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1 Introduction

Symmetry methods have been widely applied for more than one century to
examine physical systems. At the classical level, their usefulness is well recog-
nized in providing a powerful way of searching exact solutions to the differential
equations ruling dynamical systems. At the quantum level, they play a role
in the characterization of dynamical groups, which are non-invariance groups
whose generators not all commute with the Hamiltonian of a dynamical system.
These groups are of fundamental importance in several branches of physics, such
as nuclear physics, particle physics, condensed matter physics and quantum op-
tics (see e.g. [1]). They yield, in fact, the energy spectrum and the degeneracy
of levels and can be employed to build up the transition probabilities between
states [2]. Nevertheless, the concept of a dynamical group does not appear to be
uniquely defined in literature. A possible way to overcome the ambiguity was
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proposed by Dothan in [3], where the definition of the dynamical group of a
given system is based on the symmetry group of the corresponding quantum-
mechanical equation of motion for the system. In [3] a clean and deep discussion
regarding the concepts of quantum-generating algebra and symmetry algebra is
presented. Dothan’s definition arises naturally from the quantum version of the
time-dependent symmetry transformation. The key point is that, as remarked
by Malkin and Man’ko in [4], if ψ(~x, t) solves the time-dependent Schrödinger
equation,

i~∂tψ = Ĥψ, (1)

then K̂(~x, ~p, t)ψ(~x, t) is a solution as well provided that K̂(~x, ~p, t) is a generally
time-dependent conserved quantity, that is

i~∂tK̂ +
[
K̂, Ĥ

]
= 0. (2)

Dothan thus suggested to define the dynamical group as the group whose gen-
erators are provided by Eq. (2). Finding explicitly the invariant operators K̂ for
the system under study is a basic issue in the attempt of solving complicated
Schrödinger equations by reducing them to much simplified problems [5,6]. In [1]
the search for invariant operators was handled by means of a technique described
by D’Hoker and Vinet [7] in the context of spectrum-generating superalgebras.
A more direct procedure which works out algorithmically was followed in [8]
where time-dependent constants of motion (”charges”) associated with general-
ized oscillators1 have been determined which can be interpreted as the dynamical
group generators. The group approach (see e.g. [9]) underlies the strategy there
exploited.

In this Communication we present a brief overview of some basic aspects con-
cerning the Lie group-theoretical framework and its role to dwell upon topics of
the physical interest, such as the mechanism of particle creation in cosmological
models. The outline is as follows. In Section 2 symmetries and (classical) in-
variants of generalized time-dependent oscillators (GTDO’s) shall be discussed.
In Section 3 we shall argue on the way non-Nöther invariants can be used to
construct alternative classical Lagrangians for GTDO’s. Section 4 concerns the
GTDO dynamical group. The quantum theory of GTDO’s is discussed in Sec-
tion 5 while in Section 6 we shall be faced with the application of specific results
to problems arising in theoretical cosmology. Last Section is for conclusions. Ba-
sic definitions and few properties of the so-called coherent states and squeezed
states are finally summarized in the Appendix.

1We shall make use of this very long-time traditional terminology although the locution is
actually not appropriate. To be precise, it should be better to refer to these systems as linear
time-dependent systems. A ”generalized oscillator” also indicates, in fact, a system whose
generalized time-dependent ”frequency” is not periodic.
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2 Symmetries of the GTDO equation

Though we know that they may even appear in others contributions to this
Volume, for the sake of completeness we shall briefly recall some notions and
definitions concerning symmetries which would make the Communication self-
contained.

Let G be a Lie group of local transformations, depending on one parameter
ε and with nonzero Jacobian, acting on variables (t, q) according to

t′ = R(t, q; ε), q′ = S(t, q; ε), (3)

where the functions R and S are t-differentiable and the value ε = 0 corre-
sponds to the identity transformation t = R(t, q; 0), q = S(t, q; 0). The group
G of transformations is called a symmetry group of the second order ordinary
differential equation

q̈ = f(t, q, q̇) , (4)

where dot means time derivative and f is a known function, iff q′(t′) = g ◦ q(t′)
is a solution of Eq. (4) for g ∈ G so that g ◦ q is defined whenever q(t) satisfies
Eq. (4) [9]. The symmetry group G, which transforms solutions of Eq. (4) to
other solutions, can be obtained via an algorithmic procedure. This allows us
to write down the Lie algebra of vector fields underlying the Lie group G as
follows. The transformations (3) are generated by the infinitesimal operator
(vector field)

V = ξ(t, q)∂t + ϕ(t, q)∂q, (5)

where
ξ(t, q) = ∂εR(t, q; ε) |ε=0 , ϕ(t, q) = ∂εS(t, q; ε) |ε=0 . (6)

If ε is regarded as a pertubative parameter, then Eqs. (3) give rise to the in-
finitesimal transformations

t′ = t+ εξ(t, q), q′ = q + εϕ(t, q) (7)

at the first order in ε. The variation of q̇ under (7) is given by

q̇′ = q̇ + εϕt, ϕt = ϕt + [ϕq − (ξt + ξq q̇)], (8)

where q̇′ = dq′

dt′ , and subscripts denote partial derivatives. Introduce the first and
the second prolongation of the vector field V [9]

pr1 V = V + ϕt∂q̇, pr2 V = V + ϕt∂q̇ + ϕtt∂q̈ ,

where ϕt is given by (8) and

ϕtt =
d2

dt2
(ϕ− ξq̇) + ξ

...
q . (9)
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The group G can be extended to comprise the transformation of q̇. The finite
transformations take the form

t′ = [exp(εV )]t, q′ = [exp(εV )]q, q̇′ = [exp(ε pr1 V )]q̇. (10)

From the relation

pr2 V [q̈ − f(t, q, q̇)] = 0, (11)

whenever q̈− f(t, q, q̇) = 0, for every infinitesimal generator V of G we can find
the coefficients ξ and ϕ appearing in (5). Equation (11) is the starting point to
derive all the Lie point symmetries for a differential equation of the form (4).
It is useful to distinguish between Nöther symmetries (divergence symmetries)
and additional symmetries (see e.g. [9]). Both are Lie-point symmetries in the
sense that the functions ξ and ϕ appearing in the vector field (5) do not depend
on derivatives of q. The divergence symmetries, which lead to the constants of
motion of the Nöther type, can be singled out in the following way. Let (4) be the
Euler-Lagrange equation for the Lagrangian L(t, q, q̇). When eq. (4) possesses a
Nöther symmetry group GN , then the conservation equation

dI

dt
= 0, I = (ξq̇ − ϕ)∂q̇L− ξL+B, (12)

holds, if and only if the action integral A =
∫
L(t, q, q̇) dt is invariant with re-

spect toGN .B in (12) stands for a proper function of t and q. This is an extended
version of the original Nöther theorem. GN is a subgroup of the (complete) sym-
metry group G. The conserved quantities (12) are the Nöther invariants. The
Nöther symmetries have the property of generating Nöther invariants, while ad-
ditional symmetries do not enjoy this feature. Additional generators constitute
a subalgebra of the complete symmetry algebra whose subgroup does not pre-
serve the action integral. They lead to alternative Lagrangians which may be
t-dependent and give rise to the same Euler-Lagrange equation as the conven-
tional Lagrangian (see later).

So far, we have been referring to a general case. Now, we shall handle the
problem of symmetries of equations of the generalized time-dependent oscillator
(GTDO) type in some detail. They can be obtained as the equations of motion
for the Hamiltonians

H(t) =
p2

2m
+

1

2
mω2q2, m = m(t), ω = ω(t) (13)

and read

q̈ +M q̇ + ω2q = 0, M = M(t) =
ṁ

m
. (14)
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Before to continue, is useful to remark that for practical purposes Eq. (14) can
be cast into the form

ÿ + Ω2(t) y = 0, (15)

where

y = qe
1
2

R t
t0
M(t′) dt′

, Ω2(t) =
1

4

(
4ω2 − 2Ṁ −M2

)
. (16)

The Ermakov-Pinney-Milne (EMP) equation

σ̈ + Ω2(t)σ =
K

σ3
, (17)

(K = const) can be related to Eq. (15): if y1 and y2 are two independent solutions
of Eq. (15) then the general solution of the auxiliary EMP equation (17) can be
written as

σ = (Ay2
1 +By2

2 + 2Cy1y2)
1
2 , (18)

A,B,C being constants such that

AB − C2 =
K

W 2
0

, W0 = y1ẏ2 − ẏ1y2 = const. (19)

The complete Lie point symmetry algebra of Eq. (14) is constituted by
eight (independent) generators, say V1, . . . , V8. To see this, let us substitute the
quantity

f = −ω2(t)q −M(t)q̇

into Eq. (14). Equating coefficients of powers of q̇ to zero we obtain

ξ = a1q + a2, ϕ = (ȧ1 −Ma1)q
2 + b1q + b2, (20)

where a1, a2, b1, b2 are time-dependent functions of integration satisfying the
constraints

ä1 −Mȧ1 + (ω2 − Ṁ)a1 = 0, (21)

2ḃ1 − ä2 + Ṁa2 +Mȧ2 = 0, (22)

b̈1 +Mḃ1 + 2ω2ȧ2 + 2ωω̇a2 = 0, (23)

b̈2 +Mb2 + ω2b2 = 0. (24)
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with c1, c2 arbitrary constants. Equations (21)-(24) provide

a1 = m1/2 η (c1 cos γ + c2 sin γ), (25)

a2 = σ2 (c5 cos θ + c6 sin θ + c7), (26)

b1 = c5

[(
σσ̇ − M

2
σ2

)
cos θ − 1

2
sin θ

]
+ (27)

+ c6

[(
σσ̇ − M

2
σ2

)
sin θ +

1

2
cos θ

]
+ c7

(
σσ̇ − M

2
σ2

)
+ c8, (28)

b2 = m−1/2 η (c3 cos γ + c4 sin γ), (29)

where c3, . . . , c8 are arbitrary constants, the phases γ, θ are defined via γ(t) =∫ t
t0
η−2(s) ds, θ(t) =

∫ t
t0
σ−2(s) ds and the functions η = η(t) and σ = σ(t)

arise as solutions of the auxiliary EMP equation (17) with K = 1 and K = 1/4
respectively. Notice that the phase θ can be given in the form

θ = −i ln [
√
Aeiα y1(η) −

√
B eiβ y2(η)]

[
√
Aeiα y1(η) −

√
B eiβ y2(η)]∗

, AB sin2(α− β) =
1

4W 2
0

, (30)

with α, β real constants [14]. Then, Eqs. (20) become

ξ = m1/2 η (c1 cos γ + c2 sin γ) + σ2(c5cosθ + c6 sin θ + c7), (31)

ϕ = m1/2 q2
{
c1

[(
η̇ − M

2
η

)
cos γ − sin γ

η

]
+ c2

[(
η̇ − M

2
η

)
sin γ +

cos γ

η

]}
+

+ q

{
c5

[(
σσ̇ − M

2
σ2

)
cos θ − sin θ

2

]
+ c6

[(
σσ̇ − M

2

)
σ2 sin θ +

cos θ

2

]
+

+ c7

(
σσ̇ − M

2
σ2

)
+ c8

}
+m− 1

2 η (c3 cos γ + c4 sin γ). (32)

The functions η, σ and γ, θ are mutually dependent, γ = θ/2, η =
√

2σ. This
entails that, once the quantities (31 )-(32) are introduced into Eq. (5), the eight
generators of the complete Lie point symmetry algebra of the GTDO (14) can
be explicitly written [8]. Each operator V1, . . . , V8 generates a one-parameter
subgroup of Lie point symmetry for Eq. (14). By focusing on the generalized
oscillator, Nöther invariants can be determined on the basis of the procedure
outlined below. Let us deal with Eq. (12). By using the expression

L =
1

2
m(t)[q̇2 − ω2(t)q2] (33)
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for the Lagrangian, from Eq. (12) we have

(
1

2
ṁq̇2 − 1

2
ṁω2q2 −mωω̇q2)ξ + {ϕt + [ϕq − (ξt + ξq q̇)}mq̇+

−mω2qϕ+ (
1

2
mq̇2 − 1

2
mω2q2)(ξt + ξq q̇) = Bt +Bq q̇. (34)

Equating the coefficient of powers of q̇ to zero, Eq. (34) produces

ϕ =
1

2
(ξ̇ −Mξ)q + χ, B =

m

4
(ξ̈ − Ṁξ −Mξ̇)q2 +mχq, (35)

where the functions ξ = ξ(t) and χ = χ(t) obey the constraints

...
ξ + 4Ω2ξ̇ + 4ΩΩ̇ξ = 0, χ̈+Mχ̇+ ω2χ = 0, (36)

Equations (36) can be solved as

ξ = σ2 (κ1 cos θ + κ2 sin θ + κ3) , χ =

√
2

m
σ

(
κ4 cos

θ

2
+ κ5 sin

θ

2

)
(37)

where κ1, . . . , κ5 are arbitrary constants, θ = θ(t) =
∫
σ−2dt, and σ = σ(t)

satisfying the EMP equation with K = 1/4. The Nöther invariants arise from
Eqs. (12), (35), (37) after setting κ1, κj = 0 (j 6= 1), κ2 = 1, κj = 0 (j 6= 2), and
so on. They read

I1 =
m

2

{[
σq̇ −

(
σ̇ − M

2
σ

)
q

]2

− q2

4σ4

}
cos θ+

+
m

2

[
qq̇ − 1

σ

(
σ̇ − M

2
σ

)
q2
]

sin θ, (38)

I2 =
m

2

{[
σq̇ −

(
σ̇ − M

2
σ

)
q

]2

− q2

4σ4

}
sin θ+

− m

2

[
qq̇ − 1

σ

(
σ̇ − M

2
σ

)
q2
]

cos θ, (39)

I3 =
m

2

{[
σq̇ −

(
σ̇ − M

2
σ

)
q

]2

+
q2

4σ4

}
, (40)

I4 =
√

2m

{[
−σq̇ +

(
σ̇ − M

2
σ

)
q

]
sin

θ

2
+

q

2σ
cos

θ

2

}
, (41)

I5 =
√

2m

{[
−σq̇ +

(
σ̇ − M

2
σ

)
q

]
cos

θ

2
− q

2σ
sin

θ

2

}
. (42)
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Of the Nöther invariants (38)-(42) only two are functionally independent, in the
sense that

I1 =
1

2
(I2

4 − I2
5 ), I2 = I4I5, I3 =

1

2
(I2

4 + I2
5 ). (43)

We observe that Eqs. (41)-(42) give the general solution to Eq. (14),

q =

√
2

m
σ

(
I5 cos

θ

2
− I4 sin

θ

2

)
. (44)

Furthermore, the conjugate momentum p = mq̇ takes the form

p =

√
m

2

1

σ

{[
2σ

(
σ̇ − M

2
σ

)
I5 − I4

]
cos

θ

2
−
[
2σ

(
σ̇ − M

2
σ

)
I4 + I5

]
sin

θ

2

}
.

(45)

3 Alternative Lagrangians and Hamiltonians via non-

Nöther operators

In [10] Edwards showed that a particular class of alternative (inequivalent)
classical Hamiltonians can be written for a damped harmonic oscillator which
make the quantization of the system ambiguous. The result motivates this Sec-
tion. We would like to stress indeed that although the vector fields V6, V7, V8

do not lead to Nöther invariants, notwithstanding they are crucial in the con-
struction of alternative Lagrangians for Eq. (14). All these Lagrangians produce
the same classical equation of motion. However, at the quantum level, the prob-
lem of the interpretation of these Lagrangians is not yet well settled up, and
many questions remain to be clarified (see [11]). In this Section, we would like
to expound some considerations on the additional generators Ṽ6, Ṽ7, Ṽ8 (not
of the Nöther type) and on the invariance properties of the Lagrangian for the
standard harmonic oscillator (14) with M = 0 and ω = const. To this purpose,
let us write down the additional generators associated with this case. They are
(see also [12])

Ṽ6 = (q cosωt) ∂t − (q2ω sinωt) ∂q, (46)

Ṽ7 = (q sinωt) ∂t + (q2ω cosωt) ∂q, (47)

Ṽ8 = q ∂q. (48)

Let us deal first with the operator Ṽ8 for which ξ = 0 and ϕ = q (see (5)). The
first prolongation of Ṽ8 thus takes the form

pr1 Ṽ8 = Ṽ8 + (Dt) ∂q̇ = q ∂q + q̇ ∂q̇. (49)
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Applying (49) to the conventional Lagrangian L = 1
2

(
q̇2 − ω2q2

)
, we therefore

get

(
pr1 Ṽ8

)
L = (q ∂q + q̇ ∂q̇)

[
1

2

(
q̇2 − ω2q2

)]
=
(
q̇2 − ω2q2

)
= 2L. (50)

We are now interested in determining how the action integral

A =

∫ t2

t1

dt L(t, q, q̇) (51)

behaves under the transformation (t, q, q̇) → (t′, q′, q′t′). We have

L(t, q, q̇) = L
(
e−εV t′, e−εV q′, e−ε pr1 V q′t′

)
= e−ε pr1 V ′

L
(
t′, q′, q′t′

)
, (52)

where V ′ ≡ V
(
t′, q′, q′t′

)
and pr1 V ′ depends on the coordinates t′, q′, q′t′ . Since

t can be considered as a function of the variables t′ and q′, then

A =

∫ t′2

t′1

e−ε pr1 V ′

L
(
t′, q′, q′t′

) ( ∂t
∂t′

+ q′t′
∂t

∂q′

)
dt′. (53)

So we deduce the new Lagrangian

L′
ε = L′

ε

(
t′, q′, q′t′ ; ε

)
=
[
e−ε pr1 V (t′,q′,q′

t′
)L
(
t′, q′, q′t′

)] ( ∂t
∂t′

+ q′t′
∂t

∂q′

)
. (54)

In case L′
ε

(
t′, q′, q′t′ ; ε

)
= L

(
t′, q′, q′t′

)
the action integral (53) is called invariant.

Then, the symmetry group maps solutions of the Euler-Lagrange equation into
solutions of the same equation. We point out that such a property of the Euler-
Lagrange equation is valid even if L′

ε is of the form:

L′
ε

(
t′, q′, q′t′ ; ε

)
= L

(
t′, q′, q′t′

)
+Dt′φ

(
t′, q′, q′t′

)
, (55)

φ being an arbitrary (differentiable) function. Thus, we would assume, as a defi-
nition of invariance of the action integral, formula (53) where the expression (55)
holds.

The Lagrangian L′
ε can be written in terms of L. To this aim, let us start

from (54) to obtain

L′
ε =

(
∂

∂t′
+ q′t′

∂

∂q′

)
e−εV

′

t′ e−ε pr1 V ′

L
(
t′, q′, q′t′

)
, (56)

which in turn provides, after performing a series expansion in the parameter ε
and stopping the calculation at the first order, the expression

L′
ε = L− ε

[(
pr1 V ′) L+ LDt′ξ

]
. (57)
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If we introduce the quantity

L1 =
(
pr1 V ′) L+ LDt′ξ, (58)

(57) can be written as

L′
ε = L− εL1. (59)

Now let us pay attention on the additional generator Ṽ8 = q∂q. Since in this
case ξ = 0, from (58) we have

L1 =
(
pr1 Ṽ8

)
L = 2L. (60)

Hence, (59) becomes

L′
ε = (1 − 2ε) L, (61)

which tells us that, at the first order in ε, the transformed Lagrangian L′
ε is

proportional to the original Lagrangian L. Below, we prove that the property
of L′

ε ∝ L is fulfilled at any order in ε. In doing so, let us write down the finite
transformations identifying V by Ṽ8,

t′ = eεṼ8 t = eε q ∂q t = t, (62)

q′ = eεṼ8 q = eε q ∂q q = eε q, (63)

q′t′ = eε pr1 Ṽ8 q̇ = eε(q∂q+q̇∂q̇) q̇ = eε q̇. (64)

On the other hand, Eq. (54) can be elaborated to give

L′
ε = e

−ε
„
t′∂t′+q

′

t′
∂q′

t′

«

L
(
∂t′ + q′t′∂q′

)
t = e

−ε
„
q′∂q′+q

′

t′
∂q′

t′

«

L = e−2εL , (65)

which ensures the assertion. An important consequence of Eq. (65) is that it
breaks the condition (55) of invariance of the action integral with respect to
the symmetry subgroup generated by Ṽ8 = q∂q. We can thus conclude that a
Nöther invariant (constant of the motion) associated with Ṽ8 does not exist.
However, since the new Lagrangian L′

ε can be derived from the old Lagrangian
L multiplying the last by a constant factor, the equation of motion (i.e (14)
with M = 0, ω =const) is again invariant under the subgroup generated by
Ṽ8. Therefore, notwithstanding the lack of a Nöther invariant related to Ṽ8, the
subgroup generated by Ṽ8 still has the property to transform solutions of the
equation of motion into solutions of the same equation.

The action of the other additional generators (46)-(47) can be analyzed by
adopting the same procedure carried out for Ṽ8. The operators Ṽ6 and Ṽ7 have a
similar structure, so that here we shall develop in some details the computations
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relative to only one of these operators, say Ṽ7. We note that the expression (47)
for Ṽ7 is given by choosing ξ = q sinωt and φ = q2 cosωt. Furthermore, we have

pr1 Ṽ7 = q sinωt ∂t+q2ω cosωt ∂q+
[
−
(
q̇2 + ω2q2

)
sinωt+ qq̇ω cosωt

]
∂q̇ (66)

so that (
pr1 Ṽ7

)
L = 2ωq cosωt L− q̇ sinωt

(
q̇2 + ω2q2

)
, (67)

and

L1 = 3ωq cosωt L− 1

2
q̇
(
q̇2 + 3ω2q2

)
sinωt, (68)

where Eq. (58) has been used. The Lagrangian L′
ε, which comes from the trans-

formation of L = 1
2

(
q̇2 − ω2q2

)
with respect to the symmetry subgroup gener-

ated by Ṽ7, reads L′
ε = L− εL1 (see (59)) with L1 given by (68). It is a simple

matter to see that
d

dt

∂L1

∂q̇
− ∂L1

∂q
= 3

(
q̈ + ω2q

)
I5, (69)

where I5 = (ωq cosωt−q̇ sinωt) is a Nöther invariant. If the variational principle
is applied to the Lagrangian L1, the condition (69) implies two cases: a) q̈+ω2q =
0; b) I5 = 0 . Case a) means that q is (again) solution of the equation of motion of
the harmonic oscillator. In order to understand case b), we resort to the following
considerations. Let us first remind the generator of the Nöther invariant I5, i.e.
V5 = sinωt ∂q. We can now ask what is the behaviour of the general solution
q = k1 cosωt+ k2 sinωt of the standard harmonic oscillator under the action of
the symmetry subgroup generated by V5. To answer the question, let us take

eεV5 (q − k1 cosωt− k2 sinωt) = q − k1 cosωt+ (ε− k2) sinωt (70)

at the first order in ε. The symmetry subgroup generated by V5 = sinωt ∂q
thus transforms a given solution of the equation of motion ((14) with M = 0,
ω =const) characterized by the arbitrary constants (k1, k2) into another solution
characterized by the arbitrary constants (k1, ε− k2). In both cases we get I5 =
k1ω. This fact leads to the statement that the symmetry subgroup generated by
V5 preserves the property of constant of the motion possessed by I5. In the light
of this result, case b) is consistent with the choice k1 = 0; both q = k2 sinωt and
q̃ = (ε−k2) sinωt are (particular) solutions of the standard harmonic oscillator,
Eq. (14) with M = 0 and and ω =const. Similar features are shared by all the
Nöther generators.

4 The GTDO’s dynamical group

Invariants I1, . . . , I5 (see Eqs. (38)-(42)) are such that

dIj
dt

= {Ij , H} +
∂Ij
∂t

≡ 0, (71)
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where H is the Hamiltonian (13) of the GTDO (14), and the symbol {, }
stands for the Poisson bracket with respect to the canonical variables q, p, i.e.
{A,B} = ∂qA ∂pB − ∂pA ∂qB. The Poisson brackets involving the Nöther in-
variants I1, . . . , I5 are

{I1, I2} = 2I3, {I2, I3} = −2I1, {I3, I1} = −2I2, (72)

{I4, I5} = 1, (73)

{I1, I4} = I5, {I1, I5} = I4, {I2, I4} = −I4, (74)

{I2, I5} = I5, {I3, I4} = −I5, {I3, I5} = I4. (75)

The main result coming from the analysis of Eqs. (72)-(75) is that the Nöther
invariants I1, I2, I3 form a Lie algebra under the Poisson bracket operation (see
in particular relations (72)). The algebra is of the su(1, 1) type, underlying the
noncompact group SU(1, 1). This is a relevant fact because it allows us to define
unambiguously the dynamical group associated with the GTDO (14). From the
purpose to dwell upon the dynamical group of Eq. (14), the following consider-
ations are in order. In the quantum theory of the GTDO the commutation rules
between the operators Î1, . . . , Î5 corresponding to the classical constants of the
motion (38)-(41) are derived from (72)-(75) by resorting to the substitution

{Ij , Ik} → 1

i~
[Îj , Îk]. (76)

These commutation rules define a noncompact Lie algebra su(1, 1) under the
commutation bracket operation. The noncompact group SU(1, 1), associated
with the su(1, 1) algebra, can be identified as the dynamical group of Eq. (14).
The existence of the dynamical group SU(1, 1) is dictated by the Nöther sym-
metry properties of Eq. (14), and the invariant operators of the Nöther type
Î1, Î2 and Î3 represent a natural realization of the Lie algebra of SU(1, 1).

5 Quantum theory of the GTDO

The quantum theory of the GTDO can be developed starting from the
Hamiltonian operator

Ĥ =
P̂ 2

2m
+

1

2
mω2Q̂2, (77)

where m = m(t), ω = ω(t) and and [Q̂, P̂ ] = i~. A set of invariant operators of
the Nöther type, corresponding to the classical ones, can be constructed from

Eqs. (38)-(42) by adopting the prescription q → Q̂, q̇ → P̂
m and taking properly
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care of the operator ordering. In doing so, we obtain

Î1 = m

{[
σ

m
P̂ −

(
σ̇ − M

2
σ

)
Q̂

]2

− Q̂2

4σ4

}
cos θ+

+m

[
Q̂P̂ − 1

σ

(
σ̇ − M

2
σ

)
Q̂2 − i~

2m

]
sin θ, (78)

etc., where σ obeys the EMP auxiliary equation (17) with K = 1/4. The invari-
ant quantities Î1, . . . , Î5 satisfy an equation of the type (2), i.e.

dÎj
dt

=
1

i~
[Îj , Ĥ] +

∂Îj
∂t

= 0, (79)

with Ĥ given by (77). At this stage, the time-dependent lowering and raising
operators

â =

√
m

2

{
Q̂

2σ
+ i

[
σ

m
P̂ −

(
σ̇ − M

2
σ

)
Q̂

]}
, (80)

â† =

√
m

2

{
Q̂

2σ
− i

[
σ

m
P̂ −

(
σ̇ − M

2
σ

)
Q̂

]}
, (81)

which fulfill the commutation relation [â, a†] = 1̂ can be introduced [8]. In terms
of â, â†, the canonically conjugate operators Q̂ and P̂ therefore take the form

Q̂ =

√
~

m
σ(â+ â†), P̂ =

√
~m

(
ζâ+ ζ∗â†

)
(82)

where

ζ = −
[
i

2σ
+

(
M

2
σ − σ̇

)]
. (83)

This would yield the Hermitian operators

Î1 = −~

2
(eiθâ2 + e−iθâ† 2), Î2 = i

~

2
(eiθâ2 − e−iθâ† 2), (84)

Î3 = ~(â†â+
1

2
), Î4 = i

√
~

2
(ei

θ
2 â− e−i

θ
2 â†), (85)

Î5 =

√
~

2
(ei

θ
2 â+ e−i

θ
2 â†). (86)

We have

Î1 =
1

2
(Î2

4 − Î2
5 ), Î2 =

1

2
(Î4Î5 + Î5Î4), Î3 =

1

2
(Î2

4 + Î2
5 ). (87)
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These properties are consistent with what happens for the classical case, where
the invariants I1, I2, I3 can be expressed in terms of I4 and I5. The commutation
rules involved by the invariant operators I1, . . . , I5 are of the type (72)-(75) with
the Poisson brackets properly substituted by commutators, { , } → 1

i~ [ , ].
The Hamiltonian (77) can be written in terms of the SU(1, 1) Nöther in-

variant operators Ĵ0, Ĵ+, Ĵ− according to

Ĥ = γ1Ĵ0 + γ2Ĵ+ + γ∗2 Ĵ−, (88)

where γ1 and γ2 are the time-dependent functions

γ1 = 2~

{[
1

4σ2
+

(
σ̇ − M

2
σ

)2
]

+ ω2σ2

}
, (89)

γ2 = ~

{[
i

2σ
+

(
σ̇ − M

2
σ

)]2

+ ω2σ2

}
eiθ , (90)

and

Ĵ+ = −(Î1 + iÎ2)

2~
=

1

2
e−iθa†

2
, Ĵ− = −(Î1 − iÎ2)

2~
=

1

2
eiθa2 , (91)

J0 =
Î3
2~

=
1

2
(a†a+

1

2
) , (92)

so that
[Ĵ+, Ĵ−] = −2Ĵ0, [Ĵ0, Ĵ+] = Ĵ+, [Ĵ0, Ĵ−] = −Ĵ−. (93)

The form (88) of the Hamiltonian (77), which is Hermitian, is the one usually
employed to solve the energy spectrum problem. We point out that (88) belongs
to the class of the most general Hamiltonian preserving an arbitrary initial
SU(1, 1) coherent state under time evolution, that is H = γ1(t) J0 + γ2(t) J+ +
γ∗2(t) J− + γ3(t) where γ1(t), γ3(t) are real functions and γ2(t) is a complex
function (see e.g. [13]).

5.1 Bogolubov coefficients and the uncertainty relation for the

GTDO

Variances between generalized coherent states |α〉 (see the Appendix) are:

(∆αQ̂)2 = 〈 Q̂2 〉 − 〈 Q̂ 〉2 , (∆αP̂ )2 = 〈 P̂ 2 〉 − 〈 P̂ 〉2 (94)

where the expectation value is given by 〈. . .〉 = 〈α| . . . |α 〉. Thus, we have
(∆αQ̂)2 = ~σ2/m, (∆αP̂ )2 = ~m |ζ|2, which entail the uncertainty formula

(∆αQ̂) (∆αP̂ ) =
~

2

[
1 + 4σ2

(
σ̇ − M

2
σ

)2
] 1

2

. (95)
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Introduction of the Schrödinger picture fixed photon annihilator and creation
operators at the time t0, â0 = â0(t0) and â†0 = â†0(t0), provides

â(t) = µ(t) â0 + ν(t) â†0, (96)

where the Bogolubov coefficients µ(t) and ν(t) take the form

µ(t) =

√
m

2m0ω0

[m0ω0

m
σ − iζ∗

]
, ν(t) = −

√
m

2m0ω0

[
iζ∗ +

m0ω0

m
σ
]

(97)

( |µ(t)|2 − |ν(t)|2 = 1). The quantities µ(t), ν(t), can be even involved in the
uncertainty formula, i.e. (∆αQ̂) (∆αP̂ ) = ~

2 |µ(t) + ν(t)| |µ(t) − ν(t)| . Since the
description of minimum uncertainty states for time-dependent oscillators is an
essential step in many branches of physics, a criterium of minimum uncertainty
for the generalized oscillator (14) deserves attention to be paid. In doing so,
notice that the product (95) reaches its minimum value whenever Mσ = 2σ̇,
which implies

σ = cm1/ 2, m(t)ω(t) =
1

2c2
. (98)

For the standard time-independent harmonic oscillator (ω = const and m =
(2ωc2)−1), the unique exact solution of the auxiliary EMP equation minimizing
the uncertainty product is σ = (2ω)−1/2. Other solutions can minimize the un-
certainty formula only approximately. Notice that in the minimum uncertainty
case the phase would take the form θ(t) = 2

∫ t
t0
ω(t′)dt′. Further, the Hamilto-

nian operator would read Ĥ(t) = m0
m(t) Ĥ(0) so that 〈0| Ĥ(t) |0〉 = ~ω(t)

2 .

The way the operators of the physical interest transform under the displace-
ment and the squeeze operators can be straightforwardly obtained. For instance,
expressions

D̂†(α) â0 D̂(α) = â0 + α , D̂†(α) â†0 D̂(α) = â†0 + α∗ ,

lead to the expectation value

〈
α, z

∣∣∣ N̂0

∣∣∣α, z
〉

= |α|2 + sinh2 r , (99)

N̂0 = â†0â0 being the number operator in the Schrödinger representation. We
would like to recall that

〈
0
∣∣∣ Ĥ(t)

∣∣∣ 0
〉

=

[
~

8σ2
+

~

2

(
M

2
σ − σ̇

)2
]

+
~

2
ω2(t)σ2. (100)
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The term in the square bracket corresponds to the vacuum expectation value of
the kinetic energy of the system, while the last term is related to the vacuum
expectation value of the potential energy. The quantity

ENM +
~

2

(
M

2
σ − σ̇

)2

(101)

(NM=non-minimum) is interpreted as the energy associated with the squeezed
states which do not satisfy the criterium of minimum uncertainty. When the
criterium is verified, ENM = 0 in fact. In such a case the vacuum expectation
values of the kinetic energy and the potential energy turn out to be proportional
to σ2 and σ−2, respectively. In the case of minimum uncertainty we also have

〈
0
∣∣∣ Ŝ Ĥ(t) Ŝ†

∣∣∣ 0
〉

= ~

(
e−2r

8σ2
+
e2r

2
ω2σ2

)
. (102)

A useful property is Ĥ(t) = ω(t)
ω0
Ŝ†(r) D̂†(α) Ĥ(0) D̂(α) Ŝ(r), from which the

matrix element

〈
0
∣∣∣ Ĥ(t)

∣∣∣ 0
〉

= ~ω(t)

(
|α|2 + sinh2 r +

1

2

)
(103)

can be determined. This provides a simple way to obtain the eigenstates of Ĥ(t).
To this aim, let {|n〉} denote the eigenstates of Ĥ(0), Ĥ(0) |n〉 = ~ω(0)

(
n+ 1

2

)

|n〉. Eigenstates {|n〉t} of the time-dependent Hamiltonian Ĥ(t) are expressed

by |n〉t = Ŝ†(r) D̂†(α) |n〉 and it results

Ĥ(t) |n〉t =
ω(t)

ω0
Ŝ†(r) D̂†(α) Ĥ(0) |n〉 =

= ~ω(t)

(
n+

1

2

)
Ŝ†(r) D̂†(α) |n〉 = ~ω(t)

(
n+

1

2

)
|n〉t ,

where ŜŜ† = Ŝ†Ŝ = 1̂ and D̂D̂† = D̂†D̂ = 1̂ have been used.

6 Applications to cosmology

Modern cosmology investigates, among the others, the idea that sudden
changes in the spacetime metric very far in the past could give rise to observ-
able effects in present days. Field modes can be created out from the vacuum
during the cosmological expansion and squeezed quantum states finally show
up. In the presence of a change of regime under the cosmological evolution, the
occupation number of a given initial state would get indeed amplified. As long as
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the change can be considered as adiabatic, the amplification factor approaches
to one. But in case the change is sudden the amplification mechanism cannot be
neglected and even the vacuum state transforms into a multiparticle state in the
Fock space appropriate to the new regime. The amplification mechanism may
provide the possibility to detect quantum effects (e.g. relic gravitons) at scales
considerably above the Planck one. By virtue of all this, we would like to discuss
on the case study of a free massless scalar field φ in a Robertson-Walker inflation-
ary background, ds2 = a2(η) (dη2 − δij dx

idxj). As it is widely known, the field
can be expanded into mode functions, say φ(η,−→x ) =

∑
n
qn(η)un(−→x ) where n

denotes the comoving wavevector, whose spatial parts satisfy the Laplace equa-
tion and whose temporal parts evolve like time-dependent oscillators (GTDO’s)
with constant frequencies, ω = n = |n|, and time-dependent mass, m = a2(η).
Since one idea underlying recent attempts to shed light on the possible role of
trans-Planckian effects in inflationary cosmology is to mimic them by means of
time-dependent effective mode dispersion relations neff which deviate from the
linear behaviour for large momenta (see [15] and Refs. therein), afterwards we
shall generally refer to GTDO’s of the type (the index n is omitted)

qηη + 2
aη
a
qη + n2

eff q = 0, (104)

where the subscript η denotes conformal time derivative. So, to investigate the
dynamics of a massless scalar field in a Robertson-Walker spacetime one has to
choose the initial state and let it evolve under the GTDO dynamics. Choosing
the initial state is a key point which clearly results into a system for coefficients
A,B,C entering in the definition of the function σ (see Eq. (18)). Due to the
semiclassical approximation underlying these studies, the natural arena for the
choice of the initial state turns out to be that of coherent states (e.g. the vacuum
defined via â0|0 >0= 0). They display features which are in the borderline
between classical and quantum mechanics, in fact. The evaluation of the GTDO
Hamiltonian expectation values shows that the departure from the minimum
uncertainty enhances the squeezing mechanism through terms depending on
the decoherence energy ENM [14]. A suitable choice for the initial state could
be therefore that of a coherent state minimizing the squeezing action of the
gravitational field at the initial time η0. This can be achieved by looking for
coefficients A,B,C which make possible the vanishing of the decoherence energy
ENM at η0. The request that at the initial time the time-dependent annihilation
and creation operators go into the standard Dirac form is accomplished for
σ(η0) = [2neff (η0)]

− 1
2 (see (96)). Since taking account of the condition (19) is
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always due, then A,B,C can be determined by means of the system

AB − C2 =
1

4W0
2
, σ(η0) = [2neff (η0)]

−1/2 , ση(η0) =
aη(η0)

a(η0)
σ(η0) .

(105)
Let us focus on a period under which the Universe undergoes an accelerating
adiabatic expansion. The prototype of the models of inflationary cosmology is
based on the de Sitter spacetime for which a(η) = (−H0η)

−1, where η < 0 and
H0 denotes the Hubble constant. While it is customary to resort to the spatially
flat inflationary model based on the de Sitter metric, a more general and realistic
description of the inflation is provided by a quasi-de Sitter spacetime. In this
case, the Hubble rate is not exactly constant but, rather, it weakly conformally
changes with time according to H̃η = −εa2H̃2, where ε is a constant parameter.
When ε vanishes one gets just the ordinary de Sitter spacetime. For small values
of ε, a quasi-de Sitter spacetime is associated with the scale factor a(η) =
−H̃(1 − ε)η, with η < 0. In the quasi-de Sitter spatially flat scenario Ω2 =
(2+3ε)

(1−ε)2η2 and Eq. (15) can be solved in terms of Bessel functions. Precisely, one

has the two independent solutions

y1 =
√−nηJν (−nη) , y2 =

√−nη Yν (−nη) (106)

where ν =
√

1
4 + (2+3ε)

(ε−1)2
. The procedure outlined in previous Sections can be

applied and we are led to the introduction of the basic function

σ =
√−nη

[
AJ2

ν (−nη) +BY 2
ν (−nη) + 2CJν (−nη)Yν (−nη)

] 1
2 (107)

where A,B,C are determined via the conditions (105). Once we are interested
in a situation in which the system started both very far in the past and in
a vacuum state, the Bessel function expansions for ν fixed and nη → −∞
assists us in finding suitable constants A,B,C. Whenever the limit of arbitrary
large negative initial times is concerned a natural choice is therefore given by
A = B = π

4n , C = 0. So we obtain

σ(η) =

√
−π

4
η
∣∣H1

ν (−nη)
∣∣ . (108)

The decoherence energy ENM at the time η of gravitational waves in a quasi-de
Sitter model of inflation can be evaluated by inserting (108) into formula (101).
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Moreover, since

µ(η) =

√
a2(η)

2na2(ηi)

{[
1

2σ
+
na2(ηi)

a2(η)
σ(η)

]
− i
[
ση −

aη
a
σ
]}

, (109)

ν(η) =

√
a2(η)

2na2(ηi)

{[
1

2σ
− na2(ηi)

a2(η)
σ(η)

]
− i
[
ση −

aη
a
σ
]}

(110)

at arbitrary times η the Bogolubov coefficients are given by setting (108) into

µ(η) =

√
1

2n

(
ηi
η

) 2
1−ε

{[
1

2σ
+

(
η

ηi

) 2
1−ε

nσ

]
− i

[
ση +

σ

(1 − ε) η

]}
,

(111)

ν(η) =

√
1

2n

(
ηi
η

) 2
1−ε

{[
1

2σ
−
(
η

ηi

) 2
1−ε

nσ

]
− i

[
ση +

σ

(1 − ε) η

]}
. (112)

The phase θ can be evaluated to furnish θ (η) = 2 θ1
ν

∣∣η
ηi

, where θ1
ν denotes the

phase of the Hankel function H1
ν . In the case of a standard Sitter inflation

ε = 0, ν = 3
2 and the standard exact and normalized solution for the quantum

fluctuations of a generic massless scalar field turns out to be associated with
σ = [

(
1 + n−2η−2

)
/ 2n]1/2. Moreover, in the standard de Sitter phase we would

have [14]

|ν(η)|2 =
1

4

(
ηi
η

− η

ηi

)2

. (113)

In tackling more refined studies of cosmological effects in expanding Uni-
verse, it could be even useful to introduce a cosmological model which al-
lows one to take into account different evolutionary phases of the Universe.
Once the model has been specified and Eq. (15) solved, one can get an in-
sight into physical effects related to different cosmological stages. For instance,
one can consider a simple cosmological model which includes the so-called
inflationary, radiation-dominated and matter-dominated epochs, respectively.
Results and comments concerning this case can be found by the interested
reader in [14]. In going further, another step can be formulated by putting
n2
eff = a2(η)F 2(k) = a2(η)F 2[n/a(η)], where the function F is required to

behave linearly for physical wavenumbers smaller than a characteristic scale kC
(see e.g. [15] and Refs. therein). Regardless the actual form of the function F ,
three different prototypical wavelength Regions can be distinguished as follows:
a) Region I, where the wavelength of a given mode is much smaller than the
characteristic length, λ = 2π

n a� lC (≡ k−1
C ) and the nonlinearity of F is crucial;
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b) Region II, with the mode’s wavelength larger than the characteristic length
but still smaller than the Hubble radius, lC � λ � lH , and the dispersion
relation is linear; c) Region III, where the mode is outside the Hubble radius
and the dispersion relation can be neglected. Hence, we have to evaluate the
function σ in each Region according to

σj =
(
Ajy

2
1,j +Bj y

2
2,j + 2Cj y1,j y2,j

) 1
2 , j = I, II, III, (114)

where y1,j , y2,j denote the solutions to (15) in the three Regions (henceforth,
lowerscripts j = I, II, III will refer to Regions I, II and III respectively). As
for Region I, the basic system is (105). In order to deal with the other Regions,
the system for the matching data is needed to be considered:

AjBj−C2
j =

1

4W0,j
2
, σj(ηl) = σj−1(ηl) , σj,η (ηl) = σj−1,η(ηl) , (115)

where l = 1, 2, j = II, III , and η1 and η2 are the beginning of the second
and third Region, respectively. Simple calculations show that solutions to (115)
can be written in the form

Aj = Zj [y2,j , y2,j , ηl] , Bj = Zj [y1,j , y1,j , ηl] , Cj = −Zj [y1,j , y2,j , ηl] ,

Zj [f, g, ηl] =

{
fg

4W 2
0,j−1 σ

2
j−1

[
1 + 4σ2

j−1 fg
(
σj−1

f

)
η

(
σj−1

g

)
η

]}∣∣∣∣
ηl

.

(116)
After above systems have been solved, quantities of the physical interest (e.g.
the Bogolubov coefficients) can be computed starting from the results so far
expounded.

As an explicit example of nonlinear dispersion cosmologies, the generalized
Corley-Jacobson relation of dispersion

n2
eff (η) = n2 + n2

m∑

q=1

bq
(2π)2q

[
nlC
a(η)

]2q

, bm > 0 (117)

can be adopted. We can consider the general scale factor of the form a(η) =
l0(−η)1+β with β ≤ −2 (the standard de Sitter case is recovered for β = −2)

so that η1 = − (nε / 2π)
1

1+β |bm|
1

2m(1+β) and η2 = 2π
n (1 + β). By inserting the

dispersion relation (117) into (15) and by keeping the leading terms, the mode
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solutions in the three Regions can be straightforwardly found. We therefore get

σI =
√−η

{
AI J

2
1
2b

(z) +BIY
2
1
2b

(z) + 2CI J 1
2b

(z)Y 1
2b

(z)
} 1

2
, (118)

σII =
(
AII cos2 nη +BII sin2 nη + 2CII sinnη cosnη

) 1
2 , (119)

σIII =
(
AIII η

2(1+β) +BIII η
−2β − 2CIII η

) 1
2
, (120)

where z = γ(−η)b, γ =

√
|bm|

b(2π)m εmnm+1, b = 1 −m (1 + β) and ε = lC / l0. The

initial condition and the matching data between Regions determine the con-
stants Aj , Bj , Cj . We choose as the initial state any coherent state minimizing
the uncertainty relation. We shall restrict ourselves on Region I [15], for which
W0 = −2b/π. If we proceed as customary by thinking about an adiabatic limit
in the infinite past, we can neglect the term aη/a in the system of the type (105)
for AI , BI , CI , and resort to the asymptotic expansion for Bessel functions (see
e.g. [16]). Under these assumptions, it turns out that we can set AI = BI = π

4b ,
CI = 0. That is, we would obtain

σI =

√
−πη

4b

∣∣∣H1
1
2b

(z)
∣∣∣ . (121)

A gravitational phase θI(η) twice with respect to the phase of the Hankel func-
tion H1

1
2b

hence arises. An insight into the decoherence energy can be given via

ENM,I = ~

2 (σI,η − aη

a σI)
2 while the time dependence of the amount of modes

which are created out of the vacuum can be straightforwardly evaluated by
inserting (121) into

|νI(η)|2 =
1

2γb

(
η2+m
0

η2

)(1+β)




1

4σ2
I (η)

[
1 −

(
η0

η

)2(1+β) σ2
I (η)

σ2
I (η0)

]2

+

+

[
σI,η(η) −

aη(η)

a(η)
σI(η)

]2
}
. (122)

At this point, comments are in order. First, it is definitively worth to recall that
in the special case m = 1 the minimum uncertainty criterium a2(η)neff (η) =
const approximatively holds [14] and the dynamics of the field φ turns out to be
very weakly affected by quantum decoherence effects. Secondly, in evaluating
the constants AI , BI and CI we basically imposed the vanishing of aη/a for
asymptotically negative times in the last of conditions of the type (105) for
AI , BI and CI . This is a good approximation, but one might wonder about
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setting all initial conditions at the particular scale η0. This would avoid that
in Bogolubov coefficients there will be a mixing of quantities referring to an
adiabatic limit in the infinite past and quantities which actually do not. So, let
us keep the initial time finite also in the last of equations (105). On general
ground, one expects explicit leading corrections of the order O(1/z0), where
z0 = γ(−η0)

b, for instance. Precisely, it results that AI and BI are no longer
equal and CI does not vanish [15]. The net consequence is that oscillations on
the 1/z0 scale originated by the term

%z1/b

γ1/bz0

{
sin 2χ

[
Y 2

1
2b

(z) − J2
1
2b

(z)
]

+ 2(1 − 2 sin2 χ)Y 1
2b

(z)J 1
2b

(z)
}
, (123)

with % = [π(β + 4b + 4) / 4b2] and χ = z0 − π(b + 1) / 4b, would appear in σ.
They imply the finite time corrections to the quantities previously expressed in
terms of the zeroth-order mode amplitude (121). A comparison with the case in
which one has a de Sitter spacetime and a dispersion relation of the Unruh type
can be straightforwardly performed [15]. In this case, in fact, in Region I one
has n2

eff (η) ≈ (2π/ ε η)2 so that a nonvanishing initial friction term aη/a would
not introduce fluctuations whose amplitude scale is fixed by the initial time η0.
Rather, corrections with respect to the parameter ε enter in the matter [15].

7 Conclusions

The ”generalized time-dependent oscillator” (GTDO) is a paradigmatic lin-
ear system whose ”mass” and ”frequency” can vary with time. A huge literature
therefore does exist on the topic and very many aspects have been pointed out
in the years which are interesting both from a mathematical and a physical
point of view. In this Communication, we described some significant features
pertinent to GTDO’s by selecting just a few of the several many notable results
achieved up to now. That is, we focused on the problem of characterizing the
GTDO dynamical group and on the aspects related to the loss of coherence in
cosmological models. Precisely, we have remarked that in the case of GTDO’s
the Nöther invariants form an algebra of the su(1, 1) type under the Poisson
bracket operation. Namely, the dynamical group of a time-dependent oscillator
is SU(1, 1). Another important achievement is represented by the alternative
Lagrangians, which arise from the so-called additional infinitesimal operators
emerging beyond those generating the Nöther invariants. When moving to the
quantum theory, a set of invariant operators of the Nöther type Îi can be con-
structed from the classical Nöther invariants Ii by adopting a suitable procedure.
Once the substitution { , } → 1

i~ [ , ] from Poisson bracket to commutator is per-
formed, the commutation rules thus define a noncompact Lie algebra su(1, 1)
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under the commutation bracket operation [8]. To conclude, once the framework
of the theory of invariants is concerned, effective tools are provided to study
the dynamics of a massless scalar field with arbitrary dispersion relation in a
Robertson-Walker spacetime. A new perspective is gained in that the way grav-
itational decoherence generally works within the semiclassical approximation is
made extremely manifest. The SU(1, 1) symmetry underlying the GTDO dy-
namics enables to express quantities of the physical interest in a rather compact
form without losing in generality. The role of the dispersion relation, of the grav-
itational scale factor and of the mode time-dependent amplitude modulation, is
explicitly clarified. Furthermore, formula (101) for the decoherence energy sup-
plies a new tool for tackling the problem of imposing initial conditions on the
scalar field modes without worrying about the adiabaticity of their successive
evolution.

Appendix: Coherent and Squeezed States

The concept of coherent state was introduced by Schrödinger who investi-
gated quantum states for the harmonic oscillator in such a way that the ex-
pectation value of the position and the momentum operators were the same
as the classical solutions [17]. The basic properties of these states for the har-
monic oscillator can be briefly synthesized as follows: i) they are eigenstates
of the annihilation operator; ii) they are created from the ground states by
a unitary operator; iii) they minimize the uncertainty relation; iv) they are
overcomplete, normalized but not orthogonal. Coherent states for the GTDO
in the context of Lewis-Riesenfeld theory [5] were constructed by Hartley and
Ray in 1982 [18]. These states share all the features of the coherent states of
the conventional (time-independent) oscillator except that the uncertainty for-
mula, i.e. the product of position and momentum is not minimum. A few years
later, Pedrosa [19] showed that the coherent states devised by Hartley and
Ray for the GTDO are actually squeezed states. Generally speaking, squeezed
states enter in the matter whenever the quadratic operators â2 and â† 2 are
involved in the Hamiltonian. Many references exist where both coherent and
squeezed states are discussed (see e.g. [20]). Squeezed states |α, z〉 are defined
as |α, z〉 = D̂(α) Ŝ(z) |0〉 where D̂(α) and Ŝ(α) are the so-called displacement
operator and squeeze operator. Quantities α, z are complex parameters. For any
fixed α, the choice z = 0 yields the coherent state |α〉 = |α, 0〉 = D̂(α) |0〉. Co-
herent states |α〉 are eigenstates of the (non-Hermitian) annihilation operator a
with eigenvalue α, i.e. a |α〉 = α |α〉. It is noteworthy that the squeeze operator
Ŝ(z) induces a canonical transformation of the annihilation and creation oper-

ators. Indeed, by defining the operators b̂ + Ŝ†â0Ŝ, b̂† + Ŝ†â†0Ŝ, the relation
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[
b̂, b̂†

]
= 1̂ holds. The Bogolubov transformation can be naturally embedded

into above relations where the operators b̂, b̂† can be identified with â(t) and
â†(t).
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