almost symplectic form $\Pi = \|T\|^2 \psi$ are also discussed.

1 Preliminaries

Let (M, g) be a Riemannian C^∞-manifold and let ∇ be the covariant differential operator with respect to the metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection of g. Let $\Gamma TM = \Xi(M)$ be the set of sections of the tangent bundle, and

$$\flat: TM \xrightarrow{\flat} T^*M \quad \text{and} \quad \sharp: TM \xleftarrow{\sharp} T^*M$$ \hspace{1cm} (11)

the classical isomorphisms defined by g (i.e. \flat is the index lowering operator, and \sharp is the index raising operator).

Following [8], we denote by

$$A^q(M, TM) = \Gamma \text{Hom}(\Lambda^q TM, TM),$$ \hspace{1cm} (12)

the set of vector valued q-forms ($q < \dim M$), and we write for the covariant derivative operator with respect to ∇

$$d^\nabla: A^q(M, TM) \to A^{q+1}(M, TM).$$ \hspace{1cm} (13)
It should be noticed that in general \(d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0 \), unlike \(d^2 = d \circ d = 0 \). We denote by \(I \in A^1(M, TM) \) the canonical vector valued 1-form of \(M \), which is also called the soldering form of \(M \) [2]. Since \(\nabla \) is symmetric one has that \(d^{\nabla} (I) = 0 \).

A vector field \(Z \in \Xi(M) \) which satisfies
\[
d^{\nabla}(\nabla Z) = \nabla^2 Z = \pi \wedge I \in A^2(M, TM); \quad \pi \in \Lambda^1 M
\]
is defined to be an exterior concurrent vector field [9] (see also [6]). The 1-form \(\pi \) in (14) is called the concurrence form and is defined by
\[
\pi = \lambda Z^\flat, \quad \lambda \in \Lambda^0 M.
\]

Let \(\mathcal{O} = \{e_A \mid A = 1, \cdots, 2m\} \) be a local field of orthonormal frames over \(M \) and let \(\mathcal{O}^* = \text{covect}\{\omega^A\} \) be its associated coframe. Then E. Cartan’s structure equations can be written in indexless manner as
\[
\begin{align*}
\nabla e &= \theta \otimes e, \quad (16) \\
d\omega &= -\theta \wedge \omega, \quad (17) \\
d\theta &= -\theta \wedge \theta + \Theta. \quad (18)
\end{align*}
\]
In the above equations \(\theta \) (respectively \(\Theta \)) are the local connection forms in the tangent bundle \(TM \) (respectively the curvature 2-forms on \(M \)).

2 Manifolds with \(T \)-parallel exterior recurrent connection

Let \(M(\Omega, T, g) \) be a \(2m \)-dimensional manifold with almost symplectic 2-form \(\Omega \) and with structure vector field \(T(T^A) \) \((A = 1, \cdots, 2m)\). Now, by reference to [9] (see also [6]), we assume that \((M, g)\) is structured by a \(T \)-parallel connection, which means that the connection forms satisfy
\[
\theta^A_B = \langle T, e_B \wedge e_A \rangle, \quad (19)
\]
where \(\wedge \) stands for the wedge product of vector fields. In addition, we also assume that the connection forms \(\theta^A_B \) are exterior recurrent [2] with \(2T^\flat \) as recurrence forms, which means that
\[
d\theta^A_B = 2T^\flat \wedge \theta^A_B. \quad (20)
\]
Since
\[
\theta^A_B = T^B \omega^A - T^A \omega^B,
\]
On manifolds with T-parallel exterior recurrent connection

it follows that

$$dT^A = T^A \alpha,$$ \hspace{1cm} (21)

where we have set $\alpha := T^b$. Now, in view of the structure equations (17) and invoking the curvature forms Θ^A_B, one derives

$$\Theta^A_B = \|T\|^2 \omega^B \wedge \omega^A + \alpha \wedge \theta^A_B.$$ \hspace{1cm} (22)

Since one has

$$d\|T\|^2 = 2\|T\|^2 \alpha,$$ \hspace{1cm} (23)

then by (21) one gets

$$d\omega^A = \alpha \wedge \omega^A.$$ \hspace{1cm} (24)

By exterior differentiation of (22), one derives that

$$d\Theta^A_B = 3\alpha \wedge \Theta^A_B.$$ \hspace{1cm} (25)

The above equation expresses the fact that the connection forms being exterior recurrent implies the same property for the curvature forms Θ^A_B also. Taking moreover the Lie derivatives of θ^A_B and Θ^A_B with respect to the structure vector field T, and using (23), one finds

$$\mathcal{L}_T \theta^A_B = 2\|T\|^2 \theta^A_B,$$

$$\mathcal{L}_T \Theta^A_B = 3\|T\|^2 \Theta^A_B.$$ \hspace{1cm} (26)

Hence, T defines an infinitesimal conformal transformation of both the connection forms and the curvature forms.

On the other hand, by (19) one finds that

$$\nabla e_A = T^A I - \omega^A \otimes T,$$ \hspace{1cm} (27)

and in this way one gets by (21) also that

$$\nabla T = \|T\|^2 I.$$ \hspace{1cm} (28)

This shows that T is a concurrent vector field (it is well known [1] that concurrency is of conformal nature). From (27) and (28) it follows that

$$[T, e_A] = -\|T\|^2 e_A,$$ \hspace{1cm} (29)

and this proves that the differential system $\{e_A\}$ corresponding to the vector basis admits an infinitesimal transformation with generator T. We also notice that operating on (28) with ∇ (the operator ∇ acts inductively) one gets

$$\nabla(\nabla T) = \nabla^2 T = \|T\|^4 \alpha \wedge I.$$ \hspace{1cm} (30)
This shows that T is an exterior concurrent vector field [10] (see also [7]). In consequence of (30) one may now also write
\[
\mathcal{R}(T, Z) = -(2m - 1)\|T\|^4 g(T, Z), \quad Z \in \Xi(M),
\] (31)
where \mathcal{R} means the Ricci tensor field of ∇. In the same way one can also calculate that
\[
\nabla^3 e_A = \|T\|^4 (\alpha \wedge \omega^A) \wedge I,
\] (32)
and consequently one can conclude that the elements of the vector basis $\{e_A\}$ are exterior concurrent vector fields; in the sequel we will use the terminology of a 2-exterior vector basis for this case.

We recall that a function $f: \mathbb{R}^{2m} \to \mathbb{R}$ is called isoparametric [13] if both $\|\text{grad} f\|^2$ and $\text{div}(\text{grad} f)$ are functions of f. In the case under discussion, one has first of all that
\[
\text{grad} \|T\|^2 = \|T\|^2 T,
\] (33)
from which there follows that
\[
\|\text{grad} \|T\|^2\|^2 = \|T\|^4.
\] (34)
Next, one also derives that
\[
\text{div} \text{grad} \|T\|^2 = 4(2m + \|T\|^2) \|T\|^2,
\] (35)
from which one may conclude that $\|T\|^2$ is an isoparametric function. Next, by the general formula
\[
\Delta \mu = -\text{div} \nabla \mu, \quad \mu \in \Lambda^0 M,
\]
where Δ denotes the Laplacian, and in virtue of (33), we see that $\|T\|^2$ is an eigenfunction of Δ, having $4(2m + \|T\|^2)$ as eigenvalue of Δ. Recall now that if Z is any vector field, one has
\[
\text{tr} \nabla^2 Z = \sum \nabla e_A (\nabla e_A Z).
\]
Then, by (30) one derives
\[
\text{tr} \nabla^2 T = 2\|T\|^2 T.
\] (36)
With \mathcal{R} denoting the Ricci tensor field, one now has
\[
\mathcal{R}(T, V) = -2(2m - 1)\|T\|^2 g(T, V), \quad V \in \Xi(M).
\] (37)
Then, by reference to [8], if V is a parallel vector field, one has the Weitzenbock formula:

$$(\Delta^T) V = \mathcal{R}(V, T) - <\text{tr}\nabla^2 T, V > = -4m\|T\|^2 g(T, V). \quad (38)$$

On the other hand, regarding the almost symplectic form Ω, one writes with standard notation

$$\Omega = \sum \omega^a \wedge \omega^{a*}, \quad a = 1, \ldots, m, a^* = a + m. \quad (39)$$

Taking the exterior derivative of Ω, and in view of (24), one finds that

$$d\Omega = 2\alpha \wedge \Omega, \quad \alpha = T^b. \quad (40)$$

This affirms the fact that Ω defines a locally conformal symplectic structure on M having α as covector of Lee. Then, as is known from [5], calling the mapping $Z \rightarrow -i_Z \Omega = \flat \ Z$ the symplectic isomorphism, one has

$$-\flat \ T = i_T \Omega = \sum (T_a \omega^{a*} - T^{a*}_a \omega^a), \quad (41)$$

and by (21) and (24) one finds that

$$\mathcal{L}_T \Omega = 2\|T\|^2 \Omega. \quad (42)$$

Hence, following a known definition [5], the above equation means that T defines a infinitesimal conformal transformation of Ω. On the other hand, regarding the curvature forms, we recall that the Bianchi forms in the sense of Tachibana [12] are defined by

$$\Theta^{(p)}_{u_1, \ldots, u_{2p}} = \Theta^{a_2}_{u_1} \wedge \Theta^{u_3}_{a_2} \wedge \cdots \wedge \Theta^{2p}_{2p-1}. \quad (43)$$

Then, by exterior differentiation one gets from (43)

$$d \left(\Theta^{(p)}_{u_1, \ldots, u_{2p}} \right) = 3(2m - 1)\alpha \wedge \Theta^{(p)}_{u_1, \ldots, u_{2p}}, \quad (44)$$

and we may consequently observe that the Bianchi forms $\Theta^{(p)}_{u_1, \ldots, u_{2p}}$ are exterior recurrent, with $3(2m - 1)\alpha$ as recurrence form.

In another perspective, let X be any vector field on M; if the covariant differential of X is the wedge product of X with the structure vector field T, this means that X is a skew symmetric Killing vector field (in the sense of [11]), i.e.

$$\nabla X = X \wedge T = \alpha \otimes X - X^b \otimes T. \quad (45)$$
One may also remark that the above relation is indeed in correspondence with Rosca’s lemma [11] concerning skew-symmetric Killing and conformal skew-symmetric Killing vector fields.

\[dX^b = 2X \wedge X^b. \]

In this case, the differentials of the components of \(X \), i.e. \(dX^A \) satisfy

\[dX^A = -g(X, T)\omega^A + X^A\alpha. \tag{46} \]

In view of the mentioned facts, and taking the Lie derivative of \(\Omega \) with respect to \(X \), one calculates that

\[\mathcal{L}_X \Omega = -2g(X, T)\Omega. \tag{47} \]

This proves the property that any skew symmetric Killing vector field \(X \), having the structure vector field \(T \) as generative, defines an infinitesimal conformal transformation of the conformal symplectic form \(\Omega \).

Summing up, we state the following

Theorem 1. Let \(M(\Omega, T, \alpha) \) be a \(2m \)-dimensional Riemannian manifold structured by a \(T \)-parallel exterior recurrent connection. In this case, the structure vector field \(T \) is concurrent and defines an infinitesimal conformal transformation of the connection forms \(\theta^A_B \), of the curvature forms \(\Theta^A_B \) and of the conformal symplectic form \(\Omega \). In addition, one has the following properties:

(i) \(\|T\|^2 \) is an isoparametric function;

(ii) the differential system \(\{e_A\} \) admits an infinitesimal transformation with generator \(T \), i.e.

\[[T, e_A] = \|T\|^2 e_A; \]

(iii) all the basis vector fields \(e_A \) are 2-exterior concurrent vector fields, i.e.

\[\nabla^3 e_A = 2\|T\|^2 (\alpha \wedge \omega^A) \wedge I, \quad \alpha = T^b. \]

(iv) \(\|T\|^2 \) is an eigenfunction of \(\Delta \) having \(4(2m + \|T\|^2) \) as eigenvalue of \(\Delta \);

(v) if \(V \) denotes any parallel vector field, then one has the Weitzenböck formula

\[\Delta \alpha(V) = \mathcal{R}(V, T) - \langle tr\nabla^2 T, V \rangle = -4m\|T\|^2 g(T, V); \]

(vi) if \(\Theta^{(p)}_{u_1, \ldots, u_{2p}} = \Theta^{u_1}_{v_1} \wedge \Theta^{u_2}_{v_2} \wedge \cdots \wedge \Theta^{2p}_{2p-1} \) means the Bianchi form of type \((2p, 2p)\), in the sense of Tachibana, then \(\Theta^{(p)}_{u_1, \ldots, u_{2p}} \) is exterior recurrent with \(3(2m - 1)\alpha \) as recurrence form;
(vii) any skew symmetric Killing vector field X, having \mathcal{T} as generative, defines an infinitesimal conformal transformation of Ω, i.e.

$$\mathcal{L}_X \Omega = -2g(X, \mathcal{T})\Omega.$$

3 Geometry of the tangent bundle

In this section we will discuss some properties of the tangent bundle manifold TM having as basis manifold M studied in Section 3. Denote by $V(V^A)$ ($A = 1, \cdots 2m$) the Liouville vector field (or the canonical vector field on TM [4]). Accordingly, one may consider the set

$$B^* = \{ \omega^A, dV^A \mid A = 1, \cdots 2m \}$$

as an adapted cobasis in TM (see also [6]). Let T^r_s be the set of all tensor fields of type (r, s) on M. It is well known [14] that the vertical and complete lifts are linear mappings of $T^r_s M$ into $T^r_s(TM)$, and one has

$$(T_1 \otimes T_2)^C = T_1^V \otimes T_2^C + T_1^C \otimes T_2^V. \quad (48)$$

Hence, in the case under discussion we may define the complete lift Ω^C of the structure conformal 2-form Ω of M to be the 2-form of rank $4m$ on TM given by

$$\Omega^C = \sum (dV^a \wedge \omega^{a*} + \omega^a \wedge dV^{a*}), \quad a = 1, \cdots m; a^* = a + m. \quad (49)$$

On the other hand, the Liouville vector field V is expressed by

$$V = \sum V^A \frac{\partial}{\partial V^A}; \quad (50)$$

it is also known that the associated basic 1-form

$$\mu = \sum V^A \omega^A \quad (51)$$

is called the Liouville form. (Alternatively, one can also write that $\mu = V^\flat$.)

Next, taking the Lie differential of Ω^C with respect to the Liouville vector field V and taking into account (24), one finds that

$$\mathcal{L}_V \Omega^C = \Omega^C. \quad (52)$$

Hence, with reference to [4], the above equation proves that Ω^C is a homogeneous 2-form of class 1 on TM.
Taking moreover the Lie differential of Ω^C with respect to the structure vector field T, one also derives that

$$\mathcal{L}_T \Omega^C = \|T\|^2 \Omega^C. \quad (53)$$

The above equation shows that T defines also for Ω^C an infinitesimal conformal transformation.

By exterior derivation of the Liouville form μ defined by (51), and taking into account (24), one gets that

$$d\mu = \alpha \wedge \mu + dV^A \wedge \omega^A. \quad (54)$$

Introducing the notation

$$\psi = \sum dV^a \wedge \omega^a, \quad (55)$$

and by reference to (24), it follows that

$$d\psi = \alpha \wedge \psi, \quad (56)$$

which shows that ψ is an exterior recurrent form with α as recurrence form.

Then, since one first calculates that

$$i_V \psi = \mu, \quad \alpha(V) = 0, \quad (57)$$

one finally gets that

$$\mathcal{L}_V \psi = \psi, \quad (58)$$

which shows that, as Ω^C, the form ψ is also a homogeneous 2-form of class 1.

We remind that the vertical operator i_v in the sense of [3] possesses by definition the following properties:

$$i_v \lambda = 0, \quad i_v \omega^A = 0, \quad i_v dV^A = \omega^A, \quad (59)$$

from which one calculates that

$$i_v \psi = 0. \quad (60)$$

On behalf of (58) and (60) we conclude from this that ψ is a Finslerian form [3].

In another order of ideas, we recall that the vertical lift Z^V [14] of any vector field Z on M with components Z^A is expressed by

$$Z^V = \begin{pmatrix} 0 \\ Z^A \end{pmatrix} = Z^A \frac{\partial}{\partial v^A}, \quad (A = 1, \cdots 2m).$$
On manifolds with \mathcal{T}-parallel exterior recurrent connection

Therefore, in the case under consideration, the vertical lift \mathcal{T}^V of \mathcal{T} is given by

$$\mathcal{T}^V = \sum \mathcal{T}^A \frac{\partial}{\partial V^A}, \quad A \in \{1, \cdots, 2m\},$$

(61)

and by (55) one finds respectively that

$$i_{\mathcal{T}^V} \psi = \alpha, \quad \text{and} \quad \mathcal{L}_{\mathcal{T}^V} \psi = 0.$$

(62)

On behalf of the above, one may conclude that \mathcal{T}^V defines an infinitesimal automorphism of the 2-form ψ.

Finally, consider the 2-form

$$II = f\psi;$$

(63)

following [4], f is called the energy scalar. Now, in view of (23), one has

$$dII = f \left(\frac{df}{f} + \frac{d\|T\|^2}{2\|T\|^2} \right) \wedge II.$$

(64)

By reference to [4] and in case that

$$\frac{df}{f} + \frac{d\|T\|^2}{2\|T\|^2} = 0,$$

this shows that II can then be seen as the canonical symplectic form of the $4m$-dimensional manifold TM. Finally, we set

$$r = fv,$$

where $v = \frac{1}{2} \sum (V^A)^2$ denotes the Liouville function; then, by reference to [4], the pair (r, II) defines a regular mechanical system (in the sense of Klein) having r as kinetic energy.

Theorem 2. Let TM be the tangent bundle manifold having as basis the conformal symplectic manifold $M(\Omega, \mathcal{T}, \alpha)$ structured by a \mathcal{T}-parallel connection and having $\alpha = \mathcal{T}^0$ as covector of Lee. Let V, μ, and v be the Liouville vector field, the Liouville form, and the Liouville function of TM respectively. One has the following properties:

(i) the complete lift Ω^C on TM of the conformally symplectic form Ω of M, is a homogeneous 2-form of class 1, i.e.

$$\mathcal{L}_V \Omega^C = \Omega^C;$$
(ii) the vertical lift T^V of T defines an infinitesimal automorphism of the 2-form $\psi = \sum dV^A \wedge \omega^A, (A = 1, \cdots, 2m)$;

(iii) if f stands for the energy function of M, then the 2-form $II = f\psi$ is the canonical symplectic form on $TM \left(\frac{df}{f} + \frac{d\|T\|^2}{2\|T\|^2} = 0\right)$, and the pair (r, II), consisting of the scalar $r = f\nu$ and the 2-form $f\psi$, defines a regular mechanical system (in the sense of Klein) on TM.

References