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Introduction
Let N (N, resp.) be the set of all positive (nonnegative, resp.) integers and
z:={neN[n<z}

for all integers z. In a remarkable paper of 1961 [13], Schensted discovered an
algorithmic way to determine the length of the longest increasing and decreasing
subsequence of a finite sequence over N, which, in the meantime, turned out to be
of crucial importance for the representation theory of the symmetric groups. It is
essentially based on the following insertion mappings: Let w be a nondecreasing
word over the alphabet N, that is, an element w = wy ---w, of a free monoid
(W, -) over N such that w; < --- < w,. Then, for any = € N, let

w ifw, <z
wH z = "= ew

Wy W1 TW1 Wy i <wy,

and

T ifw, <z
wlz = "=7 eN,

wj ifx <wy,
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where, in the case of x < wy,, the index j € n is defined by the condition
wj—1 < o < wj. In this interesting second case, the word w and the letter z
may be recovered from v = vy - v, (= w H- = and y:=wix, as Vjg1 =Y > vj.
This is the core of Schensted’s bijection.

Two observations served as the main stimulus for the present paper: Denot-
ing by ~ the inverse product on W, we obtain a second pair of insertion mappings
for the (free) monoid (W, ~) and the ordering >, which are denoted by z " w
instead of w H” z and x\ w instead of wZz. Surprisingly, these mappings are
the inverse mappings of the insertion mappings described above. In other words,
Schensted’s deletion algorithm is also an insertion algorithm, namely the one
given by the inverse product and the inverse ordering. More formally, in the
case of x < wy, we have:

(wZz) H(wH z)=w and (W) (wH 2) ==

This was the first of the two starting points of our investigations. Viewing
tableaux as elements of a free monoid (7', * ) over W, the insertion mappings H”
and £ may be extended naturally to the set of tableaux by induction. Again,
considering the inverse product * on 7, we obtain the corresponding inverse
mappings. This leads to a short proof of the Robinson-Schensted correspondence

(PQ:W— |J ST xL, (1)

T Partition

Here, in the first component, we obtain as the P-symbol of w a standard tableau
t € T, which is increasing in rows and strictly increasing in columns, while the
@-symbol in the second component is a standard word (or: lattice permutation).
As is easily seen, for the bijection (1), instead of <, a more general relation o
may be used (Section 1). For example, in the special case of x=<, Knuth’s dual
correspondence is obtained [7]. This was the second starting point of this paper.
The bijection (1), now for the relation o instead of <, may be refined upon
significantly by considering certain invariants. For any w = wy - - - w, € W, let

Dy (w) ={i€n—1]w; e« wig1},

where = e y means that o y does not hold. Dy (w) is called the x-descent
set of w. In Section 2, it is particularly shown that Dy (w) = D> (Q(w)), for
all w € W (Theorem 2). In the special case of x=<, this result is due to
Schiitzenberger ([14], Remarque 2, see also [3], Theorem 2.1). For the dual cor-
respondence (x=<) we obtain a result due to Knuth ([7], Theorem 1*). The de-
scent set may be generalized by the property of a word w to be a shifted -filling,
which is also transferred by the @-symbol (Theorem (3)). This fairly intricate
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result enables us to give several descriptions of the Littlewood-Richardson co-
efficients as will be described below. As a special case, we obtain here Theorem
1 of [17].

In Section 4, our combinatorial investigations are completed by introducing
and analyzing the notion of a conjugate and rotated tableau. It leads to our
main combinatorial result (Main Theorem 1).

The Littlewood-Richardson (L-R) coefficient c;,, describes the multiplicity of
the irreducible character ¢“ of the symmetric group S+ in the outer product
of the irreducible characters (7 of S, and (P of S;. In order to describe them
combinatorially, we use the following characterization (Corollary 4):

For all partitions p of k, q of n and uw of n+ k, let Cy, be a set such that
there exists a bijection

< <
ST — | ST, x C, (2)

s
where the union is taken over all partitions r of k. Then we have cy, = |Cg)|

for all q, p, u.
Taking into account the above mentioned invariants of the Q-symbol, bijec-

tions of this kind are established by the Robinson-Schensted correspondence (1).
It may therefore be viewed as a combinatorial core of the representation theory
of the symmetric groups. This concept for proving the L-R rule has been used
in in [11], [16] and [17]. In each of these approaches, the case where x=< is
considered.

More generally, in Section 5, considering <€ {<,<,>, >} (and a variation
of the @-symbol), eight combinatorial descriptions for the L-R coefficients are
obtained simultaneously: ¢y, is equal to the number of lattice permutations
of content p (p*, resp.), which, row- or column-wise, fit into the (conjugate,
rotated) skew diagram corresponding to ¢ and w.

A short additional analysis of the bijections (2) in Section 6 shows that the
Robinson-Schensted correspondence yields direct bijections between the eight
L-R sets by fixing the P-symbol. As a special case, this includes the bijection
introduced in [5].

1 Schensted’s insertion mappings

In the sequel, an arbitrary set X instead of N as in our introduction will be
considered. To start with, let us fix some notation. A relation o on X is called
an almost complete ordering (on X), if

(a) o is anti-symmetric (z xy, y x * = = =y)
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(b) o is transitive (z x y, y X z2 = = X 2)
(¢) o is complete (x #y = x x y or y x x)

Then, in the case of X = N, the usual ordering < is an almost complete ordering
on N, and likewise >, > and <. More generally, we have: If « is an almost
complete ordering on X, then so are e¢ , & and -, where

s == {(0,y) € X x X |(2,y) ¢oc}, x:={(2,y) € X x X|(y,2) €x}

and

‘X = eE
Let (W, -) be a free monoid over the alphabet X. The unit element of (W, -) is
denoted by i, and the elements of

(VV;-)LX ;:{w1- .wnEW wlo<w20<...0<wn}

are called oc-monotonous. For any word w = wy ... w, € W of length |w| := n,
the content of w is defined by

c(w): X — Np, z— {ien|w =x}
Furthermore, for u =u1 ... Um,v =01 ... v, € W, we write
vt v,

if u; oc v; for all ¢ € my, j € ny.

As is convenient for our purposes, tableauzr over X are viewed as elements
of a free monoid (7', *) over the alphabet W. The unit element of 7" is denoted
by i. Let t =t;¢ --- ety ety €T be a tableau. Then, for all ¢ € [, the word ¢; is
called the i-th row of t. Here, the reverse labelling is used for technical reasons.
The shape of t is defined by

. | i<l
sh(t) : N — Ny, i — .
0 , i>1
and c¢(t) := c(t1 - ... - t;) is called the content of t. The set of all tableaux (of

X
shape r, with content p, resp.), whose rows are oc-monotonous, is denoted by T'

X X
(I'", T, resp.). Furthermore, we put

t>Z::tl."'.tz+l and t<z;:tz_1o...ot1
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for all z € I +1,U{0}. Any tableau may be visualized by listing its rows one
above the other, with the first row on top. In the case of X = N, we have, for
example

t=(1-2-4)(2-2)¢(3-2-2)¢(1-1-5-4) ~

[ RS
NN N

4

This tableau ¢ has shape (4,3,2,3,0,0,...) and content (3,5,1,2,1,0,0,...).
Now, we define mappings

H:W,)*xX —W and Z:(W,)*xX —X

as follows: Let w € (W,-)* and = € X. In the case of w oc* z, we put w P z :=
w and w4z := z. Otherwise, we can find w®, w® e W, y € X such that
w=w® .y - w? wh <*z and y e = and put

2)

wH z:=w® .z w and wlzx:=y.

In this second case, we say that x enters w in (W,-)™, while otherwise, we say
that = passes w. These definitions of H? and Z may be extended naturally to

o
T x X by induction, namely by putting

tH z = <t>1 B (t 4:3)) . <t1 | x) and t4x :=to14(t Lx).

forall t = t;e ---ot; € Z(;(’ such that { > 1. Furthermore, let i 7 = := 7 and
iZzx = x. We say that x enters t (in (W,-)* and (T, *)), if t; Zx enters t; in
(W,-)> for all i € . Otherwise, we say that x passes t. Then, particularly, any
x € X enters the empty tableau i. For example, in the case of X = N and =<,
we have

(2:3)e(1-1-2)F1=(2-3FH2)«(1-1-1)=(2-2)e(1-1-1)
Hence 1 enters (2-3)¢(1-1-2) in (W,-)* and (T, *), and
(2:3)e(1-1-2)41=2-342=3
Note that, for all z € X and w € (W,-)* such that = enters w, we have

(wlzx) = x . 3)
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Furthermore, for (1), ¢(2) ¢ %, a simple induction on |t(?)| shows that
(tD « Y g = (tu) B (4@ 4;6)) . (t@) P x) (4)

and

(D o @) 2z =t 2(t® 22). ()

The following observation is of crucial importance in our context: The defi-
nitions of H? and Z do not only depend on the relation o, but additionally on
the products - and e of the underlying monoids (W,-) over X and (T, ¢ ) over
W. Based on the inverse product on W, defined by

U V=0 U

for all u,v € W, we obtain again a free monoid (W,~) over X. Analogously, we
may consider the inverse product * instead of ¢ on T'. For any w = wy-...-w, €
(W, )*, we now have w = wp wp—1~ ... w; and w,Xw,_1X -+ Xw;. This
implies that

(W,)> = (W)™ . (6)
We shall simply write W for this set. In addition to the mappings H? and Z
based on « and the products - on W and ¢ on T', we shall also be interested
in the mappings of the same kind arising from the relation & and the products
~and * instead. Note that, by (6), all these mappings are defined on the same

X
domain 7" x X. In order to distinguish, we write

r™Ht and xNt (x € X, te%) ,

if we refer to the mappings based on &, - and *. Furthermore, we will use the

following convention: If z € X enters ¢t € T in (W,-)> and (T, ), we simply
say that x enters t. In the case that x enters t in (W,?)* and (T, ¥), we say
that x inversely enters t.

Due to this observation, in Proposition 1 and Proposition 2 (and hence, in
Lemma 1 and Lemma 2) it suffices to proof the first part. In each case, the
second part may then essentially be obtained by applying the first part to the
inverse ordering and the inverse products. Similarly, in the proofs of the basic
tools Proposition 3 and Lemma 4 of the Sections 2 and 3, we may restrict

ourselves to considering one implication of the claimed equivalences.

Proposition 1. Lett € % and x € X.
(a) We have t F z € T. If x enters t, then t Zx inversely enters t B x, and
(L) HtH 2)=t and (t4Lx)N (tH z)=2.
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(b) We have x "t € % If = inversely enters t, then x N\ t enters x "d t, and
(O @Nt)=t and (xHt)L(@xN1t) =2

PRrROOFS. ad (a): Let t = ¢;¢ --- *t; and assume first that [ = 1, that is,
w:=t € W*. In the case of w oc* = we have w H z = w € W*. Now assume
that x enters w. Then there exist w"), w® € W and y € X such that w = w™) -
y-w®, wl® oc* 2 and y e z, and we have w HF? 2 = w® . z-w®@ and wlz = y.
In particular, it follows that = y or z « y and hence 2 oc* w®. This shows
wH ¢ € W™, Furthermore, as w®x*y, 2% y and w F z = w®@ 727w, we
may conclude that y inversely enters w H  and that

This completes the proof for [ = 1. Now, for [ > 1, the assertion easily follows
by induction using (4) and (5).

ad (b): In any monoid, the inverse product of the inverse product is the initial
product again. Hence (b) follows from (a), applied to (W,?), (T, *) and .

QED

Our next aim is to introduce the notion of a shifted standard tableau. Let

W be a free monoid over the alphabet N. For any ¢ = g1 - - - qr € W, we define

o: N — N, i —
1 0 {o ik

and write ¢ instead ¢., whenever confusion is impossible, for instance for the
shape of a tableau. The word ¢ is called a partition, if g1 > ¢ > --- > qp. If,
additionally, g1 + - - - + qx = n, we say that ¢ is a partition of n (¢ F n). For all
U=U]*.n. Up, V=01 ... -V €W and j € Ny we write

uwoG v,
if |u| 4+ 7 > |v| and u, x vy, forall v e Nk —j. Let g =¢q1---qx € W be a
partition. We put d; := (¢oo)i — (¢oo)i+1 for all ¢ € N and
SIT = {t=tye - oty €T |t; gt forallicl—1},
The elements of Sq% are called g-shifted standard tableauz (with respect to ).
X X X X
For all r: N — Ny, p: X — Ngo we put ST := ST NT" and ST, =

Sq%r N %p. In the case that ¢ is the empty partition the upper index ¢ is
omitted. Any ¢-shifted standard tableau ¢ may be visualized by shifting the i-th
row of t g; positions to the right, for all ¢. Then, in this visualization, each row
is oc-monotonous, while each column is monotonous with respect to -o< :
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Note that, for all s € W and any partition ¢ € W such that Sq%s # (), we have
(oo)i + (S0o)i = (Goo)it1 + (Soo)i+1  forall i € N. (7)

X
In particular, sh(t) is non-increasing for all ¢t € ST'.

X
Proposition 2. Lett =t; --- ¢ty €T and x € X and assume that | > 2.

X
(a) Let g €W be a partition such that t € ST .
If x enters t.;, then

tHijSq%.

If x enters t-;, but passes t, then

(tl (t< ZJU)) o (ty H x) € Sq%'

(b) If(t;-x)et € S%, then x inversely enters t;, and

tyo(x B toy) e ST.

PROOFS. ad (a): By Proposition 1(a), we have t FF x € T. Assume first
that [ = 2. Let to = w1 -... v and put j := g1 — ¢o. As x enters ¢y, there exist
uM u® e W and y € X such that t; = u® -y @t Pz =u® . 2.4 and
t14x = y. We put iy := |u(1)] + 1. In the case of j + i1 > |ta] both assertions
follow easily. Let j + i1 < |ta|. As t; - jto, we have v;y;, € y. Hence y enters
to and x enters t. It remains to be shown that t; H = “oC j to H y. We choose
v 0@ e W such that to Ty = v -y - 0@ and put iy = \v(l)] +1<j+1;.
The tableau (to H y) ¢ (t1 B 2) may then be visualized as follows:

J 11

| 2] |
| [v] |

i2
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In the case of i = j + 41 it follows that ¢; B = o< j o Hy, as t1 -o< j to and
y o€ x. Let 19 < j + ¢1. Then we have

(t2 B y)jiy = (t2) iy e y e v = (1 B @),
If i5 > j, we may conclude that, additionally,
(ta P y)iy =y s and (4 B 2)s,—j = ulVy, o,

hence (ta B y) 4 (i,—j) o€ (t1 B @)s,—;. This shows ¢; B @ -ocj ¢ B y and com-
pletes the proof for | = 2. For [ > 2, we can use (4) and proceed by an easy
induction.

ad (b): Letm := |tj|+1andt := (t;-x) et € ST . Then sh(#) is non-increasing.
This implies that |t;_1| > m and = e€ (t;_1)m. Thus = inversely enters ¢;_; and,
by a simple induction, also t;. More precisely, we can find v 0@ e W such
that = H t;_; = v - 2. 0@ and [vV)| > |t|. Let s := sh(t;) and ¢ € W be the
unique partition such that (goo); = s1 — s;—; for all i € [ — 1, and (goo); = 0 for
all 2 > [. Then we have

_ _ o<
t<l:t1."' otl_IESqT

with respect to the inverse products on W and T" (for more details, see Lemma 6).
o
Applying (a), we have z "H t; € SIT with respect to the inverse products on
X
W and T. But this is equivalent to " t.; € ST with respect to the initial

products on W and T', and the proof is completed.

X
Lett=t;e --- oty €T and x € X. We choose z € [ + 1, maximal such that
x enters t., and define
z(z,t) ==z
and

EP w = tos e (- (b o))+ (e B ),

where, in the case of z =1+ 1, we put ;11 := (.
Now, on the other hand, if z € [, such that m := |t,| > 0, we denote by
y := (t»)m the final letter of ¢, and define

b(z,t) = yN i,

and
{ i, (tz,l te tz,m—l) ® (y EH t<z) , m> 1
t[z] =

t>z'(y‘:E|t<z) , m=1
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We observe that

sh(t); +1 , i=z(x,t
sh(t & z); = (®) (#:1) (8)
sh(t); , otherwise
and, in the case that sh(¢) is non-increasing and sh(t), > sh(t),41,
sh(t)i—1 , i==z2
sh(t[z])i = : (9)
sh(t); , otherwise

for all i € N.
XX
Lemma 1. Lett =t;e --- oty €T

(a) Forall x € X, we have

<t & a:) [z(x,t)] =t and b(z(x,t),t & :z:) =z

(b) Ifte S%, for all z € | such that sh(t), > sh(t),+1, we have

AP b(z,t) =t  and z(b(z,t),t[z])zz.

PRrOOFS. ad (a): Proposition 1(a)

ad (b): Lett e ST and » € lsuch that sh(t), > sh(t),11. Let # := t[2]. Then, by
Proposition 2(b), z := (t.),| inversely enters .. Hence, by Proposition 1(b),
b(z,t) =2\ t_, enters ., = x "®Ht_, and

t, o 2 = ("t )L(@Nt.,) = t[z]..4Lb(x,t)

This implies that b(z,t) passes t<. 41 and hence z(b(z,t),t) = z. Furthermore,
we can conclude that ¢ 7 b(z,t) = ¢ from Proposition 1(b).

QED

As an immediate consequence of Proposition 2 we observe:

Lemma 2. Lett=t;e --- 'tleS%.

(a) Forallx e X, wehavet@ijS%.

(b) For all z € |, such that sh(t), > sh(t).4+1, we have t[z] € ST.
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Now we define mappings
Po:W —T and Qu:W —W

as follows: First, we put Py (i) := i and Qu (i) :== i. Let w = wy - ... w, €
W\{i} and @ := wy - ... wp_1. Inductively, we put Px(w) := Pu(0) & wy,
and Qx(w) 1= Qx (W) z(wy,, Px(0)). The definition of the mappings Py and Q«
is essentially due to Schensted [13]. The tableau Py (w) is often referred to as
P-symbol, while the word Q«(w) is called Q-symbol of w (with respect to ).

Any word p = p1---p, € W is called standard (or lattice permutation), if
¢(p1---pi) is non-increasing for all i € n. For example, the word 1112213 is
standard, while the word 1122213 is not. The set of all lattice permutations in
W is denoted by L. Furthermore, for all » € W, we denote by L, the set of all
lattice permutation with content r.

Theorem 1. Let ST X L be the set of all pairs (t;e --- *t1,p) € S’% x L
such that sh(t) = c¢(p) and t; # i for all i € l. Then the mapping

W — ST X L, wr—s (PO((w), ro(w)> (10)

is a bijection, and c¢(Px(w)) = c(w) for allw e W.

For example, in the case of X = N and

4x3x2x1,4x4, 3x3, 2«2 and 1x1 , (11)
for the word
w=3-3-2-4-2-1-4 (12)
we obtain
4 4 21
X
Py(w)~ 3 3 € ST*?  and Qu(w)=1112213 € L431.  (13)
2

PROOF OF THE THEOREM. The second assertion concerning the content can
be shown easily by induction. We put A := S% x £ and define a: X x A —
AN{(i,0)} by

(:c, (t,p)) — <t & x, pz(:n,t)).

By Lemma 2(a) and (8), we have indeed (X x A)a € A\{(i,i)}. Furthermore,
for the mapping

B A{(,1)} — X < A, (5,91 pn) — (b(n,9), (slpal, 1)),
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we have (s,p)f € X x A for all (s,p) by Lemma 2(b) and (9). Applying
Lemma 1(a), we obtain a8 = idxx.4, while Lemma 1(b) implies that Sa =
id g\ {(i,)}- Hence a is a bijection. Now, for all n € Ny, we put

whi={weW||lwl=n}

and define
Yo W — U ST™ % Ly, wr— (Po((w),QO((w)).
rkn
Then wy, = (wy, (W1 ... - Wp—1)Yn—1)a for all w = wy - ... - w, € W, and the
proof may be completed easily by induction. QED

Let 7 be a set of tableaux over the alphabet N, that is, a free monoid over
W. Let t € T and assume that there exists an n € N such that

1, 1<n
c(t); = .
0, i>n

for all ¢ € N, that is, any letter ¢ € n, occurs exactly once in t. Then t is called
a Young tableau (over N) or is said to be of Young type. The set of all Young
tableaux is denoted by Y7 . Furthermore, we put

<
SYT :=STnYT.

For all ¢ € n, let z; be the number of the row of ¢ containing ¢. Then
ty3:=21-2p €W

is called the row word of t. For all r: N — Ny, denoting by W, the set of words
w € W with content r, we obtain a bijection

YT — Wy, t—t3 . (14)

Furthermore, we have t € SY7 if and only if t3 € £. This observation is due
to Macmahon (96 in [10]). For the special choice of X = N and x=<, we
thus obtain the following classical correspondence due to Robinson [12] and
Schensted [13].

Corollary 1. Let r: N — Ng. Then the mapping
wi— (P<(w), Q<(w))s™")

is a bijection from the set of words over N of content r onto the set of pairs of
standard tableaux over N of the same shape, the first of which has content r and
the second of which is of Young type.
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2 Descent Sets

For all w = wy - ... - w, € W, the descent set of w (with respect to ) is
defined by
DO((w) ::{ien—llwieewiﬂ} . (15)

For example, the descent set of the word w defined in (12) (with respect to o
defined in (11)) is {3, 6}. In this section, we will show that the descent set of
any word w (with respect to o) is equal to the descent set of its QQ«-symbol
(with respect to >). In the above example, bearing in mind (13), we obtain
indeed D> (Qux(w)) = D>(1112213) = {3, 6}. In the case of X = N and x=<,
this result is due to Schiitzenberger [14, Remarque 2|, and, independently, to
Foulkes [3, Theorem 2.1]. In the case of x=<, we obtain Knuth’s result on the
so-called dual correspondence [7, Theorem 1*]. It is interesting to compare the
proofs of the Theorems 1 and 1* in [7] with those of Proposition 3 and Lemma 3
below.

Proposition 3. Let w € W™ and x,y € X. Assume that x enters w and y
enters w 7 x. Then the following conditions are equivalent:

(i) zocy,
(i) (wlz) x ((w B a:)éy)

PROOF. We choose w®,w® € W and a € X such that w = w - a - w®,
wH z=w" . 2z-w® and wsz = a. Then, assuming (i), we have w® - z oc* y
and hence a o« ((wH x)4y), as a o* w®. This shows (ii). Now, putting
7= (whH 2) 4y, j:=w4x and @ := (w H x) B y, we have

y=2N®w and x=7yN\ (zHa) ,

by Proposition 1(a). The remaining implication is thus an application of the
one already proved, applied to Z, §, w, X and “H, N\ instead of =, y, w, ox and

EP R Z. QED

Forallt=t;e --- ¢t; E% and x € X, we define
S(l’,t) = |(t gj x)z(ac,t)|'
and observe that
z(z,t) =z(t1 4z, t>1) +1 and  s(z,t) = s(ty L, t~1) (16)

forallt =t;e---ot] € %\{L} and x € X such that = enters ¢;.
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X
Lemma 3. Forallt €T and z,y € X, the following conditions are equiv-
alent:

(i) zoy,
(i) z(z,t) > z(y,t & z).

If, additionally, t € S%, we obtain the following third equivalent condition:
(iii) s(z,t) <s(y,t & ).

X
PROOF. Let t =t;o -+ oty €T, 2,y € X, 2, := z(x,t), 2y == z(y,t B )

o
and s, 1= s(z,t), sy == s(y,t & ). In the case of t € ST, we have s, < |t1|+2,
as sh(t) is non-increasing. Now assume first that = passes ¢; or ¢ = i. Then we
have z, =1 and s, = |t1]| + 1. Putting ¢; := { in the case of t = I, we obtain

Xy = haxx'y <= =1 = 2, >z

and, in the case of t € S%, T Xy = s, =|ti| +2 <= s; < sy as
asserted. Now assume that ¢ # ¢ and that x enters ¢1. Then there exist T € X
and u(l),u@) € W such that t; = w7 u®@ and Pz = u® @ Tf
(t1 B z) oc* y, we may conclude that x < y, z; > 1 = 2, and s, < |[t1] < s, in
the case of t € S%, by Lemma 2(a). If, on the other hand, y enters t; F z, we
put 7 := (t1 B x) £y and obtain inductively

Txy = FTx§ = 2(Tts1) > 2t HT) = 2> 2

and the corresponding equivalence for s, by Proposition 3 and (16). QED

X
The mappings Z, B, [ , z and s are defined on the set 7' x X. In order to
X
simplify our notations in the sequel, they will be extended to 7' x W canonically
X

as follows: Let t € T'. First, we put tZi := i, t 7 i := t and let z(i,t) be the
unit element of W. Now let w = w; - ... - wy, € W\{i} and & :=w; - ... wp_1.
Then, inductively, we put

tH w:=(tH o) P w,, tLw:={tLw)- ((t B ﬁ))éwn>
and
z(w, t) := z(,t) z(wy, t & D).

The mapping K~ (s, resp.) is extended in the same way as H (z, resp.).
Particularly, we then have

Qx(w) = z(w, ) (17)
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X
for all w € W. For any t € T and any w = wy - ... w, € W, we say that w
enters t, if w; enters t 7 (wy - ... w;_1) for all i € n, Otherwise, we say that w
passes t.

Note that, for all u,v € W and ¢t € T', the inductive definition given above
implies that

P (u-0) =P w)Po, tZu-v) = (t4u)- ((t = u)év) (18)
and
z(u-v,t) = z(u,t) z(v, t & ). (19)

Analogous identities hold for the mappings [~ and s.
Now, applying Lemma 3 and using induction, we obtain the transfer of
descent sets mentioned at the beginning of this Section.

Theorem 2. For allw e W, t e S%, we have
Do (w) = Dx(z(w,t)) = D<(s(w,1)).

In particular, for t =i, we have Dy (w) = D> (Qux(w)).

3 Shifted fillings

The transfer of the descent set is a special case of a more general property
that is invariant under the ()-symbol, as will be shown now.

Let n € N, w € W such that |w| = n and let » = r1---7r; € W such that
71 4 -+ 41, = n. Then there exist unique words w®, ..., w® € W such that
jw®| =r; for all i € [ and w = w® - ... - w®. We put

Tab, (w) :=w® o ... e T

Let ¢ € W be a partition. If Tab,(w) € Sq%’”, then w is called a g-shifted
x-filling of shape r. For all U C W, we define

SIUT .= {w € U| |w| = n, Taby(w) € ST}

to be the set of all ¢g-shifted oc-fillings of shape r in U. If ¢ is the empty partition,
the upper index ¢ is omitted. In this section, we will particularly show that any
word w € W is a ¢-shifted x-filling of shape r if and only if Q(w) is a g-shifted
>-filling of shape 7 in W (Theorem 3).
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For example, for the word w =3-3-2-4-2-1-4 considered in (12), we have

Tablgg(w) ~ 4 S 531%133,
3

2
3 2
(with o< defined in (11)), hence w € S3'W133. Recalling (13) and observing that
3 >
Taby33(1112213) ~ 2 2 1 ¢g317188
1 11

>
we obtain that Qu (w) € S3TW133,

Now, for any D = {di,...,dx} C n—1 (d < --- < di) we may define
q:=(dp—Fk)---(di—1)and r = (n—dg)(dx, — dg_1) - - - (d2 — d1)d; and observe
that o

Dy(w) =D <= we SW"
for all w € W. Thus the transfer of the descent set described in Theorem 2 is
indeed a special case of Theorem 3.

X
Proposition 4. Lett=t;e --- oty €T, weW* andv e W.

(a) Ifv entersty, then

t v = (t>1 & (tlév)) o (t1 B v).

(b) Ifv="wyi-... vy is <-monotonous, then there exist w) ... w(™+D ¢ W
such that the first row of w &> v is given by

m) m+1)

(wF v)y =w v w® vy w™ L, W .

(c) Ifv enters w, then

(wv) HwHv)=w and (wlv)N (wH v)=w.

PROOF. All three claims may be proved easily by induction on m := |v|.
We restrict ourselves to proving the first part of (c). For m = 0, it is simply the
definition. Let m > 0. We put u := w4v = U1~ ... “Up, & = U~ ... Uy and
V=v1"... Un_1. Then we have

o = wlo = (wsh) - ((w B 5) vy )



An Eightfold Littlewood-Richardson Theorem 17

hence u; = (w B 9) Zv,, and @ = w H 9. Applying Proposition 1(a), we obtain

uEH(wEPv):ﬂEH(ul‘:H((wEPf))H]vn)):ﬂEB(wH]@):w.

QED
Let jeNg. Forallw=wy-...-w, e W, t=1¢;¢ --- oty €T, we put
wSI = I ] and tSJ::tlS'-'-'tlS].
w ;o Jzn
In the same way, we define t<J and t>7.
Lemma 4. Let u,v,w € W*. Assume that m := |u| = |v| and that u - v

enters w. Then the following conditions are equivalent:
(1) w-vesSwmm
(i) wZ(u-v) e SWmm,

PRrROOF. Let u-v € SW™™, Then, particularly, we have u, v € W and hence
wZu, (wH u)4v € W™, by Proposition 3. Furthermore, by Proposition 4(b),
there exist words w®, ..., w™tD € W such that

wH u=(wEF u)=w® u - w® uy W™y, WM,

As wu; o€ v; for all ¢ € my, a simple induction shows that, for all j € m,, there
exist a),b0) € W such that

() wBP (u-v) = a® vy b ) ™ g D)

where a(!) = vg = b)) := i. Let j € m, and put 9; := (w [ (u-v<7)) Zv;. Then,
bearing in mind (%), we observe that u; = ¥; or u; o€ ;. On the other hand, we
have i := (w H? «=7) Zu; e uj, by (3). This implies that 7, e ¥; and thus (ii).
The remaining implication can be obtained now by applying the one already
proved to @ = wlu, ¥ == (wH u)4v, ¥ ;== wH u-v, N and X and using
Proposition 4(c).

For all s =sp e --- sy, t =t;*--- oty €T, we put

st = (Smax{k,} * tmax{k,}) ® - *(s1-11) €T,

where s; := i for all i > k or, resp., t; := i for all i > [. Note that t = t<7 x t>J
forall t € T and j € Np.

X
Proposition 5. Lety,z € X andt=1t;¢ --- ¢t € ST.
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(a) If z passes t1, we have

ti z=txz and (z(z,t),s(z,t)):(1,]t1]+1).

(b) If j € |t1] and y enters tlgj, we have
— (+57 >j — <j <Jj
Py = (T )7 and (2(y1),5(5,8)) = (ly,£57), 500, £57) ).

PROOFS. ad (a): Definition.

ad (b): Let j € [t1] such that t57 o¢* y. Then there exist u,u® € W and
§ € X such that t; = u® - §-u® t; Fy=u® .y u?, jeeyand uM| < j.
We have [to| < [u)| < j or (t2) |41 o€ ¥, hence tgjxxk y. In both cases,
putting ¢ := t~1, it follows inductively that

tPy = ()P o) = (EF 9 7) (07 Py)-17)

= (tST R y) x>,

QED

X
Lemma 5. Let m e N, w e W andt € ST . Then the following conditions
are equivalent:

(i) we Swmm,
>

(ii) z(w,t) e SW™™,
<

(iii) s(w,t) € SWm™m,

ProoOF. For m = 1, the asserted equivalence follows from Lemma 3. Let
m > 1 and choose u,v € W such that w = w - v and |u|] = m = |v|. First, all
three conditions (i), (ii) and (iii) imply that u,v € W, by definition or, resp.,
Theorem 2. Furthermore, in each case, we have:
(%) v enters the first row (t &~ u); of t & w.

For, in the case that (i) holds, this follows from Proposition 4(b) and u; € v; for
all i € m, while, assuming (ii), (x) follows from z(v;, t & u-v<?) > z(u;, t & u<?),
that is, z(v;, t B u-v<!) > 2 for all i € m. Finally, (iii) implies that

s(vivt B w - v™) < syt B ™) < (B w0

for all 7 € m, and thus also (x).
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Let t =t;¢ --- ¢t1. We consider two cases:
case 1: u enters t;.
Then w enters t1, by (*). Applying Lemma 4 and (16), we obtain inductively

x >
(i) <= t1 4w e SW™" <= z(t1 4w,t>1) € SW™" — (ii).

and the corresponding equivalence for s(w, t).

case 2: u passes 7.

Then Proposition 5(a) particularly implies that ¢ & u = (¢ &~ ©<™)%u,,, and
there exist @ € W and = € {v1,...,Vm_1, Uy} such that ((¢t & u) B v<™); =
W - x. As vy, enters @ - x whenever (i), (ii) or (iii) holds, by (*), we obtain step
by step z ¢ {v1,...,9m-1}, T = up, and finally u,, o€ v,,. Hence, each of the
three conditions implies that

(t & u) B o< = (t B (us™ - v<m)> * Uy
and
z(0S" Y u) = 2(vS" B ST, s(v" t R u) = s(v=" t B usT)
by Proposition 5(b). The equivalence of (i), (ii) and (iii) again follows by induc-

tion. QED

X
Theorem 3. Lett € ST, q,r € W and assume that q is a partition. Then,
for all w € W, the following three conditions are equivalent:

() we S,
>
(ii) z(w,t) € SIWT,
<
(ifi) s(w,?) € STV

Note that, in the special case of X = N, x=2>, the preceding theorem implies
Theorem 1 in [17], as will be demonstrated after Lemma 6.

PROOF OF THE THEOREM. Let n := |w| > 0, z = 21 -+ 2, := z(w,t), s =
s1-+-8p = s(w,t) and r = ry---1. For | = 1, the asserted equivalence is
immediate from Theorem 2. Let [ > 1. Then, by (7), each of the conditions (i),
(ii) and (iii) implies that ¢; +71 > g2 +7r2. If g1 + 71 > g2 + 72, the equivalence of
(i), (ii) and (iii) inductively follows from the equivalence for wy - ... wy,_1 and
from Theorem 2. Hence we may assume that g; +7r1 = g2 +192. Now put m := rq,
W= W] ... Wp—92m, U = Wp—92m+1 " -+ Wnem and U := Wp_mt1 - ... Wy,
visualized as follows:
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Tab,(w) ~

I3

Let t := ¢t ¥~ . By Lemma 5, we have
o . > - <
u-veSW™ — z(u-v,t) € SIW™" «— s(u-v,t) € SW™™.

Furthermore, putting 7 :=ry-- -7, and ¢ := g2+ - |4, we obtain inductively

o > <
w-u€SW" <= z(w-u,t) € SIW" <= s(w-u,t) € SIW".

Combining these two chains of equivalence, we are done. QED

4 Conjugate and Rotated Tableaux

Conjugating or rotating a shifted standard tableau leads again to a shifted
standard tableau (with respect to a suitable ordering). This simple observation
combined with Theorems 1 and 3 yields our main combinatorial result (Main
Theorem 1). For example, in the case of X = N and x=<, we may congider
the partition ¢ = 11 and the tableau t = (2-4) ¢ (3-3)e(1-1-1-2) € S9T74?2,
visualized by

111 2
t o~ 3 3
2 4

The corresponding ¢g-conjugate and rotated tableau may then be visualized by

2
3 4
9 < 1 3 and t' ~

I e
[\V]
—_
_= W
oW
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Hence t*@ and t' are indeed shifted standard tableaux with respect to < and
>, resp. More precisely, we have

) ¢ 2713211 o 532%224

In order to analyze these phenomena in general, we need some definitions.
Let p = p1---p; € W be a partition. For the conjugate partition p* =
p*1---p*p, of p, defined by

plii=NHjellp zi}

for all i € p1, we then have (p*)* = p. Now let ¢, € W. We define words
q+7r,g—1r € Wby (4 7)o = Goo + Too and (¢ — ")oo = oo — Tco, T€SP.,
where, in the second case, nonpositive integers in ¢ — r are omitted. Let r =
ri---rpand t = t;e --- oty € T, Assume that ¢ and ¢ + r are partitions.

q*l+1 ; qul

For all ¢ € ¢ + 71, we put v1 := { , V2 = (¢ + )% and

1 , 1>q1
8i 7= tuyimqu, *tui4li—gu 41 " -+ tuajieogu,, Where g, := 0 whenever v > |q|. Now
we define
*(q) .
t (q) -—3q1+r1° R X1

The i-th row s; of the g-conjugate tableau t*(@ of ¢t may be visualized as follows:
i

!

2
DN

If ¢ is the empty partition, we write t* instead of t*(9). As an immediate
consequence of the definitions, we obtain:

Proposition 6. Let q,r € W such that |q| < |r|. Lett € T". Assume that q
and q + 7 are partitions. Then we have t*(9) € T@H)"=4" gnd

(t*@ )*(q*) _y



22 M. Schocker

The rotated tableau t' of t is defined by

tl ::H....otl ,

where we have used the notation w := w1~ ... ~wy forallw =wy-...-w, € W.
Obviously, we have (¢')' =t for all ¢t € T. For all ¢,u € W, we write

qg=u

if (¢oo)i < (uso);i for all i € N. Let ¢ and u be partitions such that ¢ < u. Let
m := |u|. Then we put
(u7q)l = (u/,q/) )

where v/, ¢ are the unique partitions such that

/ Ul — (Qoo)m+1—i » T<m
(Uoo )i == .
0 , i>m

and

, uy — (Uoo)m+17i , 1 <m
(o0 )i 1= .
0 , 1>m

for all 7 € N. It is easy to see now that ¢’ < o/,

/
and, in the case of |¢| < |ul, ((u, q)’) = (u,q).
Lemma 6. Let q,u € W be partitions such that ¢ < u. Let v',¢ € W

such that (u,q) = (W',q'). Then, for any t € T, the following conditions are
equivalent:
X

(i) te sV 1,
(i) @) ¢ 50 Tw 7",

! a !/ !
(iii) ¢' € SITv 9,
(iv) t*(q)l 6 Sq/*i.—,(u/*_q/*.

As an immediate consequence of this lemma, we observe that, for the set
Fqu defined in [17], we have

>
wE Fyu <= weSITV Y
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for any w € W. Hence Theorem 1 in [17] indeed follows from our Theorem 3,
if we take into account that, for the template tableau T'(w) defined in [17], we
have T'(w); = Q> (w).

PROOF OF THE LEMMA. We may assume that |¢| < m := |u|. For, other-

wise, we may consider ¢,u € W, defined by (oo)i := (Goo)i — Gm and (U ); :=
(Uoo)i — qm for all i € N, instead of ¢, u. The corresponding sets of standard
tableaux in (i)-(iv) remain the same.
The equivalence of (i) and (ii) is immediate from the definitions. In order to
prove the equivalence of (i) and (iii), it suffices to show that (i) implies (iii), as
(t") =t and ((u,q)) = (u,q). Let t € S4T~4 and 1 = ry1---1;:=u — q. Then
we have v/ — ¢’ = r;---r1. By definition, it follows that

X

J— J— = a ! /
t=tje - otfjecTT=Tv"7,
Hence, for the proof of (iii), it remains to be shown that, for alli € [ — 1,

I = |
b =g, lit

As ‘& = ¢, this is equivalent to

tii1 € t;
g =g

for all i € [ —1. But, for all i € [ =1, we have t; 3 4,4, ,ti+1, by (i), and
furthermore
til + @i — Git1 = Wi — Gip1 = [tig1] — wip1 +ui = [tipa | + G — G-
Hence (iii) follows from the following easy seen equivalence: If k,I,m,n € N
such that n + 1=k +m and if v,w € W such that |v| = n, |w| = m, we have
WeERV < Ve W
Finally, the equivalence of (ii) and (iv) follows from the equivalence of (i) and
(iii), by (20). QED
In the case of X = N, we obtain from Lemma 6:

Corollary 2. Let p,q,r € W such that q and u := q + p are partitions. Let
q,u €W such that (u,q) = (u/,q¢') and put

/

g<:=¢, ¢>:=¢, qc:=¢" and g¢>:=¢"

and

p<i=p, p>:=u—¢, pci=u"—¢" and p.:=u"—q".
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Then we have < .
5977 = 5977
< < . >

for all x€ {<,>,<,>}. In particular, we have |STE| = |STE | and |ST?| =

> *
ST,

Proor. Conjugating and rotating induce bijections between the sets in
question, by Lemma 6. QED

>
Remark 1. Let n £ N,pFnandr=rmr---7 Fn. For any t € STV, we
obtain a tableau t € S Tp by replacing the letters ¢ in t by [ +1 — z for all 4 € L.
The mapping ¢t —— t induces an involution between the sets S’Tp and ST b

As T = r;---r is a rearrangement of r, we have |S T Pl = |ST Pl (for a simple
combinatorial proof, see [15], Theorem 7.10.2). Hence

> <
|STY| = [STT|. (21)

For any tableau t € SY 7T, the column word of t is defined by

that is, the i-th letter of ¢s is the number of the column of ¢ containing ¢, for all
i.

Corollary 3. Let t € SYT and q,p € W. Assume that q and q + p are
partitions. Then we have

> <
t3 € SIWP <— ts € SINVP.

ProoF. By Theorem 1, we can find a word w € W such t<hat (P<(w), Q< (w))

= (t,t3), for there exists a partition r € W such that ¢t € ST" and t3 € L,.. Fur-
thermore, we have t3 = z(w, i), by (17), and hence ts = s(w, ) by induction.
Applying Theorem 3, we obtain

> < <
z3 =z(w,7) € SIWP <—= we SIWP — ts =s(w,i) € SIWP.
QED

We are now in a position to prove our main combinatorial result.

Main Theorem 1. Let p,q,r € W such that q and q + p are partitions.
Then we have

x o > o <
ST =| ) STw¥xSLD=| () STExsSiLY.|

U partition U partition
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PrROOF. The first identity is a combination of Theorems 1 and 3. Let u € W
be a partition. Then the mapping ¢t —— ts induces a bijection of SY7" onto
L+, by Corollary 2 z>md (14). Hence, the mapping ¢ : £, — Ly, w — w3 's

> <
is bijective, and SIL hp = SIL P, for all ¢,p, by Corollary 3. This implies the
second identity. QED

5 An Eightfold Littlewood-Richardson Theorem

Let K be a field of characteristic 0. For all n € N, we denote by S, the
symmetric group on n, and by Clg(S,,) the ring of class functions of S,, over K.
For all x, ¢ € Clg(S,), we write

(s, = 1 3 (oo ™)

" oEeS,

for the ordinary scalar product of xy and . Let ¢ = ¢1---qx € W such that
q1+- - -+qr = n. Inducing the trivial character of a Young subgroup of .S, of type
q, we obtain a character &9 of S, which is called Young character corresponding
to g. We then have £7 = £" whenever ¢ is a rearrangement of r. For any p F n,
we denote by (P the irreducible character of S, corresponding to p. Then, in
particular, sgn,, := ¢! € Clg(S,) is the sign character of S,, and we have

sgn,, (P = (P (22)

see (6], 4.3.14). The Kostka matriz IKC,, = (k n is defined by
ap)q,p

§1= gy C” (23)

pFn

for all ¢ - n, that is, kg is the multiplicity (£9,(P)s,, of the irreducible character
corresponding to p in the Young character corresponding to q. Row and column
indices of K, are assumed to be arranged in lexicographic decreasing order.
Finally, for all p,q,r € W, we put

< <
st? .= |STP| and s%tP .= |SITP|.

Then we have (see [6], 4.3.22, 4.4.6):
Theorem 4. Let n € N.

(a) The Kostka matriz IC,, is lower triangular with units in the diagonal. Par-
ticularly, {£9]qFn} is a K-basis of Clg(Sy).
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(b) For all q,pF n, we have kg, = sth.

Let
C:= P Clk(Sn).

neNy

Then, by Theorem 4(a), {£?| ¢ € W, q partition } is a K-basis of C. Hence, the
outer product * on C may be defined by
gregrimgn

for all partitions ¢, r, and bilinearity. We are aiming at combinatorial descrip-
tions of the Littlewood-Richardson (L-R) coefficients

Cgp = (Cq ° va CU)STH_k

forall n,k € N, pk k, g+ n and u - n + k. Our starting point is the following
well-known result due to Young [18]. For the reader’s convenience, a short proof
is given.
Theorem 5 (Young’s Rule). For all k,n € N, pkn, r -k, we have
Pegl= ) STV
ukFn+k

PROOF. Let g =q1---¢g Fnand ubn—+k. Forall w =w,---wp € W,
we define w! := (wy +1)--- (wp +1). For all t = t,, ¢ --- ot; € T, we define
tth:=ttle ... oI Then the mapping

< < <
U STh x SPTE 7 — ST, (s,t) — s*t

pFn

is bijective. Hence we have ), sty sPt;”” = sty By Theorem 4(b), this
implies the identity

ICn (Spt}fip)pkn, ubn+k = (Stgr)an, ubn+k

or, equivalently, (st ") prn, urntk = Ky, l(stgr)qkn,ukmrk. Writing ;1 = (epq)
and applying Theorem 4(b) again we may conclude that

(Pel" = Zepq ¢ = Z (Z epgStgr) ¢ = Z st P ¢
gkn ubFn+k gkn ubFn—+k

QED
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Corollary 4. Let n,k € N. For allpt k, gt n and utn+k, let Cy, be a
set such that there exists a bijection

< <
SITu 1 — | J ST x CL
rk

Then, for allptk, g-n and ut n+k, we have cg, = |CZ]‘p|. In particular, we
have q,p = u whenever c, # 0.

PROOF. Let ¢ n and p - k. By Theorem 5 and Theorem 4(b), we have

D ST =T =Y sty (o= Y D sty O

ubFn+k rtk ubn+k rtk

Comparing the coefficients of (* on both sides, we obtain

T u . g4uU—q __ T u
E sty [Cqp| = 87,71 = g sty Cyr

rtk rtk

for all u = n 4 k. Hence, ¢, # 0 implies 592, # 0 and therefore ¢ < u. Now
p = u follows from (P ¢ (7 = (7« (P. As p and ¢ have been chosen arbitrarily, we
obtain furthermore

(Cgp) u};ﬁzk (St;) ;ii = (|C;p’> ul;t:k (St;) ;gz for all q Fn.
This identity of matrices implies our claim, by the regularity of the (transposed)
Kostka matrix and Theorem 4(b). QED

Now we are in a position to give eight combinatorial descriptions of the L-R
coeflicients.

Main Theorem 2. Letn,k € N,qbn,ptk, ubtn+k andu',q € W such
that (u,q)" = (u',q'). Then the Littlewood-Richardson coefficient ci, is equal to
the number of q- (¢'-, ¢*-, ¢'*-, resp.) shifted standard tableauz t with respect
to < of shape u —q (W' — ¢, u* — ¢*, W'* — ¢'*, resp.) such that the word w
obtained by reading off the entries of t row-wise from top right to bottom left is
a standard word (= “lattice permutation”) of content p (p, p*, p*, resp.).

(In this description, the word “row-wise” may be replaced by “column-wise”.)

The first variation listed above is the classical description due to Littlewood
and Richardson [9].

PROOF OF THE THEOREM. By Corollary 4, we may assume that ¢ < u. For
all partitions r, we put

r(<)=r(>):=r and r(<)=r(>)=r" . (24)



28 M. Schocker

x <
Then we have [ST| = \S’T;((X)| for all xe {<, >, <, >}, by (21) and Corollary 2.
Let v := u — q. Applying Corollary 2 again and defining ¢, v« accordingly, for
all xe {<, >, <, >}, we obtain

p . o > < =
ST = IS T = U STy x S L | = [ ST, x $™L 5
rhk rrk
by the first equality in Main Theorem 1, and
< x - 5 v ; 3 v
ST = ST = [ ST; < S™L 7| = [ ST x $™L 17,
rHk rtk

by the second equality in Main Theorem 1. Now Corollary 4 implies that
> <
() ci,=15%L Z?oc)| = |S¥L ;‘(Xo()*] for all xe {<,>,<,>}.

In the case of oc=>, the first equality in (x) says that cj, is the number of
standard ¢’-shifted >-fillings of shape u’ — ¢’ and content p. But this is simply
the number of g-shifted standard tableaux t of shape u — ¢ and content p such
that the word w obtained by reading off the entries of ¢ row-wise from top right
to bottom left is a standard word, that is, the classical description of cy,. The
remaining seven descriptions may be obtained from (x) analogously. QED

Let n,k € N and ¢ F n, u - n + k such that ¢ < u. The skew character
¢¥9 € Clg(Sk) of S, corresponding to u and ¢ may be defined by

=3 e ¢

pHk

or, equivalently, by

(CW9,¢PYs, = (¢4, ¢T(P)s, forall pF k.
As a consequence of Main Theorem 2, we obtain the following identities of skew

characters:
Corollary 5. Letn,k €N, gFn, ut n+k such ¢ < u. Then we have
¢/ = sgny (0T = ¢ = sy T
where ¢',u' € W such that (u,q) = (v, q').
The first equality in Corollary 5 is due to Aitken [1], while the identity

¢u/1 = ¢/ is a special case of a symmetry property of L-R coefficients due to
Berenstein and Zelevinsky [2].

PROOF OF THE COROLLARY. Let p F k. Then, for all x € Clg(Sk), we have

(sen X, CP)s, = (xo 880 CP)s, = (0, P s

. . * / !*
by (22). Hence our assertions are equivalent to cy, = Cqepe = Crpy = Cyrepe- Lhese

identities are immediate from Main Theorem 2. QED
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6 Bijections between Littlewood-Richardson sets

In Main Theorem 2, for all ¢ - n, r - k, u - n+k, eight different sets were in-
troduced with cardinality cg,., which will be referred to as Littlewood-Richardson
(L-R) sets in the sequel. In the proof of Main Theorem 2, a combinatorial con-
nection was established between each pair of families of L-R sets: For, if Cg,
and C‘gr (gFn, r+k, ut n+ k) are two such families, we obtain bijections

< < <
Uik STZ x Cgp — STy — U ST; X C'q“r (25)

(s,w) — t — (8, w)

for all ¢, u, by Corollary 2 and Main Theorem 1. From a combinatorial point
of view, it is natural to ask for a direct bijection Cy,. — Cy, for all g, u, 7.
Surprisingly, such a bijection may be obtained as a suitalzle restriction of the

bijection (25), namely by fixing the Eirst component s € SZ’; in (25). It will be
shown indeed that for every s € ST p there exists s € S 'f; such that the set
{s} x C¢, is mapped onto {3} x C‘;T by the bijection (25).

For the remainder of this section, we fix n,k e N, qgbFn,r=r;---r F k
and u - n 4+ k such that ¢ < u. Furthermore, we put p := v — ¢ and choose
s € SYT" arbitrarily. Let xe€ {<,<,>,>}. Bearing in mind the definitions of
g and py in Corollary 2 and of () in (24), we put

> ~ <
Coi=S8TLPx  and  Coi= SLPX .

In the sequel, bijections will be established from the set C> (the classical L-R
description) onto C and onto Cx (x€ {<, <, >,>}) .
Forallt=t;e---et; € T, we define

word(t) :==t;---- -1

S / !
Then, for all w € Cs, there exists a unique (Young) tableau t,, € S97% 4
such that

(Pg(word(tw)),QS(Word(tw))> = (s,w) ,
by Main Theorem 1. Furthermore, defining
==t 2=t t<: =) and =)
for any tableau t € 7 and applying Lemma 6, we obtain a bijection

ISy ;X
SI T Qe (W= gy g (26)

for all xe {<, <, >, >}.
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Theorem 6. For all x€ {<,<,>,>}, the mappings
Cs> — Cx, w — Qu(word(t, ™))

and .
Cs> — Cx, w+— s(word(ty, ), 7)

are bijections.

For the proof we need the following lemma that is based on some well-known
properties of the classical Robinson-Schensted correspondence.

<, ~
Lemma 7. Lett,t € SYTY =9 NYT such that P<(word(t)) = P<(word(f)).
Then, for all xe {<,<,>,>}, we have

Py (word(t™)) = Px(word(t™)).
PROOF. Let YW™ be the set of all w = wy ---w, € W such that
{wi,...,wy} =n.
Then the symmetric group S,, acts on YW" from the left by
(Wi -+ Wy) = Wig -+ Wpr
and from the right by
(wy -+ wp)m = (wim) -« - (W)

for all m € S, w = wy -+ wy, € YW™. Furthermore, as word(t) € YW" for all
t € YT such that |word(t)| = n, we obtain a canonical right action of S,, on the
set of Young tableaux defined by

tm := Tab,(word(t)n)

for all such ¢t and 7 € S,,, where r € W such that ro, = sh(t). Now let ¢ € S,
be the order-reversing permutation, defined by io =n+ 1 —1 for all ¢ € n,, and
let w = 1wy -w, € YW™ Then it may be seen easily that

(a) word(t') = oword(t),

(b) Ps(w)= Pc(wo)o,

Furthermore, we have:

(c) P-(ow) = P(m)* ([13], Lemma 7),

(d) P-(w o) = P<(w)evac ([14], Section 4, 5),
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() P(word(t*(4)")) = P(word(t)) ([7], Thm. 5, [4], §2, (10)),

where, in (d), P<(w)evqc is Schiitzenberger’s evacutation of the tableau Pc(w).
(for details concerning this, and (c), see [8], §4.1.) Now our claim is immediate
from (a)-(e): Indeed, for x=>, we obtain

Ps(word(t2)) = Ps(word(t')) = P (word(t"))
(oword(t)) , by (a)
(oword(t)g)e , by (b)
(

and hence
P2 (word(t2)) = (P<(word(t))evae) "0 = (P< (word(D))evac)"0 = P (word(i%)).
In the same vein, our claim for x=> (x=<, resp.) follows from

Po(word(t”)) = Ps(word(t*)"))

= Pe(word(t"")) 0)o , by (b)

= (P<(word(t"“"))evac) 0, by (d)

= (P<(word(t))evac) 0 » by (e)

and, resp.,
P<(word(t%)) = P<(word(t*®)))

= Pe(gword(t)")) by (b)
= Pe(word(t"")))* . by (o)
= P(word(t))* , by (e)

PROOF OF THEOREM 6. Let xe {<,<,>,>} and
S ! /
M:={tecSIT¥ 4 |P(t)=5}

Applying Lemma 7, we can find a tableau § such that Py (word(t>)) = § for all
t e M. Let
(x.—{tESq“’T“ ~@)x | Py (t) = 3}
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Then the mapping M — M, t — t> is a bijection, by (26) and Lemma 7
again. Furthermore, by Main Theorem 1, the mappings C> — M, w —— ty

and My — Cx« (Cx, resp.), t — Qo (word(t)) ( t — s(word(t), ), resp.) are
one to one. This completes the proof. QED

The bijections in Theorem 6 should be illustrated by an example: Let x=<.
Then the bijection given in Theorem 6 may be understood as a bijective proof
of the identity cj, = CZ:T*. Let n=3,k=9,¢=21,r =432 and u = 543.
Then, for the word w := 111221332, we have

Tabssz(w) ~

— DN
N W

’

> /
and hence w € S9L ' ~7 = Cs. Furthermore, s = 89 + 567 » 1234 € SYT". We
obtain

© 0 =

b ~ and  t,S ~

O DN
W N
N O D

hence word(t,,<) = 437269581. Now, indeed, we have w = Q(437269581) =

>

121321324 € S9° L 9" as

r*

1

1 2

Tab12321(121321324)~ 1 2 3

2 3
4

is a ¢*-shifted standard tableau.

Remark 2. In [5], instead of C> and C., the sets cple = C>371 and
C:f:/ = C-3~ ! are considered. Using o, /q defined in [5], we find that

word(t*(4)) = a, /lqword (t)

/S / !
for all t € SYT* 4 NYT. Let w € Cs and T := w3~ !. Then, applying
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Schiitzenberger’s theorem ([14], section 4) and Theorem 3.11 in [5], we obtain?
Q< (word(ti?))); 71 = P<(word(tw) ey,
- P<(W0rd(tw)_19)au/qg
= (T*)evacau/qQ .

Thus Theorem 3.14 in [5] is the special case where x=< of our Theorem 6.
Comparing Example 3.15 in [5] with the example given above might illustrate
this.
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