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Uniqueness of the 2-universality Criterion
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Abstract. Kim, Kim, and Oh gave a minimal criterion for the 2-universality of positive-
definite integer-matrix quadratic forms. We show that this 2-universality criterion is unique in
the sense of the uniqueness of the Conway-Schneeberger Fifteen Theorem.
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1 Introduction

By a quadratic form (or just form) of rank n we mean a degree-two ho-
mogeneous polynomial in n independent variables. If the quadratic form Q is
given by Q(x1, . . . , xn) =

∑
i,j aijxixj with aij = aji, then the matrix given by

L = (aij) is the Gram Matrix of a Z-lattice L equipped with a symmetric bilin-
ear form 〈·, ·〉 such that 〈L,L〉 ⊆ Z. We have immediately from these structures
that Q(x) = xTLx = 〈Lx,x〉 for x ∈ Rn.

For convenience, we use form-theoretic and lattice-theoretic language inter-
changeably throughout. A complete introduction to both approaches to quad-
ratic form theory can be found in [5].

We say that a rank-n form Q represents an integer k if there is an x ∈ Zn

such that Q(x) = k. More generally, we say that a lattice L represents another
lattice ℓ if there is a Z-linear, bilinear form-preserving injection σ : ℓ → L. A
form is called universal if it represents all positive integers and is similarly called
n-universal if it represents all positive-definite integer-matrix rank-n quadratic
forms. It is clear that a rank-n form Q is universal if and only if it is 1-universal,
as for an integer k

k = Q(x1, . . . , xn) ⇐⇒ Q(x1x, . . . , xnx) = kx2.

In 1993, Conway and Schneeberger announced the Fifteen Theorem, giving
a criterion characterizing the positive-definite integer-matrix quadratic forms
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which represent all positive integers. Specifically, they showed that any positive-
definite integer-matrix form which represents the set of nine critical numbers
S1 = {1, 2, 3, 5, 6, 7, 10, 14, 15} is universal [1, 2]. Kim, Kim, and Oh [4] pre-
sented an analogous criterion for 2-universality which we state in Theorem 1 of
Section 3.

The set S1 of the Fifteen Theorem is known to be unique. Indeed, if S ′1 is a
set of integers such that a quadratic form is universal if and only if it represents
the full set S ′1, then S1 ⊆ S ′1. We show an analogous uniqueness result for the
2-universality criterion found by Kim, Kim, and Oh [4].

2 Notations and Terminology

If a Z-lattice L is of the form L = L1 ⊕ L2 for sublattices L1, L2 of L and
〈L1, L2〉 = 0 then we write L ∼= L1⊥L2 and say that L1 and L2 are orthogonal.

We write 〈a1, . . . , an〉 for the rank-n diagonal form

a1x
2
1 + · · ·+ anx

2
n
∼=




a1
. . .

an




and denote by [a, b, c] the rank-2 form

ax2 + 2bxy + cy2 ∼=
(
a b
b c

)
.

From the classical reduction theory of quadratic forms, we may assume that the
form [a, b, c] is always Minkowski-reduced so that 0 ≤ 2b ≤ a ≤ c.

We work with a generalization of the escalation method used by Conway [2]
and Bhargava [1]. Extending the definitions of Bhargava [1], we define a truant
of a lattice L to be a lattice not represented by L. An escalation of L by a
rank-n truant ℓ is a lattice L′ representing ℓ which contains L as a sublattice
with codimension at most n.

If S is a set of rank-n forms such that all escalations by elements in S eventu-
ally produce lattices which are n-universal, then every lattice which represents
all of S must contain an n-universal sublattice and thus is itself n-universal
(see [1–3]). We call any such S an n-criterion set. Thus, for example, the set S1
found by Conway [2] naturally gives the 1-criterion set

{x2, 2x2, 3x2, 5x2, 6x2, 7x2, 10x2, 14x2, 15x2}.
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3 Uniqueness of the 2-criterion Set

Kim, Kim, and Oh found the following 2-criterion set in [4]:

1 Theorem (Kim, Kim, and Oh). A 2-criterion set is given by

S2 := {〈1, 1〉 , 〈2, 3〉 , 〈3, 3〉 , [2, 1, 2], [2, 1, 3], [2, 1, 4]}.

More can be said about this criterion: the set S2 is a minimal 2-criterion
set, in the sense that for every form ℓ ∈ S2 there is some rank-4 form which
represents all of S2 but ℓ (see [4]). We now strengthen this result, showing that
S2 is the unique minimal 2-criterion set.

2 Theorem. The set of forms S2 given in Theorem 1 is the unique minimal
2-criterion set—that is, every 2-criterion set must contain S2 as a subset.

Proof. Throughout, T denotes a finite set of rank-2 forms not containing
some form ℓ ∈ S2. It suffices to show that for any such T there is some lattice
with truant ℓ which represents all of T , since we know from Theorem 1 that S2
is a 2-criterion set.

If 〈1, 1〉 6∈ T then we may write (by Minkowski reduction)

T = {〈1, c1〉 , . . . , 〈1, ck〉 , L1, . . . , Lk′},

where ci > 1 for all 1 ≤ i ≤ k and the first minimum of Li is also larger than 1
for each 1 ≤ i ≤ k′. Then, the lattice

〈1, c1, . . . , ck〉⊥L1⊥ . . .⊥Lk′

represents all of T but has truant 〈1, 1〉. We have therefore shown that any
2-criterion set must contain 〈1, 1〉.

Now, if 〈2, 3〉 6∈ T then we may express

{〈a1, c1〉 , . . . , 〈ak, ck〉} := {〈a, c〉 ∈ T | a ∈ {1, 2, 3}, c > 4} ,
{[d1, 1, e1], . . . , [dk′ , 1, ek′ ]} := {[d, 1, e] ∈ T | d ∈ {2, 3}, e > 5} ,

{L1, . . . , Lk′′} := {[p, q, r] ∈ T | 3 < p ≤ r} .

Then, the lattice

〈1, 1, 4, c1, . . . , ck〉⊥[2, 1, 2]⊥〈e1 − 2, . . . , ek′ − 2〉⊥L1⊥ . . .⊥Lk′′

represents all of T but has truant 〈2, 3〉, whence every 2-criterion set must
contain 〈2, 3〉. An analogous argument shows that every 2-criterion set must
also contain 〈3, 3〉.
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Likewise, if [2, 1, e∗] 6∈ T for some e∗ ∈ {2, 3, 4} then we consider the sets

{〈a1, c1〉 , . . . , 〈ak, ck〉} := {〈a, c〉 ∈ T | a ∈ {1, 2, 3}, c > e∗} ,
{[d1, 1, e1], . . . , [dk′ , 1, ek′ ]} := {[d, 1, e] ∈ T | d ∈ {2, 3}, e > e∗} ,

{L1, . . . , Lk′′} := {[p, q, r] ∈ T | 3 < p ≤ r} .

As the rank-e∗ form 〈1, . . . , 1〉 represents [2, 1, e] for all 1 < e < e∗, we observe
that the lattice

〈1, . . . , 1〉︸ ︷︷ ︸
e∗ times

⊥〈c1, . . . , ck, e∗〉⊥[d1, 1, e1]⊥ . . .⊥[dk′ , 1, ek′ ]⊥L1⊥ . . .⊥Lk′′

represents all of T but does not represent [2, 1, e∗]. We therefore see that every
2-criterion set must contain [2, 1, e∗] for each e∗ ∈ {2, 3, 4}.

Since we shown that every 2-criterion set must include each ℓ ∈ S2, we have
proven the theorem. QED
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