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Abstract. The reduction theorems for general linear and classical connections are general-
ized for operators with values in higher order gauge-natural bundles. We prove that natural
operators depending on the si-jets of classical connections, on the ss-jets of general linear
connections and on the r-jets of tensor fields with values in gauge-natural bundles of order
k>1,8 42> s2 81,82 >r—12>k—2, can be factorized through the (k — 2)-jets of both
connections, the (k — 1)-jets of the tensor fields and sufficiently high covariant differentials of
the curvature tensors and the tensor fields.
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Introduction

It is well known that natural operators of classical (linear and symmetric)
connections on manifolds and of tensor fields with values in natural bundles of
order one can be factorized through the curvature tensors, the tensor fields and
their covariant differentials. These theorems are known as the first (operators on
classical connections only) and the second reduction theorems, [6,8,10]. In [6]
the reduction theorems are proved by using methods of natural bundles and
operators, [6,7,9,11].

In [4] the reduction theorems were generalized for general linear connections
on vector bundles. In this gauge-natural situation we need auxiliary classical
connections on the base manifolds. It is proved that natural operators with
values in gauge-natural bundles of order (1,0) defined on the space of general
linear connections on a vector bundle, on the space of classical connections on
the base manifold and on certain tensor bundles can be factorized through the
curvature tensors of linear and classical connections, the tensor fields and their
covariant differentials with respect to both connections.

iThis paper has been supported by the Ministry of Education of the Czech Republic under
the Project MSM 143100009.
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In [5] another generalization of the classical reduction theorems was pre-
sented. Namely, the reduction theorems were proved for operators with values
in higher order natural bundles. It was proved that an r-th order natural op-
erator on classical connections with values in natural bundles of order k > 1,
r+2 > k, can be factorized through the (k — 2)-jets of connections and suffi-
ciently high covariant differentials of the curvature tensor.

In this paper we combine both possible generalizations of the reduction
theorems and we prove the reduction theorems for general linear connections on
vector bundles for operators with values in higher order gauge-natural bundles.
In this situation we shall use the name higher order valued reduction theorems
for general linear connections.

All manifolds and maps are assumed to be smooth. The sheaf of (local)
sections of a fibered manifold p : Y — X is denoted by C*°(Y), C*(Y, IR)
denotes the sheaf of (local) functions.

1 Gauge-natural bundles

Let M,,, be the category of m-dimensional C'*°-manifolds and smooth embed-
dings. Let FM,,, be the category of smooth fibered manifolds over m-dimensional
bases and smooth fiber manifold maps over embeddings of bases and PB,,(G)
be the category of smooth principal G-bundles with m-dimensional bases and
smooth G-bundle maps (¢, f), where the map f € MorM,,.

1 Definition. A G-gauge-natural bundle is a covariant functor F' from the
category PB,,(G) to the category FM,, satisfying

i) for each 7 : P — M in ObPB,,(G),7p : FP — M is a fibered manifold
over M,

ii) for each map (¢, f) in Mor PB,,,(G), Fp = F(p, f) is a fibered manifold
morphism covering f,

iii) for any open subset U C M, the immersion ¢ : 7~ }(U) < P is trans-
formed into the immersion Fu : 75 (U) — FP.

Let (7 : P — M) € ObPB,,(G) and WP be the space of all r-jets J{0,)®>
where ¢ : R™ x G — P is in MorPB,,(G),0 € IR™ and e is the unit in
G. The space WP is a principal fiber bundle over the manifold M with the
structure group W, G of all r-jets j(o,e)\I/ of principal fiber bundle isomorphisms
U : R™ x G — IR™ x (G covering the diffeomorphisms v : IR™ — IR™ such that
1 (0) = 0. The group W, G is the semidirect product of G}, = inv Jj(IR™, IR™)y
and T,,G = Jj(IR™,G) with respect to the action of Gj, on T},G given by
the jet composition, i.e. W/ G = GI x T"G. If (p : P — P) € Mor PB,,(G),
then we can define the principal bundle morphism W7y : WP — WP by
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the jet composition. The rule transforming any P € ObP3B,,(G) into WP €
Ob PB,,(W,,G) and any ¢ € Mor PB,,(G) into W"p € Mor PB,, (W] G) is a
G-gauge-natural bundle.

The gauge-natural bundle functor W plays a fundamental role in the theory
of gauge-natural bundles. We have, [1,6],

2 Theorem. FEvery gauge-natural bundle is a fiber bundle associated to the
bundle W for a certain order r.

The number r from Theorem 2 is called the order of the gauge-natural bundle.
So if F'is an r-order gauge-natural bundle, then

FP=(W"P,Sp), Fo=(W"p,ids,),

where Sr is a left W, G-manifold called the standard fiber of F.

If (2%, 2%) is a local fiber coordinate chart on P and (y°) a coordinate chart
on Sg, then (2*,y) is the fiber coordinate chart on F'P which is said to be
adapted.

Let F be a G-gauge-natural bundle of order s and let » < s be a minimal
number such that the action of W3 G = G}, x T, G on S can be factorized
through the canonical projection ;) : 1,5, G — 17 G. Then r is called the gauge-
order of F' and we say that F' is of order (s,r). We shall denote by Wr(,f’r)G =
G, xT) G the Lie group acting on the standard fiber of an (s, r)-order G-gauge-
natural bundle. Then there is a one-to-one, up to equivalence, correspondence of
smooth left W™ G-manifolds and G-gauge-natural bundles of order (s, ), [1].
So any (s,r)-order G-gauge-natural bundle can be represented by its standard
fiber with an action of the group WT(,f a.

If Fis an (s, r)-order G-gauge-natural bundle, then J*F is an (s + &, + k)-
order G-gauge-natural bundle with the standard fiber T Sp = JE(IR™, SF).

The class of G-gauge-natural bundles contains the class of natural bundles
in the sense of [6,7,9,11]. Namely, if F' is an r-order natural bundle, then F' is
the (r,0)-order G-gauge-natural bundle with trivial gauge structure.

Let F be a G-gauge-natural bundle and (p, f) : P — P be in the category
PB,.(G). Let o be a section of FP. Then we define the section %0 = Fpogof~!
of FP. Let H be another gauge-natural bundle.

3 Definition. A natural differential operator from F to H is a collec-
tion D = {D(P),P € ObPB,(G)} of differential operators from C*(FP)
to C*°(H P) satisfying D(P) o ¢} = ¢}; o D(P) for each map

(¢, f) € Mor PB,(G), ¢:P — P.

D is of order k if all D(P) are of order k. Let D be a natural differential
operator of order k from F' to H. For any P € Ob PB,,(G) we have the associated



78 J. Janyska

map D(P) : J*FP — HP, over M, defined by D(P)(jk0) = D(P)o(x) for all
x € M and any section o : M — FP. From the naturality of D it follows that
D = {D(P),P € ObPB,(G)} is a natural transformation of J*F to H. The
following theorem is due to Eck, [1].

4 Theorem. Let F and H be G-gauge-natural bundles of order < (s,r),s >
r. Then we have a one-to-one correspondence between natural differential oper-
ators of order k from F to H and W7(L8+k’r+k)G—equivarmnt maps from Tk Sg
to Sg.

So according to Theorem 4 a classification of natural operators between
G-gauge-natural bundles is equivalent to the classification of equivariant maps
between standard fibers. Very important tool in classifications of equivariant
maps is the orbit reduction theorem, [6,7]. Let p : G — H be a Lie group
epimorphism with the kernel K, M be a left G-space, Q be a left H-space and
m: M — @ be a p-equivariant surjective submersion, i.e., w(gz) = p(g)n(z) for
all x € M, g € G. Having p, we can consider every left H-space N as a left
G-space by gy = p(9)y, g € G, y € N.

5 Theorem. If each 7~ '(q), ¢ € Q is a K-orbit in M, then there is a
bijection between the G-maps f : M — N and the H-maps ¢ : Q — N given by
f=pom

2 Linear connections on vector bundles

In what follows let G = GL(n,IR) be the group of linear automorphisms
of IR"™ with coordinates (az) Let us consider the category VB,,, of vector
bundles with m-dimensional bases, n-dimensional fibers and local fibered linear
diffeomorphisms. Then any vector bundle (p : E — M) € Ob"VB,,, can be
considered as a zero order G-gauge-natural vector bundle (the associated vector
bundle) PB,,(G) — VByyn.

Local linear fiber coordinate charts on E will be denoted by (z*,y). The
induced local bases of sections of E or E* will be denoted by £b; or Eb, respec-
tively, and the induced local bases of sections of TE or T*E will be denoted by
(Ox, 0;) or (d*,d"), respectively.

We define a linear connection on E to be a linear splitting
K:E— JE.

Considering the contact morphism J'E — T* M ®TE over the identity of TM,
a linear connection can be regarded as a T'E-valued 1-form

K:E—-T"M®TE
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projecting onto the identity of T'M.
The coordinate expression of a linear connection K is of the type

K=d"® (0\+K;'\y’8), with K;'\e€O0®M,R).

Linear connections can be regarded as sections of a (1,1)-order G-gauge-
natural bundle Lin E — M, [1,6]. The standard fiber of the functor Lin will be
denoted by R = IR™ ® IR" ® IR™*, elements of R will be said to be formal linear
connections, the induced coordinates on R will be said to be formal symbols
of formal linear connections and will be denoted by (K;y). The action 3 :

,S}’”G X R — R of the group W&l’l)G = G,ln X T%G on the standard fiber R
is given in coordinates by

(KjiA) of = a; (qupd?di - dgA) )
where (al/), aﬁ-, aj. ,) are coordinates on I/V7(n1 DG and ~ denotes the inverse element.
6 Note. Let us note that the action § gives, in a natural way, the action
g wirtbr+tG « T R — Th R
determined by the r-jet prolongation of the action (.
7 Remark. Let us consider the group epimorphism

r+1,r+1 r+1,r4+1 r,r
Ty : W,(n G — W,Sl e

: 141 def 1r+1 141 .
and its kernel BZ«"J{ TG Ker W:J; T+ On BZJJ{ "TL@ we have the induced

coordinates (aﬁlmmﬂ,a}mmmﬂ). Then the restriction 5" of the action 8" to

141 . . .
BE«F 1@ has the following coordinate expression
% % ar
(Kj ula"'aKj M1,,u2.--,ur+1) Oﬂ (1)
g b g g
= (K s K iz s K iz = @y i) 5
where (K;'uys Ky pas - -+ Kl pa o jinsa ) are the induced jet coordinates on

17 R.
The curvature of a linear connection K on E turns out to be the vertical
valued 2-form
2

RK]=-[K,K|:E—-VE® \T*M,
where [,] is the Frolicher-Nijenhuis bracket. The coordinate expression is
RIK] = RIK];" v’ 0; ® d* A d*
= 2(0\K;', + K;jP\K,' ) v? 0; @ dM A\ dH
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If we consider the identification VE = E x FE and linearity of R[K], the
M
curvature R[K] can be considered as the curvature tensor field R[K]| : M —
E*®@ E® N*T*M and
2
R[K]: C*(Lin E) —» C*(E*® E® [\ T"M)

. D . . 2,2
is a natural operator which is of order one, i.e., we have the associated 751 G-

equivariant map, called the formal curvature map of formal linear connections,
Ry :TLR — U
with the coordinate expression
(uj'an) © RL = Kj'apu = Kj'up + KjPuKp's = KPAKp'y (2)

where (u;y,,) are the induced coordinates on the standard fiber U~ R™ ® R"®
N R™ of E*@ E® N*T*M.

We define a classical connection on M to be a linear symmetric connection
on the tangent vector bundle pps : TM — M with the coordinate expression

A=d*® (0n+ A28 0,), A€ C(M,R), A=A,

Classical connections can be regarded as sections of a 2nd order natural
bundle ClaM — M, [6]. The standard fiber of the functor Cla will be de-
noted by Q = IR™ @ S?IR™*, elements of ) will be said to be formal classical
connections, the induced coordinates on ) will be said to be formal Christof-
fel symbols of formal classical connections and will be denoted by (A;/\u)- The
action a : G2, x Q — @ of the group G2, on @ is given in coordinates by

(A ) oa= ag (Ao ragay, —ab,).

8 Note. Let us note that the action « gives, in a natural way, the action
2
Q"G XTI — T Q
determined by the r-jet prolongation of the action «.
9 Remark. Let us consider the group epimorphism W:ﬁ : Gri2 — Grt
and its kernel B'T? % Kern"F2. We have the induced coordinates (a

r+l1 — r+1° l‘1~~~ﬂr+2)
on B:i% Then the restriction a" of the action a” to B:I% has the following

coordinate expression

A A _
(Aﬂl M2yt ’Aﬂl H27H3~~~N7‘+2) oa" (3)

_ A A A ~\
- (Am B2y 7AM1 M27M3---NT+1’AN1 H2,13 - e t2 T am...erg) )
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where (A, A s Ay Mo iss - - s My o pis. o) are the induced jet coordinates on
17.Q.
The curvature tensor of a classical connection is a natural operator
2
R[A]: C®(ClaM) — C*(T"M @ TM ® \T*M

which is of order one, i.e., we have the associated G2, -equivariant map, called
the formal curvature map of formal classical connections,

R+ TQ = Spegrop® 1+

with the coordinate expression
(wup)\,u) oRc = Aup)\,u - Aup,u,)\ + AVO—;,LAUPA - AVJAAUPM >
where (w,”,) are the induced coordinates on the standard fiber
2

Wd:CfST*®T®/\2T* — Rm* ®Rm ®/\Bm*

Let us denote by EF'{ = T REQRIE*QR"TM @®°T*M the tensor product
over M and recall that Ep’ is a vector bundle which is a G-gauge-natural bundle
of order (1,0).

A classical connection A on M and a linear connection K on E induce the
linear tensor product connection K7 @ A7 = T RKRQQIK*QR"AQRA* on EV

K@ Ag: EDD —T°M %ITEZZQ
which can be considered as a linear splitting
KP@ AL : EPY — J'EP.

Then we define, [3], the covariant differential of a section ® : M — EN;
with respect to the pair of connections (K, A) as a section of EP@T*M given
by

VENG = jlo — (KP @ AL) 0 @

i1 IpAL.ec A A
In what follows we set V = VM) and gbﬁlj’;ulllfsu = l,gi);ll ijull s

We have the following relations between the covariant differentials and the
curvatures, [3].
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10 Proposition. The curvature

RIK? ® A< —[KP @ AL, KP @ AL] : EP — EPT ® /\T*
is determined by the curvatures R[K| and R[A].
11 Theorem. (The generalized Bianchi identity) We have
R[K]jiku;v + R[K]jiw/;/\ + R[K]jiw\;u =0.

12 Theorem. Let ® € C*(E"). Then we have

Alt V20 = R[AP®K”] od e C( EW@/\T*

where Alt is the antisymmetrization.

13 Remark. From the above Theorem 12 and the expression of R[K} @
A7), [3], it follows, that AltV2® is a EP7-valued 2-form which is a quadratic
polynomial in R[K], R[A], ®. Especially, we have

2 2
AtV’RIK]: M - E*@ E® N\T"M o \T*M
given in coordinates by

1 i i
Alt V’R[K] = ~5 (RIK]p'vyvs RIK] P00 — RIK] w10, RIK]p A
- R[A]Awmw R[K]jiwu - R[A]uwuwz R[K}jikw)
b ob, @d AdF@d A
14 Remark. Let us note that for classical connections we have the first
and the second Bianchi identities

R[A](Vp)\u) =0 and R[A]Vp()\u;a) = 07

respectively, where (... ) denotes the cyclic permutation. Moreover, we have the
antisymmetrization of the second order covariant differential of the curvature
tensor which is a quadratic polynomial of the curvature tensor.

3 The first k-th order valued reduction theorem
for general linear and classical connections

Let us introduce the following notations.
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Let WoM WM = T*MQTMeN> T* M, W;M = WM@&'T*M, i > 0.

Let us put WEDIM = WM x ... x W, M. We set W) M WO M. Then
M M

W; M and WH) M are natural bundles of order one and the corresponding
standard fibers will be denoted by W; and WE)  where Wo & W = R™ @
R™ @ N> R™, W; =W ® & R™, i >0, and WE") =W, x ... x W,. Let us
denote by (w,” Auoi...o;) the coordinates on W;.

We denote by

Rei: THQ — W,

the GiF3-equivariant map associated with the i-th covariant differential of the
curvature tensors of classical connections

VIR[A] : C*°(ClaM) — C®(W;M).

The map R¢; is said to be the formal curvature map of order i of classical
connections.

Let Cc; C W; be a subset given by identities of the i-th covariant differen-
tials of the curvature tensors of classical connections, i.e., by covariant differen-
tials of the Bianchi identities and the antisymmetrization of the second order
covariant differentials, see Remark 14. So C¢; is given by the following system
of equations

wo," \pyoy..or = 0, (4)
W (Apor)ogo; = 0 (5)
Wy Nprv. oy 10 + POLWIT2) =0, (6)

where j = 2,...,i and [..] denotes the antisymmetrization.
Let us put Cg) = Ccpo X ... x Cg, and denote by Cgf;@@*l)’ k < r, the
fiber in T‘(C]fil) € C(Ckfl) of the canonical projection prj,_; : C’g) — Cg%l). For
r < k we put C(CIT;;C?“‘” = (). Let us note that there is an affine structure on the

fibres of the projection pr]._; : Cg ) g _1), [6]. Really, Cg ) is a subbundle in

C’g U W, given by the solution (for ¢ = r) of the system of nonhomogeneous
equations (4) — (6).
Then we put
RED I Rk, Re)  THHQ — WE)
R RO, (7)
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which has values, for any jg+17 € TrHQ, in Cg£2k71>(jk7). In [6] it was proved
) 0

that Cg ) is a submanifold in W) and the restriction of Rg) to C’g ) is a sur-
)

jective submersion. Then we can consider the fiber product TXQ x o1 C’g
C

which will be denoted by T*Q x C’gC ") In [5] it was proved that the mapping
(rRET) TP Q - ThQ < CE

is a surjective submersion.
Similarly let WWE X UE = E*@ EQ N*T*M, W,E = UE Q@ ®'T*M, i > 0,

UENE = ULE x ... x U, E. Especially, U E < U7 E. Then W; E and U*") E
M M
are G-gauge-natural bundles of order (1,0) and the corresponding standard

fibers will be denoted by U; and U™ where Uy & U = R™ @ R™ @ \* R™,
W = URKR™, i > 0, and UK = Uy x...xU,. Let us denote by (ujiwglmai)
the coordinates on U;.

We denote by

RLJ' : T;{lQ X T,i;rlR — U,

the W%H’Hz)G-equivariant map associated with the ¢-th covariant differential
of the curvature tensors of linear connections

V'R[K] : C*°(Cla M x Lin E) - C*°(WE).
The map Ry, ; is said to be the formal curvature map of order i of general linear
connections.

Let Cr; C U; be a subset given by identities of the i-th covariant differentials
of the curvature tensors of linear connections, i.e., by covariant differentials of
the Bianchi identity and the antisymmetrization of the second order covariant
differentials, see Theorem 11 and Remark 13. So Cp,; is given by the following
system of equations

uji(k,ual)ag.“ai = 07 (8)
i i—2 i
Uj Apot...[oj-105]...04 + pOI(Cé ) X u( 2)) = Oa (9)
j=2,...,1, where pol(Cg_Q) x U=2)) are some polynomials on C’g_2) x UE=2),
Let us put Cg) = CLo X ... x O, and denote by C’ik’z)kfl), k < r, the
L
fiber in T‘E-kal) € Cékil) of the canonical projection pry_; : Cg) — C}Jkil). For

(k,r)
(k=1
'L

r < k we put C

. y = (. Let us note that there is an affine structure on the
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projection pry_; : Cg) — Cg«fl), [4]. Really, C'g) is a subbundle in C’gﬂfl) x Uy
given as the solution (for i = r) of the system of nonhomogeneous equations (8)

— (9).

Then we set

REDE Ry gy Rey) 1 T Q x TR — U,

) def 4y (0,r
R & RO
which has values in C(k’r),%l) for any (oA, joty) € TI1Q < T R.

LRED (G620 56)
In [4] it was proved that C’g U~ Cg), s >r—2,7r >0, is a submanifold of
WE) % UM and the restriction
RS, R T Q x T R — €8 x o)
is a surjective submersion. Then we can consider the fiber product
(THQ x T™R) X (€Y x ¢y,
Cl1=D) k2=
k1 > ko — 2, and denote it by THQ x TE2R x ¢ x ctFm),
Now we shall prove the technical
15 Lemma. If s >r —2, k1 > ko—2,s+1>ky, r+ 12> ko, then the

restricted map
(ﬂ_;:rl % W;jl,mgl’s),R%kZ’r)) .
T5HQ x TR — TRQ x T2 R x O x ¢
s a surjective submersion.

PROOF. In [5] it was proved that
(m L RE) T3 Q — THQ x i)
is a surjective submersion. The mapping of Lemma 15 is then a surjective
submersion if and only if the mapping (W,Zjl,iR(k”) et =) : TIHR —
Tk R x Cékz’r) is a surjective submersion for any j8+1)\ € T3 Q. Let us assume
i = ka,...,r. By [4] the mapping R(Li)(jgﬂ)\, —) TR — C’g) is a surjective
submersion and we have the commutative diagram

: R (550 )
THlp 20 7

- .
i l lprﬁ,l

i—1), .s
R(Ll "GeA-) C(i—l)
L

Ti R
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All morphisms in the above diagram are surjective submersions which implies
that the mapping (Wf“,R(Z)(jSH)\,—)) : THHR — TL R x Cg) is a sur-
Cg71>

jection over fR(Li_l)(jSH)\, —) given by (771 Rp (55T )\, —)). But the mapping
R38N, —) is affine morphisms over R(Lifl) (jotIA, =) (with respect to the
affine structures on 7! : TH'R — T¢ R and pr_, : C’g) — Cg_l)) which
has a constant rank. So the surjective morphism (7!t Rp;(js*'A, —)) has a
constant rank and hence is a submersion. (W,:jl,R(LkQ’T) (GsttA, =) is then a
composition of surjective submersions

(2t Rk, G ), idcfz“”)) o...

co (M1, R 1 (GETIN, ), id cg”)) o (ni RGN, -)).

(k,k)

Let F be a G-gauge-natural bundle of order k, i.e., Sg is a Wy, G-manifold.
16 Theorem. Let s >r—2,r+1,5s+2 >k > 1. For every Wst2r) o

equivariant map
f:T;QxT, R— Sp

there exists a unique Wéf ’k)G-equz’varz’ant map
g:TF2Q x TF1R x C’(Ck_2’s_l) X Cg“_l’r_l) — Sp
satisfying

f=go(m_yx 77,’;_1’91(6{672,371),92(;71,%1)) .

PROOF. Let us consider the space
Scs ¥ R"®S*R™ or Sp,<R"™®R"'®S R™

with coordinates (s, 4.) OF (8j%4,.4,), Tespectively. Let us consider the

action of G}, on Sc s and the action of Wg’T)G on S, given by

A _ A ) .y i i
S ppgps = S papoeps T Qpyps s Siopnepe = S5 paepe T gy gy - (10)

From (1), (3) and (10) it is easy to see that the symmetrization maps
0C,s - T;LQ - SC,s+2 , OLyr: T;-;LR - SL,rJrl
given by

A _ A K — K.
(8™ pzepinn) ©0Cs = Ny " po i opiora) (83" peeirin) © OLr = K (g inpr i)
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are equivariant.
We have the G¢F2-equivariant map

©YC,s d:ef(UC’,& 772717 RC,S—].)
(T5Q — Scsra X To 1 Q x W1
On the other hand we define the G2, ?-equivariant map
Yo,s : Scsy2 X T51Q x Wey — TEQ
over the identity of 75-1Q by the following coordinate expression
A A . A -1
Au vpre.ps =S pvpr..ps T hn(wu vpl...ps POI(TTSn Q))a (11)

where lin denotes the linear combination with real coeflficients which arises in
the following way. We recall that R¢ s_1 gives the coordinate expression

A A A —1
A vprps = D prwpseps = Wi vpr.pe — POL(T Q). (12)
We can write

A A A A
Au vipre.ps = S pwpr.ps T (Au V,pL.--Ps A(u V7P1~~-Ps))‘

Then the term in brackets can be written as a linear combination of terms of
the type

A A
AM V,PiP1---Pi—1Pi41---Ps Au Pis VP11 Pi—1Pi41--Ps )

i=1,...,s, and from (12) we get (11).

Moreover,
Yos 0 pes = idrs g -
Similarly we have the ﬁ{ Jrl’TH)G—equivariaunt map

def . r
Prr=(0Lridpr—2g xXm_1, R 1)
: 15,2 Q X TR — Sppn X T 2Q X T ' Rx U

and we define the Wg H’TH)G—equivariant map
Ve Sprp1 X TH2Q X T R x Uy — T 2Q x Th R
over the identity of T72Q x T~ R by the following coordinate expression

Kji/\ml---pr = Sji/\pl---pr + hn(uji/\pl---pr - pol(T,:l_zQ X T&_IR)) ) (13)
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where lin denotes the linear combination with real coefficients which arises in
the following way. We recall that Ry, ,_; gives the coordinate expression

Kjik,m---pr - Kjipw\pz---pr = Ujikm---pr - pOl(TrTn_QQ X T;z_lR))- (14)

We can write

i

i — g 4 K.
K; Ap1opr = 8§ Ap1opp T (KJ Ap1.-pr K; (>\791~-~Pr))'

Then the term in brackets can be written as a linear combination of terms of
the type

K 7
KJ AsPiPl---Pi1Pig1---Pr KJ PisAPL--Pi—1Pid1e--Pr o

i=1,...,r, and from (14) we get (13).
Moreover,

YLr oYLy = ldTﬁl_QQnglR :

Now we have to distinguish three possibilities.
W(r+1,r+1) Gq

m

A) Let s = r — 1. We have the same orders of groups G7+! and
acting on T"1Q and T7, R.
Let us denote by

AT‘ET,CZ”Q X T;l_lR X Wy_9 x Up_1.

Then the map f o (Yor—1,%ry) @ Scry1 X Sprp1 X A" — Sp satisfies the con-
ditions of the orbit reduction Theorem 5 for the group epimorphism 7"+
WT(,:H’TH)G — WT(,I’T)G and the surjective submersion prg : S¢ 41 X Sg 41 X

A" — A" Indeed, the space S¢ 41X S 4118 a B:;fl’THG—orbit. Moreover, (10)

implies that the action of Bﬁfl’THG on Scy41 X Spy41 is simply transitive.

)

. . T . .
Hence there exists a unique W& G-equivariant map

g AT =T 2Q XTI 'R x W,_5 x U1 — Sp
such that the following diagram

(e,r—1,%L,r)
0

Scirar X Spri1 x AT Tr-1Q x T"R —L— Sp

1 .
pI‘3J/ (W:,QXW;,NRC,T*Z:IRL,Tfl)l ldSFJ/

idAT

AT AT L S
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commutes. So f o (Ycr—1,%Ls) = gr o pry and if we compose both sides with
(@cyr—1,9L,r), by considering

pr3 O(QOC,Tfla QOL,T) - (ﬂ-::% X ﬂ-:—lv jQC,7‘727 RL,T‘*l)v

we obtain

-1
f =gro©° (71_:_2 X 7-‘—77:—17 RCJ’—Q, :RLJ’—I) .

In the second step we consider the same construction for the map g, and
obtain the commutative diagram

(Yc,r—2%L,r—15idw,_ox1,_q)

SC,T X SL,r x AT % Wiy_o x Up_1

Pr3,4,5l

AT X W, o x Uy

id gr—1 XW_ogxUp_1

AT —9 ., Sk
(mr3xml 25, Rer—3,Re r—2,idw, _yx1, 4 )l ids l
r—1 gr—1
A X WT_Q X ur_l —_— SF
. . —1,r—1 . _
So that there exists a unique Wygf " )G-equlvamant map gr—1 : AT X W,_a X

U,_1 — Sp such that

r—2 r—1 :
gr = gr—10° (7T7~_3 X T2, 92C,’I‘—3) :RL,T—27 1dWr,2><u,n,1)a

i.e.

r—

f=gr10(m 23 x 7 _5,Rep—s, Rey—2, R p2, Rpro1) -
Proceeding in this way we get in the last step a unique Wrsf ’k)G—equivariant
map
gk : T,f;QQ X Trlf;lR x Wh=2r=2) s qk=1r=1) _, SF

such that

f =gk © (ﬂ]::é X 7-‘-17;_1, R(CIVC*Q,TfZ)’ ng,17,n,1)) '

B) Let s = r — 2. We have the action of the group G”, on 77-2Q) and the

action of the group WgH’Tﬂ)G on 17 R.
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Then the map f o (idyr—20,%r,) : Sprs1 X T 2Q X Ty 'R x Uy — Sk
satisfies the conditions of the orbit reduction theorem 5 for the group epi-
morphism mﬁ“ﬂ : W,SZH’TH)G — },Z“’”G and the surjective submersion
Progq : Spppr X T 2Q x T PR x Uy — T 2Q X T PR x Up—1. Indeed,
the space S 11 is a B;;fl’THG—orbit. Let us note that the action of B;’;TLTHG
on Sr,,41 is transitive, but not simple transitive. Hence there exists a unique
Wg’r)G—equivariant map g, : T72Q x T'"'R x U,_1 — Sp such that the fol-

lowing diagram

_9 1 (idT:r;QvaL,r)
Spri1 X TH2Q X T 'Rx Uy — 2

Pr2,3,4l

Tr=2Q x TP R x Uy g

id,, — _
Tr2Qx T Y Rx U,y

Tr2Q x TR~ —1— Sp
(id 2, ><7r:71,iRL,T,1)l idsFl
T 2Q x T 'Rx Uy —2— Sk

commutes. So fo (idpr—24,%L,r) = gropra 34 and if we compose both sides with
(idT;;;Q QP L), by considering

Pra 34 0(idyy-20, pr.r) = (dgy-2q XM 1, R 1),
we obtain
F=gro(idpy2g xm 1, Rer1).

Further we proceed as in the second step in A) and we get a unique WT(f lel
equivariant map

gk - TTZ_QQ X Trlfz_lR > W(k—2,r—3) % u(k‘—l,r—l) — Sp
such that
r— r k—2,r—3 k—1,r—1
f=gio (mZy x iy, RE ) R{ ).
C) Let s > r — 1. We have the action of the group Wr(,fH’TH)G on T30 x

T R.
By [5] there exists a W,(nf Jrl’T_H)G—equivariant mappin
g

gr+]_ . Trrn_lQ X T;;LR X W(T—l,s—l) N SF
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such that

. r—1,s—1
f=gry10(mi_1 X ldT;LR,fR(c " ))-

gr+1 is then the mapping satisfying the condition A), i.e. there is a unique
(k.k) o
W’ G-equivariant map

gk Tﬁ’;QQ X Trﬁ*lR « W(k*Q,T*2) % u(kfl,rfl) R SF

such that

—9 k—2,r—2 k—17r—1
Gra1 = gr o (mp 2 sy RET2TR gkl

i.e.,

f=gro (7'('2_2 X 7-[-]:_17Rgf—2,s—1)’gzgk—l,r—l)) .

Summarizing all cases we have

e )

for any s > r — 2 and the restriction of g; to 77, 2Q x T/, 'R x Cgc—zs—l) X
Cékil’rfl) is uniquely determined map g we wished to find. QED

In the above Theorem 16 we have found a map g which factorizes f, but we
did not prove, that

S r k— yS— k— ,’f‘*l
(Th—g X 7Tk—1aR(c ? UafR(L ! )) :

T?f’bQ X T,;LR — T"EL_QQ % T,,I;:l_lR x Cgi?—zgs—l) x Cék_l"r—l)

satisfy the orbit conditions, namely we did not prove that

)

(75 X g, RATHSTD ULyt (jh=2) ot 2=l R L=,y

is a B;ZZ’T+1G-orbit for any (j§_2)\,j§_17,rg_Q’S_l),rék_l’T_l)) € TF2Q x

TF1R x CgC_Q’S_l) X Cék_l’r_l). Now we shall prove it.

17 Lemma. If (i, 557), (GEA, jo4) € T5.Q x T R satisfy

s r k—2,5—1 k—1,r—1 .5 o
(Mg X ﬂk—lv:R(c )afR(L ))(]o)\dw) =

k—2,5—1 E=17—1)\/ :s< .
(mh_y x wh_q, RETHTD RELTTD)GsX i),

then there is an element h € BZ,'ZQ’THG such that h. (jé)’\,jgﬁ) = (35N, 307)-



92 J. Janyska

ProOF. Consider the orbit set (7)5,Q x T&R)/BZ,ZZTHG. This is a W,FF G-
set. Clearly the factor projection

p:TpQ x Ty R — (T5,Q x TyR) /By '@
is a Wéf +2’T+1)G—map. By Theorem 16 there is a W,(f k) G-equivariant map
9 ThPQx T R x OGOV S (1@ x TR /BTG

(k—2,s—1) p(k—1,r—1)

satisfying p =go (w;_, x mr_,, R , R Cf
k—2 k—1:*C L
k—2,5—1 k—=1,r—1)\/ .5y -
(wf o > m g R RGN )
k—2,5—1 k—1r—1)\, .s{ s
= (miop x mhy, RO R GsA, 554)
o2y ke k—2,5—1) (k—1,r—1
N e s ) B
then
sy 2\ ke k—2,5—1) (k—1,r—1 8§ e
(A 367 = gGET2A G, e 82D BN = (A, )
ie. (JoA,907), ,,j ¥) are in the same ’ -orbit, proving Lemma 17.
e (JSM 957), GEA, 454 h B Georb L 17

The space T42Q x Th'R x O™ o O "V is a lefs wiphe-

space corresponding to the G-gauge-natural bundle J¥~2 Cla M x J*~1Lin E x
M M

CgC_Q’S_l)M X Cék_l’r_l)E. Setting V*5) = (VF,...,V?), then, as a direct con-
M
sequence of Theorem 16, we obtain the first k-th order valued reduction theorem

for linear and classical connections in the form.
18 Theorem. Lets >r—2,r+1,s+2 >k > 1. Let I be a G-gauge-natural
bundle of order k. All natural differential operators

f:C*(ClaM x LinE) — C*(FE)
M

which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form

FGPA ) = g(G* 20, 7 V2TV RAL v LD RIKT)
where g is a unique natural operator

g:J"2ClaM x J*'LinE x ¢4 VM x oV VE S FE.
M M M

19 Remark. From the proof of Theorem 16 it follows that the operator g

is the restriction of a zero order operator defined on the k-th order G-gauge-

natural bundle J*2ClaM x J*1Lin E x Wk=2s=1)pg 5 yk=1r=1) g
M M M
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4 The second k-th order valued reduction theorem
for linear and classical connections

Write (Eb1E2); <= EPIP? @ @'T*M, i > 0, and set

k.r) def ( g, : p2(r) et ( gop1.p2 (0,
(g B B oy (B (B S ).
The i-th order covariant differential of sections of EL12 with respect to (A, K)
is a natural operator
V' C®(ClaM x Lin B x i) — C((Bgg):)

which is of order (i — 1) with respect to classical and linear connections and of

order i with respect to sections of EL1P2. Let us note that EL1F? is a (1, 0)-order

G-gauge-natural bundle and let us denote by V & @P1 R" @ @9 IR™ @P2 R™ ®

. . : TR VI
®% R™ its standard fiber with coordinates (v4) = (vﬁ;’;#llu‘;z) By V; or

VEDEY L x V,, VO L Y00 we denote the standard fibers of (ED2);
or (Egll:gj)(k’r), respectively. -

Hence we have the associated W,(,fH’ZH)G—equivariant map, denoted by the
same symbol,

VT QX TR TLV — V.

If (vA, 04y, . .. ,UA,\L”)\Z.) are the induced jet coordinates on TV (symmetric
in all subscripts) and (VA A1..);) are the canonical coordinates on V;, then V* is
of the form

(VA)\I-uAi) oV' (15)
= vt +Pl(TL'Q x T R < TV,
where pol is a polynomial on T 1Q x TE 1R x TE1V.

We define the k-th order formal Ricci equations, k > 2, as follows. For k = 2
we have by Remark 13

VAL —pol(CY x ¢ x v) =o0. (E»)

For k > 2, (F}) is obtained by the formal covariant differentiating of (Fq) —
(Ex—1) and antisymmetrization of the last two formal covariant differentials.
They are of the form

VA il — pOl(Cg%Q) X Cékiz) x VE2) =0, (Ex)
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20 Definition. The k-th order formal Ricci subspace ZF) C Cgﬁﬂ) X
Cgc_Q) x V() is defined by equations (Es),...,(Ey), k > 2. For k = 0,1 we
set Z(0) =V and ZW = V).

In [4] it was proved that Z(*) is a submanifold of C’gﬂd) X C’gﬁz) x V(%) and
the restricted morphism

(RED) =D W)y Th1g S TR1R x TEYV — 20

is a surjective submersion. Let us consider the projection prj, : Z ") -z We
have an affine structure on fibres of the projection pr;_; : Z () — z- 1t
follows from the fact that Z(") is a subbundle in Z("—1) x (Cor—2xCLy—2xV;)
given as the space of solutions of the system of nonhomogeneous equations

(Ey). Let us denote by Zz(lf,;i)l) the fiber in 25~V ¢ Z(*=1) of the projection

pry_q: 2 — Z(,=1) Then we can consider the fiber product over Z®*—1

(TF2Q x TF 2R x TF vy x 2z
Z(kfl)

and denote it by
TF=2Q x TE2R x TF=1y x z(kr)

21 Lemma. Ifr+ 1>k > 1, then the restricted morphism

r— r— r k—2,7r-2 k—2,r—2 r
(Mh—p X M3 X Th_y) X (Rg ),SQ(L ) wkn)y

TIIQ X TP 'R X TNV — TR2Q x TF2R x TF1v % z(k7)
1§ a surjective submersion.
ProOF. The proof of Lemma 21 follows from the commutative diagram

(RG22 g

Tr'Q < TI'Rx TNV Z)
w Ty | [prics
(k—3) p(k—3) T (k—1)
Th=2Q » TE-2R x Th-1y 2 % VD s
where all morphisms are surjective submersions. Hence
(m. 2y X moy X o) x (RETHTTL R, v (16)

is surjective. For k = r the map
(Rg72,r72) _ :RC,r—Q; Rg72,r72) _ RL,r—Z, v(r,r) _ vr)

is an affine morphism over (Rg_g) , fR(LT_?’), V(=1) with constant rank, i.e. (W::% X
W::; xm_1) X (Rer—2,Rpr—2, V") is a submersion. The mapping (16) is then

a composition of surjective submersions. QED
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22 Theorem. Let Sy be a left WT(,f’k)G—mam'fOld. For every WT(,IJFI’TH)G—

equivariant map f : Th 'Qx T A RX TV — S there exists a unique Wk Gl
equivariant map g : TE=2Q x TF2R x TE=1V x Z*,") — Sp such that

Fmgo(m=)xoar=dxopr_ | RU2rD) QU=2r=2) Glkr)).
PrOOF. Consider the map
(idgr1g X idgr p Xy, V&) TH1Q X T 'R X TV —
— Tr1Q x TI R x TRy x vkn)

and denote by V") < Tr=1Q x Tr=1R x TE-1V x V(%) its image. By (15),
the restricted morphism

VED T x TR < TV — VD)

is bijective for every (qu)\’qury) € T/71Q x T'7'R, so that V*r) s an
equivariant diffeomorphism. Define

(RE2r72) RET2TRy Y k) TE22Q ) TE2R < TENY x 20
by

S(k—27r—2) &5(k=2,r—-2)\, r—1y -1 k—
(RG22 RE2TD) G oy e ) =
K2\ k2 ke k—27r—2)  .pe k—27—2) ) p—1y
= (6 M 360 e RGN RE TG AT ), ),
(jg_l)\,jg_lw,jg_lu, v) € V®r) By Lemma 15 (i%gc_2’T_2),9~Q(Lk_2’r_2)) is a sur-
jective submersion.

Thus, Lemma 15 and Lemma 17 imply that (ig_Q’r_Q),iik_Q’r_g)) satis-
fies the orbit conditions for the group epimorphism 7r,:+kl’r+1 Wit g

W,gf k) G and there exists a unique W,Ef k) G-equivariant map g : TJZ_QQ XT#L_QRX
TE=1YV % ") — Sp such that the diagram

k) G

(i(clf72,7‘72)7i(Lk72,r72))l

Th2Q x TE 2R x TV x Zkr) 19,

_ _ f
Q< T 'R < ThV —— Sp
(g ey TR g2 wn) | s |

TE2Q x TE 2R x TE1V x z0r) 2 §p
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commutes. Hence f o (%(’”))_1 =go (SNQ(C{C*ZT*Z), f’igkiz’rd)). Composing both
sides with V*7) | by considering

(i(clvc—2,r—2)7j~%(k—2,r—2)) o Vikr) —

L
(ﬂ_z:é x ﬂ-Z:é X 7_[_]:_1’ Rg_2’T_2), R(Lk—ZT—Q)? V(k’T)),
we get,
f=go(mh x mh x mhy, R R gk

TE=2Q x TF2R x T5=1V x Z*7) is closed with respect to the action of the

group Wr(f )G The corresponding natural bundle is J*~2 Cla M x J*~2Lin E x
M M

Jk_lEgll’gj x Z#) E . Then the second k-th order valued reduction theorem for
M

linear and classical connections can be formulated as follows.

23 Theorem. Let F' be a G-gauge-natural bundle of order k > 1 and let
r+1 > k. All natural differential operators f : C*°(ClaM x Lin E x EP1P?) —
M M

q1,92
C>*(FE) of order r with respect sections of Eb''L2 are of the form

FUTIA TR, ) =
g(jk72A7jk72K7jkfl¢7 v(k‘72,7'72)R[A]7 v(k72,7‘72)R[K]’ v(k,T’)(p)
where g is a unique natural operator

g:J"2ClaM x J*?LinE x J*LER P2 « zE  FE.
M M M

24 Remark. The order (r — 1) of the above operators with respect to
linear and classical connections is the minimal order we have to use. The second
reduction theorem can be easily generalized for any operators of orders s; or so
with respect to connections A or K, respectively, where s; > s9—2, s1, 89 > r—1.
Then

FUTAJZK, @) =
g(jkf2A’jk72K’jk71q)’ v(ka,slfl)R[A]’ VUQ*ZSQ?UR[K], v(k,r)q)) )
25 Remark. It is easy to see that the second reduction theorem can be

(2
generalized for any number of fields ®,7 = 1,...,m, of order (1,0) and that any
finite order operator

7
f(j81AajS2K7jriq))7 SlaSQZmaX(ri)_1781 252_27

i
factorizes through j%2A, j*72K, j*~1® and sufficiently high covariant differen-
i
tials of R[A], R[K], ®.
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