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1 Introduction

A Riemannian manifold (M, g) is said to be conformally recurrent [1] if there
exist a 1-form π such that the conformal curvature C satisfies ∇C = π ⊗ C,
where ∇ is the Levi-Civita connection of g. This type of manifold appears as
a generalization of conformally symmetric manifold, introduced and studied by
Chaki and Gupta [7]. The aim of this paper is to study a conformally recur-
rent (κ, µ)-contact space. By a (κ, µ)-contact space we mean a contact metric
manifold M2n+1(η, ξ, ϕ, g) in which the curvature tensor R satisfies

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hY − η(X)hY ),

for some constants κ and µ on M and 2h = Lξϕ . Such class of space was
introduced in [5] and studied in depth by Boeckx in [6]. Actually this class of
space was obtained through D-homothetic deformation [11] to a contact metric
manifold whose curvature satisfying R(X,Y )ξ = 0. There exist contact met-
ric manifolds for which R(X,Y )ξ = 0. For instance the tangent sphere bundle
of flat Riemannian manifold admits such structure. Further it is well known
that(see [5]) the tangent sphere bundle T1M of a Riemannian manifold of con-
stant curvature c is a (κ, µ)-contact metric space where κ = c(2−c) and µ = −2c.
Thus in onehand there exists examples of (κ, µ)-contact manifolds in all dimen-
sions and on the other this class is invariant under D-homothetic deformation.
It is evident that the class of (κ, µ)-contact manifolds contains the class of
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Sasakian manifolds, in which κ = 1. In [8] the author and Sharma proved that
a conformally recurrent Sasakian manifold is locally isometric to a unit sphere
S2n+1(1). Generalizing this for a (κ, µ)-contact manifold we prove

1 Theorem. Let M2n+1,(n > 1) be a conformally recurrent (κ, µ) -contact
space. Then M2n+1 is locally isometric to either (i) unit sphere S2n+1(1) or (ii)
En+1 × Sn(4).

Preliminaries A differential 1-form η on a (2n+1)dimensional differential
manifoldM is called a contact form if it satisfies η∧(dη)n 6= 0 everywhere onM .
By a contact manifold (M, η) we mean a manifold M together with a contact
form η. For a contact form η there exists a unique vector field ξ, called the
characteristic vector field, such that η(ξ) = 1 and dη(ξ,X) = 0, for any vector
field X onM . Moreover , it is well known that there exists a Riemannian metric
g and a (1-1) tensor field ϕ satisfying dη(X,Y ) = g(X,ϕY ) , η(X) = g(X, ξ)
, ϕ2X = −X + η(X)ξ. From these we have ϕξ = 0, ηoϕ = 0, g(ϕX,ϕY ) =
g(X,Y ) − η(X)η(Y ). The manifold M equipped with the structure (η, ξ, ϕ, g)
is called a contact metric manifold. Denoting by L the Lie differentiation and
R the curvature tensor of M , we define the operator h and l by h = 1

2Lξϕ and
l = R(., ξ)ξ. The (1-1) tensors h and l are self adjoint and satisfy hξ = 0, lξ = 0,
Trϕ = Trh = Trϕh = 0, hϕ = −ϕh. For a contact metric manifold we also
have (see [2] and [4])

∇Xϕ = −ϕX − ϕhX, (2.1)

∇ξh = ϕ− ϕl − ϕh2, (2.2)

A contact metric manifold is K-contact (ξ is Killing ) if and only if h = 0.
Further a contact metric manifold is Sasakian if and only if

R(X,Y )ξ = η(Y )X − η(X)Y.

We now give the definition of a (κ, µ)-contact space. By a (κ, µ)-nullity distri-
bution on a contact metric manifold M2n+1(η, ξ, ϕ, g) for the pair (κ, µ) ∈ R2

is a distribution

N(κ, µ) : p→ Np(κ, µ) = {Z ∈ TpM |R(X,Y )Z =

= κ(g(Y, Z)X − g(X,Z)Y ) + µ(g(Y, Z)hX − g(X,Z)hY )}.
A contact metric manifold M is said to be a (κ, µ)-contact space if ξ belongs to
(κ, µ)-nullity distribution of M i.e. (see [5])

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hY − η(X)hY ). (2.3)

If Q denote the Ricci operator and r denote the scalar curvature of M , then the
following relations are known for a (κ, µ)-contact space. For details we refer [5].

h2 = (κ− 1)ϕ2, κ ≤ 1, (2.4)
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and κ = 1 if and only if M is Sasakian.

Qξ = (2nκ)ξ, (2.5)

(∇Xh)Y − (∇Y h)X =(1− κ)[2g(X,ϕY )ξ + η(X)ϕY − η(Y )ϕX]+

+ (1− µ)[η(X)ϕhY − η(Y )ϕhX],
(2.6)

QX = [2(n−1)−nµ]X+[2(n−1)+µ]hX+[2(1−n)+n(2κ+µ)]η(X)ξ, (2.7)

r = 2n[2(n− 1) + κ− nµ], (2.8)

The Weyl conformal curvature tensor C on a (2n + 1),(n > 1) dimensional
Riemanniam manifold is defined by

C(X,Y )Z =R(X,Y )Z − 1

2n− 1
[g(QY,Z)X − g(QX,Z)Y

+ g(Y, Z)QX − g(X,Z)QX]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ].

(2.9)

From this we also have (see [10])

(divC)(X,Y )Z =
2(n− 1)

2n− 1
[g(∇XQ)Y, Z)− g(∇YQ)X,Z)

− 1

4n
{(X.r)g(Y, Z)− (Y.r)g(X,Z)}. (2.10)

Finally,we recall the notion of a D-homothetic deformation [11] on a contact
metric manifold M2n+1(η, ξ, ϕ, g). By a D-homothetic deformation we mean
a change of structure tensors of the form η = aη, ξ = 1

aξ, g = ag + a(a −
1)η ⊗ η, where a is a positive constant. It is well known that M2n+1(η, ξ, ϕ, g)
is also contact metric manifold. A D-homothetic deformation with constant a
transforms a (κ, µ) -contact space into a (κ, µ)-contact space(see [5]), where

κ = κ+a2−1
a2

and µ = µ+2a−2
a .

Proof. [3 Proof Theorem 1]

Lemma. For a (κ, µ)-contact space, ∇ξh = µhϕ.

Proof. Setting Y = ξ in (2.3), and by definition of l and hξ = 0 we have
lX = κ(X − η(X)ξ) + µhX. Using this in (2.2) and recalling (2.4) we get the
required result. QED

We now prove our main theorem.
Since M is (κ, µ)-contact metric space we have κ ≤ 1. For κ = 1 the manifold

_____________________________________________________________________________________



210 Amalendu Ghosh

becomes Sasakian and the result follows from [8]. So we assume that κ < 1. By
hypothesis we have

(∇WC)(X,Y )Z = π(W )C(X,Y )Z. (3.1)

Contracting (3.1) over W provides

(divC)(X,Y )Z = g(C(X,Y )Z,P ). (3.2)

Where P is the recurrence vector metrically associated to the recurrence form
π. Since κ and µ is constant, from (2.8), we see that r is also constant. Applying
this consequence in (2.10), (3.2) reduces to

[g(∇XQ)Y, Z)− g(∇YQ)X,Z)] =
2n− 1

2(n− 1)
g(C(X,Y )Z,P ). (3.3)

Next, differentiating covariantly (2.5) along an arbitrary vector field X and
using (2.1) we get

(∇XQ)ξ = QϕX +QϕhX − 2nκ(ϕX + ϕhX). (3.4)

Setting Z = ξ in (3.3) and using (3.4) we find that

g(QϕX + ϕQX +QϕhX − hϕQX − (4nκ)X,Y )

=
2n− 1

2(n− 1)
g(C(X,Y )ξ, P ). (3.5)

Replacing X by ϕX , Y by ϕY and Z by ξ in (2.10) and by virtue of (2.3),
(2.5), it follows that C(ϕX,ϕY )ξ = 0. Thus setting X = ϕX , Y = ϕY in (3.5)
and making use of (2.5) ,(2.7) and the last equality we obtain

2κ+ µ− µκ+ nκ = 0. (3.6)

Taking the covariant differentiation of (2.7) and using (2.1) gives

(∇XQ)Y = [2(n− 1) + µ](∇Xh)Y
− [2(1− n) + n(2κ+ µ)][g(ϕX − ϕhX, Y )ξ + η(Y )(ϕX + ϕhX)]. (3.7)

Interchanging X and Y in (3.7) and subtracting the resulting equation from
(3.7) and by virtue of (2.6) and (3.6) we find that

g(∇XQ)Y, Z)− g(∇YQ)X,Z)

= (3µ− nµ− µ2 + 2nκ)[η(X)g(ϕhY, Z)− η(Y )g(ϕhX,Z)]. (3.8)
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Thus through (3.8), (3.3) reduces to

2(n− 1)

2n− 1
g(C(X,Y )Z,P )

= (3µ− nµ− µ2 + 2nκ)[η(X)g(ϕhY, Z)− η(Y )g(ϕhX,Z)]. (3.9)

Setting Z = P and X = ξ in (3.9) yields

(3µ− nµ− µ2 + 2nκ)g(ϕhY, P ) = 0.

So we have the two possible cases:

(i)3µ− nµ− µ2 + 2nκ = 0, (3.10)

(ii)hϕP = 0. (3.11)

Case (i) Solving (3.6) and (3.10) we obtain the following solutions

κ = µ = 0, κ = µ = n+ 3 or κ = n2−1
n , µ = 2(1− n).

When κ = µ = 0, we have from (2.3) R(X,Y )ξ = 0, and applying Blair’s theo-
rem (see [3]) we see that M is locally isometric to the product En+1 × Sn(4).
Since κ < 1 and n > 1, the last two solutions are not possible.
Case (ii) Operating (3.11) by h and in view of (2.4) it follows that P = π(ξ)ξ.
Use of this in (3.1) provides (∇WC)(X,Y )Z = π(ξ)η(W )C(X,Y )Z. Next, re-
placing W by ϕ2W and then contracting over W the last equality gives

(divC)(X,Y )Z = g((∇ξC)(X,Y )Z, ξ). (3.12)

Setting X = ξ in (3.7) and using ϕξ = hξ = 0 and through the lemma yields

(∇ξQ)Y = µ[2(n− 1) + µ]hϕX. (3.13)

Further taking the covariant differentiation of (2.3) along ξ and applying the
lemma provides

(∇ξR)(X,Y )ξ = µ2{η(Y )hϕX − η(X)hϕY }. (3.14)

On the otherhand from (2.9) and together with the help of (3.13), (3.14) and
making use of the fact that the scalar curvature is constant we have

g((∇ξC)(X,Y )Z, ξ) =

2µ(µ− 1)(n− 1)

2n− 1
{η(Y )g(hϕX,Z)− η(X)g(hϕY, Z)}. (3.15)
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Comparing (3.15) with (3.12) and then the use of (2.10) yields

2(n− 1)

2n− 1
[g(∇YQ)X,Z)− g(∇XQ)Y, Z)

=
2µ(µ− 1)(n− 1)

2n− 1
{η(Y )g(hϕX,Z)− η(X)g(hϕY, Z)}. (3.16)

Finally, setting Y = ξ in (3.16) and recalling (3.4) and (3.13) we obtain

QϕX +QϕhX − 2nκ(ϕX + ϕhX)− (2n− 1)µhϕX = 0.

Hence in view of (2.7) the last equation implies that

2µ+ 2nκ− nµ = 0. (3.17)

Solving (3.6) and (3.17) it follows that

κ = µ = 0 or κ = (n+1)2−3
n , µ = 2{(n+1)2−3}

n−2 (in the last solution n 6= 2, because
if n = 2, then from (3.17) it follows that κ = 0 and hence µ = 0). The formar
shows that M must be locally isometric to the product En+1 × Sn(4), and the
later leads to a contradiction as κ < 1.This completes the proof. QED
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