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Abstract. Kim, Kim, and Oh gave a minimal criterion for the 2-universality of positive-
definite integer-matrix quadratic forms. We show that this 2-universality criterion is unique in
the sense of the uniqueness of the Conway-Schneeberger Fifteen Theorem.
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1 Introduction

By a quadratic form (or just form) of rank n we mean a degree-two ho-
mogeneous polynomial in n independent variables. If the quadratic form @ is
given by Q(z1,...,z,) = Zi,j a;jriz; with a;; = aj;, then the matrix given by
L = (ai;) is the Gram Matriz of a Z-lattice L equipped with a symmetric bilin-
ear form (-,-) such that (L, L) C Z. We have immediately from these structures
that Q(x) = x! Lx = (Lx,x) for x € R™.

For convenience, we use form-theoretic and lattice-theoretic language inter-
changeably throughout. A complete introduction to both approaches to quad-
ratic form theory can be found in [5].

We say that a rank-n form @) represents an integer k if there is an x € Z"
such that Q(x) = k. More generally, we say that a lattice L represents another
lattice £ if there is a Z-linear, bilinear form-preserving injection o : £ — L. A
form is called universal if it represents all positive integers and is similarly called
n-universal if it represents all positive-definite integer-matrix rank-n quadratic
forms. It is clear that a rank-n form @ is universal if and only if it is 1-universal,
as for an integer k

E=Qz1,...,2,) <= Q(z1z, ..., z,x) = k.

In 1993, Conway and Schneeberger announced the Fifteen Theorem, giving
a criterion characterizing the positive-definite integer-matrix quadratic forms
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which represent all positive integers. Specifically, they showed that any positive-
definite integer-matrix form which represents the set of nine critical numbers
S = {1,2,3,5,6,7,10,14,15} is universal [1,2]. Kim, Kim, and Oh [4] pre-
sented an analogous criterion for 2-universality which we state in Theorem 1 of
Section 3.

The set S; of the Fifteen Theorem is known to be unique. Indeed, if S} is a
set of integers such that a quadratic form is universal if and only if it represents
the full set S7, then S; C §7. We show an analogous uniqueness result for the
2-universality criterion found by Kim, Kim, and Oh [4].

2 Notations and Terminology

If a Z-lattice L is of the form L = Li & Lo for sublattices L1, Lo of L and
(L1, L) = 0 then we write L = L1 1 Ly and say that Ly and Ly are orthogonal.
We write (ay,...,a,) for the rank-n diagonal form

ay
2 2
arx] + -+ apT;, =

an

and denote by [a, b, ¢] the rank-2 form

2 2 ~ a b
ax” + 2bxy + cy _<b c>'

From the classical reduction theory of quadratic forms, we may assume that the
form [a, b, c] is always Minkowski-reduced so that 0 < 2b < a < c.

We work with a generalization of the escalation method used by Conway [2]
and Bhargava [1]. Extending the definitions of Bhargava [1], we define a truant
of a lattice L to be a lattice not represented by L. An escalation of L by a
rank-n truant £ is a lattice L’ representing ¢ which contains L as a sublattice
with codimension at most n.

If S is a set of rank-n forms such that all escalations by elements in S eventu-
ally produce lattices which are n-universal, then every lattice which represents
all of § must contain an m-universal sublattice and thus is itself n-universal
(see [1-3]). We call any such S an n-criterion set. Thus, for example, the set Sy
found by Conway [2] naturally gives the 1-criterion set

{x?,222, 322 522, 622, 722, 1022, 1422, 1522},
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3 Uniqueness of the 2-criterion Set

Kim, Kim, and Oh found the following 2-criterion set in [4]:
1 Theorem (Kim, Kim, and Oh). A 2-criterion set is given by

Sy = {(1,1), (2,3), (3,3), [2,1,2], [2,1,3], [2,1,4]}.

More can be said about this criterion: the set Sy is a minimal 2-criterion
set, in the sense that for every form ¢ € Ss there is some rank-4 form which
represents all of So but £ (see [4]). We now strengthen this result, showing that
S, is the unique minimal 2-criterion set.

2 Theorem. The set of forms Sz given in Theorem 1 is the unique minimal
2-criterion set—that is, every 2-criterion set must contain So as a subset.

PROOF. Throughout, 7 denotes a finite set of rank-2 forms not containing
some form ¢ € Ss. It suffices to show that for any such T there is some lattice
with truant £ which represents all of T, since we know from Theorem 1 that S,
is a 2-criterion set.

If (1,1) ¢ T then we may write (by Minkowski reduction)

T:{<1,Cl>,...7<1,Ck>7L17...,Lk/},

where ¢; > 1 for all 1 <14 < k and the first minimum of L; is also larger than 1
for each 1 < i < k’. Then, the lattice

<1,Cl, ce ,Ck> J_LlJ_. . .J_Lk/

represents all of 7 but has truant (1,1). We have therefore shown that any
2-criterion set must contain (1,1).
Now, if (2,3) € T then we may express

{{at,c1) ..., (ag,er)} = ={{a,c) € T |a € {1,2,3},¢c >4},
{[dl,l,el],. . .,[dk/,l,ek/]} = {[d,l,e] S T| de {2,3},6 > 5},
{L1,...,Lg} :={[p,q,r] €T |3<p<r}.

Then, the lattice
<1, 1,4, Cly... ,Ck> J_[Q, 1, 2]J_ <€1 - 2, ey Gt — 2> J_LlJ_ ce J_Lk//

represents all of 7 but has truant (2,3), whence every 2-criterion set must
contain (2,3). An analogous argument shows that every 2-criterion set must
also contain (3, 3).
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Likewise, if [2,1, e,] € T for some e, € {2,3,4} then we consider the sets

{{a1,c1) ..., (ag,cx)} :={(a,c) € T |a € {1,2,3},¢c > e},
{[dl,l,el],...,[dk/,l,ek/]} = {[d,l,e] eT | de {2,3},6 > 6*},
{Li,...,Lgn} :={[p,q,r] € T |3 <p<r}.

As the rank-e, form (1,...,1) represents [2,1,¢] for all 1 < e < e, we observe
that the lattice

<1, ceey 1> 1 (Cl, vy Cky e*) J_[dl, 1, €1]J_ ce J_[dk/, 1, ek/]J_LlJ_ ce J_Lk//
—_———
e, times
represents all of 7 but does not represent [2, 1, e,]. We therefore see that every
2-criterion set must contain [2, 1, e,] for each e, € {2,3,4}.
Since we shown that every 2-criterion set must include each £ € Sy, we have
proven the theorem. QED
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