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Abstract. The classical Nagy-Foiaş-Langer decomposition of an ordinary contraction is
generalized in the context of the operators T on a complex Hilbert space H which, relative to
a positive operator A on H, satisfy the inequality T ∗AT ≤ A. As a consequence, a version of
the classical von Neumann-Wold decomposition for isometries is derived in this context. Also
one shows that, if T ∗AT = A and AT = A1/2TA1/2, then the decomposition of H in normal
part and pure part relative to A1/2T is just a von Neumann-Wold type decomposition for
A1/2T , which can be completely described. As applications, some facts on the quasi-isometries
recently studied in [4], [5], are obtained.
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1 Introduction and preliminaries

Let H be a complex Hilbert space and B(H) the Banach algebra of all
bounded linear operators on H. The range and the null-space of T ∈ B(H) are
denoted by R(T ) and N (T ), respectively.

Let A ∈ B(H) be a fixed positive operator, A 6= 0. An operator T ∈ B(H) is
called an A-contraction if it satisfies the inequality

T ∗AT ≤ A, (1)

where T ∗ stands for the adjoint of T . Also, T is called an A-isometry if the
equality occurs in (1). According to [8] we say that T is a pure A-contraction if
T is an A-contraction and there exists no non zero subspace in H which reduces
A and T on which T is an A-isometry. Such operators appear in many papers,
for instance [1, 2, 4, 5, 7–9].

Clearly, an ordinary contraction means an I-contraction, where I = IH is
the identity operator in B(H). A contraction T is also a T ∗T -contraction and a
ST -isometry, where ST is the strong limit of the sequence {T ∗nTn : n ≥ 1}.
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188 Laurian Suciu

According to [4], [5], an operator T ∈ B(H) which is a T ∗T -isometry is called
a quasi-isometry. A quasi-isometry T is a partial isometry if and only if T is
quasinormal, which means that T commutes with T ∗T ( [4], [7]).

If T is a quasinormal contraction then T and T ∗ are T ∗T -contractions
such that T and T ∗ commute with T ∗T , these being a particular case of A-
contractions S satisfying AS = SA.

In general, for an A-contraction T on H one has AT 6= TA, and further-
more, T ∗ is not an A-contraction (see [7]). This shows that the properties of
A-contractions are quite different from the ones of ordinary contractions. How-
ever, an A-contraction T is partially related to the contraction T̂ on R(A)
defined (using (1)) by

T̂A1/2h = A1/2Th (h ∈ H), (2)

where A1/2 is the square root of A. Recall that R(A) = R(A1/2).
If T is a regular A-contraction, that is it satisfies the condition AT =

A1/2TA1/2, then it is easy to see that T is a lifting of T̂ , or equivalently, T ∗ is
an extension of T̂ ∗. Even in this case N (A) is not invariant for T ∗, in general,
(see [7]) but it is immediate from (1) that N (A) is invariant for T .

This paper deals with some decompositions of H induced by A-contractions
and particularly, A-isometries.

Thus, in Section 2 we find natural generalizations of Nagy-Foiaş-Langer
decomposition and of von Neumann-Wold decomposition, in the context of A-
contractions T with AT = TA, that is in the commutative case. As conse-
quences, we recover the normal part and the pure (completely non normal)
part, as well as the normal partial isometric part, of a quasinormal contraction.

In Section 3 we completely describe the normal-pure decomposition of H rel-
ative to the operator A1/2T , when T is a regular A-isometry on H. In fact, this
decomposition is a von-Neumann-Wold type decomposition for A1/2T , by anal-
ogy with the case A = I (when T is an isometry). We give this decomposition
in terms of A and T , also using the polar decomposition of A1/2T .

As applications, we recover and we complete some facts from Section 2, and
we also obtain some results concerning the quasi-isometries, recently studied
in [4], [5]. More precisely, our characterizations of normal quasi-isometries are
related to a problem posed by Patel in Remark 2.1 [4].

2 Decompositions in the commutative case

It is known [8] that for any A-contraction on H the subspace

N∞(A, T ) =
∞⋂

n=1

N (A− T ∗nATn) (3)
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Canonical decompositions induced by A-contractions 189

is invariant for T , but it is not invariant for A, in general. However, this subspace
reduces A if T is a regular A-contraction (Theorem 4.6 [8]), but even in this
case it is not invariant for T ∗, as happens when T is an ordinary contraction.
When the subspace N∞(A, T ) reduces A, it is the maximum invariant subspace
for A and T on which T is an A-isometry (Proposition 2.1 [8]).

Using this fact, we can now generalize the classical Nagy-Foiaş-Langer the-
orem ( [2], [10]) for ordinary contractions, in the context of A-contractions T
with AT = TA. First we give the following

1 Lemma. For an A-contraction T on H the following assertions are equiv-
alent:

(i) AT = TA;

(ii) N (A) reduces T , and T is a regular A-contraction;

(iii) T ∗ is a regular A-contraction;

(iv) T ∗ is an A-contraction and either T , or T ∗ is regular.

Proof. Clearly, the implications (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial.

Now, the assumption (ii) means that AT = A1/2TA1/2 and R(A) = R(A1/2)
reduces T , whence we obtain A1/2T = TA1/2 because A1/2 is injective on R(A).
This gives

T̂A1/2 = A1/2T = TA1/2

so that T̂ = T |
R(A)

, and later one obtains for h ∈ H

TAT ∗h = A1/2TT ∗A1/2h = A1/2T T̂ ∗A1/2h = A1/2T̂ T̂ ∗A1/2h.

Next, since T̂ is a contraction on R(A) it follows that TAT ∗ ≤ A, that is
T ∗ is an A-contraction on H. Also one has A1/2T ∗ = T ∗A1/2, or equivalently
AT ∗ = A1/2T ∗A1/2, which means that T ∗ is a regular A-contraction. Hence (ii)
implies (iii).

Finally, from the hypothesis on T and the assumption (iv) we infer that
N (A) reduces T and also that AT = A1/2TA1/2, or AT ∗ = A1/2T ∗A1/2. But
these imply A1/2T = TA1/2, or equivalently AT = TA. Consequently (iv)
implies (v), which ends the proof. QED

We remark from the above proof that under the conditions (i)−(iv) we have
T |

R(A)
= T̂ , hence T is a contraction on R(A).

2 Theorem. Let T be an A-contraction on H such that AT = TA. Then
we have

N ∗
∞ : = N∞(A, T ) ∩ N∞(A, T ∗) (4)

= N (A)⊕N (I − S
T̂
) ∩ N (I − S

T̂ ∗)
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190 Laurian Suciu

and it is the maximum reducing subspace for A and T on which T and T ∗ are
A-isometries. Moreover,

Nu := N ∗
∞ ⊖N (A) (5)

is the maximum subspace contained in R(A) which reduces T to a unitary op-
erator.

Proof. Let N∞ = N∞(A, T ) and N∞∗ = N∞(A, T ∗). Since AT = TA the
subspaces N∞ and N∞∗ reduce A. Now if h ∈ N∞ ∩N∞∗ then for every integer
j ≥ 1 we have Ah = T ∗jAT jh = T jAT ∗jh, and for n ≥ 1 we obtain

T ∗nATnT ∗h = T ∗nTnAT ∗h = T ∗nTn−1Ah

= T ∗nATn−1h = T ∗Ah = AT ∗h.

Hence T ∗h ∈ N∞, and similarly one has Th ∈ N∞∗. Having in view thatN∞ and
N∞∗ are also invariant for T and T ∗ respectively, it follows thatN ∗

∞ = N∞∩N∞∗

reduces T , and obviously T and T ∗ are A-isometries on N ∗
∞. In addition, N ∗

∞

is the maximum reducing subspace for A and T on which T and T ∗ are A-
isometries, because N∞ and N∞∗ have similar properties relative to T and T ∗

respectively, as invariant subspaces.
Now since N (A) reduces A and T , while T , T ∗ are A-isometries on N (A),

it follows that N (A) ⊂ N ∗
∞. Therefore G = N ∗

∞ ⊖N (A) also reduces A and T ,
and T , T ∗ are A-isometries on G, hence we have for h ∈ G

AT ∗Th = T ∗ATh = Ah = TAT ∗h = ATT ∗h.

As G ⊂ R(A) and A is injective on R(A), we infer from these relations that
T is a unitary operator on G. Next, letM ⊂ R(A) be another subspace which
reduces T to a unitary operator. Then for h ∈M and n ≥ 1 we have

Ah = AT ∗nTnh = ATnT ∗nh = TnAT ∗nh = T ∗nATnh,

which provides thatM⊂ N∞ ∩ N∞∗, having in view (3). HenceM⊂ G, what
proves the required maximality property of G.

Finally, it is easy to see from (3) that the subspace N∞ can be expressed as
following

N∞ = {h ∈ H : Ah = T ∗nTnAh, n ≥ 1}
= N (A)⊕N (A0 − ST̂A0) = N (A)⊕N (I − S

T̂
),

where A0 = A|
R(A)

, T̂ = T |
R(A)

. Clearly, we used here that AT = TA and that

A0 is injective. Analogously (by Lemma 1) one has

N∞∗ = N (A)⊕N (I − S
T̂ ∗)

and thus one obtains the second equality in (4). QED
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Canonical decompositions induced by A-contractions 191

In what follows we say that an operator T ∈ B(H) is A-unitary if T and T ∗

are A-isometries. Obviously, if AT = TA then T is A-unitary if and only if T is
an A-isometry and T is normal on R(A), or equivalently (by Theorem 2) T is
unitary on R(A).

Using this concept, we can generalize in the context of A-contractions the
Nagy-Foiaş-Langer decomposition for contractions.

3 Corollary. Let T be an A-contraction on H such that AT = TA. Then
there exists a unique orthogonal decomposition for H of the form

H = Hu ⊕Hc (6)

where the two subspaces reduce A and T , such that N (A) ⊂ Hu and T is A-
unitary on Hu, while T is a completely non unitary contraction on Hc. In ad-
dition one has Hu = N ∗

∞.

Proof. By Theorem 2 the subspace Hu = N ∗
∞ has the required properties.

Also, since Hc = H⊖Hu ⊂ R(A)⊖N ∗
∞ ∩ R(A) and T |R(A)

= T̂ , we infer also

from Theorem 2 that T is a completely non unitary contraction on Hc. Thus
T has the above quoted properties relative to the decomposition (6). Let now
H = H′

u⊕H′
c be another decomposition with N (A) ⊂ H′

u and H′
u be a reducing

subspace for A and T , such that T is A-unitary on H′
u and T is a completely

non unitary contraction on H′
c. Then since N (A) ⊂ Hu ∩H′

u, one has

Hu ⊖H′
u = Hu ∩R(A)⊖H′

u ∩R(A),

and so Hu⊖H′
u reduces T to a unitary operator (by Theorem 2). ButHu⊖H′

u ⊂
H′
c, hence T is also completely non unitary on Hu ⊖H′

u. Thus, Hu ⊖H′
u = {0}

that isHu = H′
u, and consequentlyHc = H′

c. This shows that the decomposition
(6) is unique with respect to the quoted properties. QED

4 Corollary. If T is a regular A-contraction on H and A is injective, then
T is a contraction on H and the maximum subspace which reduces T to a unitary
operator is

Hu = N (I − ST ) ∩ N (I − ST ∗). (7)

Proof. Since AT = A1/2TA1/2 and A1/2 is injective it follows that TA1/2 =
A1/2T = T̂A1/2, hence TA = AT and T = T̂ , that is T is a contraction on H.
In this case, Hu = N ∗

∞ has the form (7), having in view (4) and that N (A) =
{0}. QED

Clearly, in the case A = I every of the above corollaries just give the Nagy-
Foiaş-Langer theorem concerning the unitary and the completely non unitary
part of a contraction.
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192 Laurian Suciu

5 Corollary. Let T be an A-isometry such that T ∗ is a regular pure A-
contraction on H. Then T is a shift on H.

Proof. By Lemma 1 one has AT = TA and since T ∗AT = A, one obtains
that AT ∗T = A on H. Also, since N (A) reduces T ∗ to an A-isometry and T ∗ is
a pure A-contraction, it follows that N (A) = {0}, that is A is injective. Then
the previous equality implies T ∗T = I so that T is an isometry on H. On the
other hand, from Theorem 2 we have that N ∗

∞ reduces T ∗ to an A-isometry,
hence N ∗

∞ = {0} (having in view the hypothesis). This implies Hu = {0} and
by Corollary 4 this means that T is completely non unitary, that is a shift on
H. QED

As a consequence one obtains a version forA-isometries of the von Neumann–
Wold decomposition [2, 10] for isometries.

6 Corollary. Let T be an A-isometry such that AT = TA. Then there exists
a unique orthogonal decomposition for H of the form

H = Hu ⊕Hs (8)

where the two subspaces reduce A and T , such that N (A) ⊂ Hu and T is A-
unitary on Hu, while T is a shift on Hs. Moreover, Hu is the normal part for
A1/2T and we have

Hu = N (A)⊕N (I − S
T̂ ∗), Hs = N (I − S

T̂
)⊖N (I − S

T̂ ∗). (9)

Proof. Since T is an A-isometry one has N∞(A, T ) = H, and so Hu =
N∞(A, T ∗) is the subspace from (6) in this case. Also, Hu is the maximum
subspace which reduces A and T on which T ∗ is an A-isometry (by Theorem 2).
Hence T ∗ is a pure A-contraction on Hs = H⊖Hu, therefore T is a shift on Hs
(by Corollary 5). This gives the decomposition (8) with the required properties
relative to T .

Now since T and T ∗ are A-isometries on Hu, Hu will reduces A1/2T to a
normal operator. Then applying Proposition 2.2 [9] for the regular A-contraction
T ∗, we obtain that Hu is the maximum subspace which reduces A1/2T ∗ =
T ∗A1/2 on which we have TAT ∗ = A = T ∗AT . This means that Hu is the
normal part for T ∗A1/2, or equivalently for A1/2T .

Clearly, Hu = N ∗
∞ has the form from (9) obtained in the proof of Theorem

2. On the other hand, by the same theorem T is unitary on N (I−S
T̂ ∗), hence T

is an isometry on R(A) = N (I−S
T̂ ∗)⊕Hs. This means that R(A) = N (I−S

T̂
),

and thus we find the form of Hs from (9). The proof is finished. QED

7 Remark. Let T be as in Corollary 6. Since A = T ∗TA one has R(A) ⊂
N (I − T ∗T ), hence

H = N (A) ∨ N (I − T ∗T )
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but the two subspaces are not orthogonal, in general. In fact, it is easy to see
that R(A) = N (I − T ∗T ) if and only if N (I − T ∗T ) is invariant for T and T is
completely non isometric on N (A).

We also remark that if A = A2 then A1/2T = AT is an A-isometry and
AT commutes with A. In this case is not difficult to see that the corresponding
decompositions (8) for the A-isometries T and AT coincide, hence AT is A-
unitary on Hu and a shift on Hs.

As an application of Theorem 2 we obtain the following

8 Corollary. Let T be a quasinormal contraction on H. Then the maximum
subspace which reduces T to a T ∗T -unitary operator is N (T )⊕N (I−ST ∗), and
N (I − ST ∗) is the maximum subspace which reduces T to a unitary operator.
Hence T is T ∗T -unitary on H if and only if T is a normal partial isometry.

Proof. The hypothesis on T gives that T is a T ∗T -contraction and T com-
mutes with T ∗T . Since TT ∗ ≤ T ∗T and (T ∗T )n = T ∗nTn for n ≥ 1, it follows
that TnT ∗n ≤ T ∗nTn and also I − T ∗nTn ≤ I − TnT ∗n for n ≥ 1. This implies
that I − ST ≤ I − ST ∗ , whence one obtains

N (I − ST ∗) ⊂ N (I − ST ) ⊂ R(T ∗).

But R(T ∗) reduces T and N (I −ST ∗) = N (I −ST ∗
0
), N (I −ST ) = N (I −ST0),

where T0 = T |
R(T ∗)

. Thus, from Theorem 2 we infer in this case that N ∗
∞ =

N (T ) ⊕ N (I − ST ∗), and this subspace and N (I − ST ∗) have the required
properties. Clearly, T is a normal partial isometry on N ∗

∞, and it is easy to see
that N ∗

∞ is also the maximum subspace with this property. This fact ensures
the last assertion of the corollary. QED

In the sequel we denote as usually |T | = (T ∗T )1/2, that is the module of T .

9 Corollary. Let T be a quasinormal contraction on H with the polar de-
composition T =W |T |. Then the normal part in H for T is

Hn = N (T )⊕N (I − SW ∗),

where N (I −SW ∗) is the unitary part in H for W . Also, the pure part in H for
T is

Hp = N (SW ∗)⊖N (T )

that is the shift part in R(T ∗) for W .

Proof. Since T is quasinormal, W is a quasinormal partial isometry with
N (W ) = N (T ) satisfying WT ∗T = T ∗TW , hence W is also a T ∗T -isometry.
Then by Corollary 8 the maximum reducing subspace for W and T ∗T on which
W is T ∗T -unitary is Hn = N (T ) ⊕ N (I − SW ∗), and by Corollary 6, Hn is
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also the normal part for |T |W = T . Since SW ∗ = S2
W ∗ (W being quasinormal;

see [2], [8]) one has

H = N (SW ∗ − S2
W ∗) = N (SW ∗)⊕N (I − SW ∗),

hence the pure part in H for T is the subspace Hp = H⊖Hn = N (SW ∗)⊖N (T ).
But N (I − SW ∗) is the unitary part of W , and so it follows that Hp is the shift

part in R(T ∗) for the isometry W |
R(T ∗)

. QED

3 Von Neumann-Wold type decomposition for A1/2T

As we remarked, the decomposition (8) gives the normal and pure subspaces
for the operator A1/2T in the special case when the A-isometry T satisfies the
condition AT = TA, these subspaces being expressed in the terms of the op-
erators S

T̂
and S

T̂ ∗ where T̂ = T |
R(A)

. More general, if instead of condition

AT = TA we ask A1/2T to be quasinormal, then Corollary 9 gives the above
quoted subspaces in the terms of the partial isometry from the polar decompo-
sition of A1/2T . But in this last case, these subspaces can be intrinsic described
in the terms of A and T , and thus we obtain a von Neumann-Wold type decom-
position for A1/2T , as below. Recall that a subspace G ⊂ H is wandering for a
sequence {Sn : n ≥ 1} ⊂ B(H) if SnG ⊥ SmG, n 6= m.

10 Theorem. Let T be a regular A-isometry on H. Then L = N (T ∗A1/2)
is a wandering subspace for the operators A1/2Tn (n ≥ 0), and the maximum
subspace which reduces A1/2T to a normal operator is

Hn =
∞⋂

n=0

(T ∗nA1/2)−1L⊥. (10)

Moreover, Hn is invariant for A and T , and A1/2T is a pure injective quasinor-
mal operator on the subspace

H⊖Hn =
∞⊕

n=0

A1/2TnL =
∞∨

n=0

A1/2Tn(L ⊖N (A)). (11)

Proof. Let A and T be as above. It is easy to see that, because A = T ∗AT ,
the regularity condition AT = A1/2TA1/2 is equivalent to the fact that A1/2T
is quasinormal. Also we have |A1/2T | = A1/2, N (A) = N (A1/2T ) and R(A) =
R(T ∗A1/2).

Let L := N (T ∗A1/2). Clearly, N (A) ⊂ L and L reduces A because
T ∗A1/2A = AT ∗A1/2. In fact, one has

A1/2L = N (T ∗) ∩R(A1/2) = L ∩R(A1/2).
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Let us prove that L is a wandering subspace for the operators A1/2Tn, n ≥ 0,
that is A1/2TnL ⊥ A1/2TmL for n 6= m. Indeed, for l, l′ ∈ L we have if n ≥ 1
and m = 0,

〈A1/2Tnl, A1/2l′〉 = 〈l, T ∗nAl′〉 = 〈l, T ∗(n−1)A1/2T ∗A1/2l′〉 = 0,

and if n,m ≥ 1, m < n, then

〈A1/2Tnl, A1/2Tml′〉 = 〈l, T ∗nATml′〉 = 〈l, T ∗(n−m)T ∗mATml′〉
= 〈l, T ∗(n−m)Al′〉 = 〈l, T ∗(n−m−1)A1/2T ∗A1/2l′〉
= 0.

Here we used the fact that Tm is also a regular A-isometry for m ≥ 1.
Now we define the subspace

Hp :=
∞⊕

n=0

A1/2TnL =
∞∨

n=0

A1/2TnL =
∞∨

n=0

A1/2Tn(L ⊖N (A)),

which is invariant for A1/2Tm (m ≥ 0) because using the regularity condition
one obtains for n,m ≥ 0,

A1/2TmA1/2TnL = ATm+nL = A1/2Tm+nA1/2L ⊂ A1/2Tm+nL ⊂ Hp.

In particular, Hp reduces A. Also, Hp is invariant for T ∗mA1/2, m ≥ 1. For this,
firstly we remark that T ∗AL = {0} since A1/2L ⊂ L. So, if m ≥ n ≥ 0 then

T ∗mA1/2A1/2TnL = T ∗m−nAL = {0},

and in the case m < n we get

T ∗mA1/2A1/2TnL = T ∗mATmTn−mL = T ∗mA1/2TmA1/2Tn−mL =

ATn−mL ⊂ Hp,
because T ∗mA1/2Tm = A1/2, T being also a regular A1/2-contraction (by Theo-
rem 2.6 [8]). Thus it follows that Hp reduce A1/2Tn for any n. Now we remark
that Hp is invariant for T ∗ because

T ∗A1/2TnL = T ∗A1/2TTn−1L = A1/2Tn−1L ⊂ Hp
if n ≥ 1, and T ∗A1/2L = {0} (the case n = 0).

Next, we prove that

Hq := H⊖Hp =
∞⋂

n=0

(A1/2TnL)⊥
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is the maximum subspace which reduces A1/2T to a normal operator. First, it
is easy to see that

Hq = {h ∈ H : T ∗nA1/2h ∈ R(A1/2T ), n ≥ 0} =
∞⋂

n=0

(T ∗nA1/2)−1L⊥.

Let D be the self-commutator of A1/2T , that is

D = T ∗AT −A1/2TT ∗A1/2 = A1/2(I − TT ∗)A1/2.

Clearly DL ⊂ AL ⊂ L, hence L is a reducing subspace for D. It is also known
from Theorem 1.4 [3] that the maximum subspace which reduces A1/2T to a
normal operator is

Hn = {h ∈ H : DT ∗nA1/2h = 0, n ≥ 0}.
We will show that Hq = Hn.

Let h ∈ Hq, h = l + k where l ∈ L and k ∈ R(A1/2T ). Let {hn} ⊂ H such

that k = limnA
1/2Thn. Then A

1/2(h− k) ∈ R(A1/2T ) and A1/2l ∈ L, therefore
A1/2l = 0 and A1/2h = A1/2k. Thus we obtain

A1/2TT ∗A1/2h = A1/2TT ∗A1/2k = lim
n
A1/2TT ∗A1/2A1/2Thn

= lim
n
A1/2TAhn = lim

n
AA1/2Thn = Ak = Ah,

which means Dh = 0. Hence DHq = {0}, that is the operator A1/2T is normal
on Hq, which gives the inclusion Hq ⊂ Hn.

Now let h ∈ Hn. Since (A1/2T )∗h ∈ Hn one has DT ∗A1/2h = 0, hence using
the regularity condition on A and T we obtain

AT ∗A1/2h =A1/2TT ∗A1/2T ∗A1/2h = A1/2TA1/4T ∗A1/2T ∗A1/4h

=A1/2TA1/2T ∗2A1/2h = ATT ∗2A1/2h.

This implies by the injectivity of A1/2 on his range that

T ∗Ah = A1/2T ∗A1/2h = A1/2TT ∗2A1/2h ∈ R(A1/2T ).

Now using an approximation polynomial for the square root A1/2 (as in [6], pg.

261), one infers that T ∗A1/2h ∈ R(A1/2T ). This yields to T ∗2Ah = (T ∗A1/2)2h ∈
R(A1/2T ), and as above T ∗2A1/2h ∈ R(A1/2T ). Then by induction one obtains

T ∗nA1/2h ∈ R(A1/2T ) for any n ≥ 1, which gives h ∈ Hq. Therefore we have
Hn ⊂ Hq and finally Hn = Hq.

Consequently, Hn has the form (11), and N (A) ⊂ Hn because N (A) ⊂ L,
which implies that Hp = H⊖Hn reduces A1/2T to a pure injective quasinormal
operator. The proof is finished. QED
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Theorem 10 can be completed by the following

11 Theorem. Let T be a regular A-isometry on H and V be the unique
partial isometry on H satisfying V A1/2 = A1/2T and N (V ) = N (A). Then the
subspaces from (10) and (11) have the form

Hn =
∞⋂

n=0

V nH⊕N (A) =
∞⋂

n=0

V n
0 R(A)⊕N (A), (12)

and respectively

H⊖Hn =
∞⊕

n=0

V n(N (V ∗)⊖N (A)) =
∞⊕

n=0

V n
0 N (V ∗

0 ), (13)

where V0 = V |
R(A)

is an isometry on R(A). Furthermore, we have

L = N (V ∗) = N (V ∗
0 )⊕N (A) = (A1/2)−1(N (V ∗

0 )), (14)

and

A1/2L = L ∩R(A) = N (V ∗
0 ). (15)

In particular, one has L = N (V ∗
0 ) if and only if A is injective.

Proof. Let A, T, V as above. Then A1/2T is quasinormal and A1/2T =
V A1/2 is just the polar decomposition of A1/2T because |A1/2T | = A1/2 and
N (V ) = N (A1/2T ) = N (A). Also, N (V ∗) = N (T ∗A1/2) = L and V commutes
with A1/2, hence N (A) reduces V . Thus for h ∈ H we have

V A1/2h = A1/2Th = V0A
1/2h,

therefore V |
R(A)

= V0 and V0 is an isometry on R(A) because V is a partial

isometry with N (V ) = N (A). In addition one has

N (V ∗
0 ) = N (V ∗) ∩R(A) = L ∩R(A),

or equivalently L = N (V ∗
0 )⊕N (A). Also, for h ∈ H we have (T being a regular

A1/2-contraction)

T ∗A1/2h = A1/4V ∗
0 A

1/4h = V ∗
0 A

1/2h,

because V0 commutes with A1/2|
R(A)

. Hence h ∈ L if and only if A1/2h ∈ N (V ∗
0 ),

which gives that L = (A1/2)−1N (V ∗
0 ). Thus, all relations (14) and the second

relation from (15) are proved.
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Next, obviously one has A1/2L ⊂ L ∩ R(A). Conversely, let h ∈ L ∩ R(A)
such that h ⊥ A1/2L. Then Ah ∈ A1/2L, so h ⊥ Ah which gives A1/2h = 0.
Hence h ∈ R(A) ∩N (A), that is h = 0. Thus we infer that A1/2L = L ∩R(A),
this being the first relation from (15).

Now, from (11) we obtain

H⊖Hn =

∞∨

n=0

A1/2TnL =

∞∨

n=0

V nA1/2L

=

∞⊕

n=0

V n(N (V ∗)⊖N (A)) =

∞⊕

n=0

V n
0 N (V ∗

0 ),

which give the relations (12). This shows that H⊖Hn is the shift part in R(A)
for the isometry V0, hence we have

R(A)⊖ (H⊖Hn) =
∞⋂

n=0

V n
0 R(A) =

∞⋂

n=0

V nH,

and finally we obtain the relations (12). It is clear from (14) that L = N (V ∗
0 ) if

and only if A is injective. This ends the proof. QED

According to [9], an operator T ∈ B(H) is called an A-weighted isometry if
T ∗T = A. Then we can also describe the above subspace Hn using this concept,
as follows.

12 Proposition. Let T be a regular A-isometry on H and Hn be as above.
Then Hn is the maximum subspace which reduces A and A1/2T on which
(A1/2T )∗ is an A-weighted isometry. Moreover, one has Hn = Ru⊕N (A), where
Ru is the unitary part in R(A) for V0, V0 being as in Theorem 11. In addition,
(T |Hn)

∗ is an A-isometry on Ru.
Proof. From (12) we infer Hn = Ru ⊕ N (A) and as A1/2T is normal

on Hn we obtain A1/2TT ∗A1/2 = A on Hn, and this means that (A1/2T )∗ is
an A-weighted isometry on Hn. Conversely, both the previous relation and the
hypothesis T ∗AT = A imply that A1/2T is normal, hence any reducing subspace
for A and A1/2T on which T ∗A1/2 is an A-weighted isometry is contained in Hn.
In conclusion, Hn is the maximum subspace with the above quoted property.

Now since Hn is invariant for T and A, Ru will be invariant for A and
(T |Hn)

∗, and we prove that (T |Hn)
∗ is an A-isometry on Ru. Let h ∈ Ru. As

Ru ⊂ R(A) we have h = limnA
1/2hn for some sequence {hn} ⊂ H. Then if Pn

is the orthogonal projection onto Hn, we have

A1/2(T |Hn)
∗h = A1/2PnT

∗h = PnA
1/2T ∗h = Pn(lim

n
A1/2T ∗A1/2hn)

= Pn lim
n
T ∗Ahn = PnT

∗A1/2h = T ∗A1/2h,
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because Hn reduces A and A1/2T . Next we obtain

||A1/2(T |Hn)
∗h||2 = ||T ∗A1/2h||2 = 〈A1/2TT ∗A1/2h, h〉 = 〈Ah, h〉 = ||A1/2h||2,

because A1/2T is normal on Ru. This relation just shows that the operator
(T |Hn)

∗|Ru is an A|Ru-isometry on Ru. This ends the proof. QED

Remark from the above proof that in fact we have

A1/2(T |Hn)
∗h = (T |Hn)

∗A1/2h (h ∈ Ru),

that is (T |Hn)
∗|Ru commutes with A1/2|Ru , but (T |Hn)

∗ and A1/2|Hn are not
commutative on all Hn, in general. Concerning the commutative case we have
the following proposition, where by (i) we recover the fact that the above sub-
space Hn coincides with the subspace Hu from (8), and by (ii) and (iii) we
characterize the subspace Hn ⊖ N (A) and H ⊖ Hn respectively, as reducing
subspaces for A and T , in H.

13 Proposition. Let T be an A-isometry on H such that AT = TA. Then
the following assertions hold:

(i) Hn is the maximum reducing subspace for A and T , on which T ∗ is an
A-isometry.

(ii) Ru = Hn ⊖N (A) is the maximum subspace which reduces T to a unitary
operator such that Ru = ARu.

(iii) Hp = H ⊖ Hn is the maximum subspace which reduces T to a shift such
that Hp = AHp.

In particular, if A is injective then T is an isometry and H = Hn ⊕Hp is the
von Neumann-Wold decomposition for T .

Proof. Let V be the isometry from Theorem 11. Under the assumption
AT = TA we have V A1/2 = A1/2T = TA1/2, and we infer that T |

R(A)
=

V |
R(A)

= V0 so that T is an isometry on R(A). Hence, from Theorem 11 we

have that Ru reduces A and T such that T is unitary on Ru, which implies that
T ∗ is an A-isometry on Hn. So, Hn ⊂ Hu (the subspace from (8)) and trivially
Hu ⊂ Hn because Hu ⊖ N (A) reduces T to a normal operator. This gives the
assertion (i).

Now one has ARu ⊂ Ru, and if h ∈ Ru⊖ARu then Ah = 0 that is h ∈ N (A),
and since Ru ⊂ R(A) we have h = 0. Hence Ru = ARu, and T is unitary on
Ru. LetM⊂ H be another subspace having the above properties of Ru. Since
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T |M is unitary and T = V0 is completely non unitary on H⊖Hn, it follows that
M⊂ Hn. Thus we obtain

M = AM⊂ AHn = ARu = Ru

and consequently Ru has the required properties in (ii).

Next, from Theorem 11 we have that Hp reduces T to a shift because T = V0
on Hp. As Hp also reduces A and Hp ⊂ R(A), one obtains (as for Ru) that
Hp = AHp. If M ⊂ H is another subspace which reduces T to a shift such

that M = AM, then M ⊂ R(A) and from the assertion (ii) it follows that
M⊂ R(A)⊖Ru = Hp. So Hp has the required properties in (iii).

Clearly, if N (A) = {0} one has T = V , therefore T is an isometry on H,
while Hn = Ru and Hp are the unitary and shift parts in H for T , respectively.
The proof is finished. QED

As an application to quasi-isometries we have the following

14 Corollary. Let T be a quasi-isometry on H such that |T |T is a quasi-
normal operator. Then |T |T is normal if and only if

N (T ∗2T ) = N (T ).

Proof. From the hypothesis we infer that T is a T ∗T -isometry which is
also regular because S = |T |T is quasinormal. Let T = W |T | be the polar de-
composition of T . Then Theorem 2.1 [4] ensures that |T |W is a partial isometry
with N (|T |W ) = N (|T |) = N (|S|). Hence S = |T |W |T | is the polar decomposi-
tion of S. Now the corresponding subspace from (13) which reduce S to a pure
operator is

Hp =
∞⊕

n=0

Sn(N (W ∗|T |)⊖N (T )).

But we have

N (W ∗|T |) = N (S∗) = N (T ∗|T |) = N (T ∗|T |2) = N (T ∗2T )

where we used the fact that T ∗|T |2 = |T |T ∗|T | (T being a regular T ∗T -contrac-
tion) and that N (T ) = N (|T |), N (T ∗) = N (TT ∗). Thus we conclude that S is
normal if and only if Hp = {0}, or equivalent N (T ∗2T ) = N (T ). QED

15 Remark. In general one has T ∗2T 6= T ∗ even if T is a quasi-isometry
and |T |T is quasinormal, for instance if T is the operator on C2 given by

T =

(
1 0
1 0

)
.
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But any quasi-isometry T with ||T || = 1 satisfies T ∗2T = T ∗ (see [4], [9]). In
this last case, the assumption that |T |T is quasinormal leads to the fact that
|T |T = T and that T ∗T = (T ∗T )2, that is T is a quasinormal partial isometry.
Indeed, supposing that |T |T is quasinormal, one has T ∗T 2 = |T |T |T | because
||T |T | = |T |. Then with the above remark one obtains T = |T |T |T |, whence one
infers

T ∗T = |T |T ∗|T |2T |T | = |T |T ∗2T 2|T | = |T |T ∗T |T | = (T ∗T )2.

So T ∗T is an orthogonal projection, or equivalently T is a partial isometry, and
hence T ∗T = |T |. Finally, it follows

|T |T = T ∗T 2 = T,

therefore T is a quasinormal partial isometry.

Clearly, any quasinormal partial isometry T 6= 0 is a quasi-isometry with
||T || = 1. Having in view this fact, we obtain from Corollary 14 the following

16 Corollary. Let T be a quasinormal partial isometry. Then T is normal
if and only if N (T ) = N (T ∗).

Proof. Since T is a quasi-isometry and ||T || = 1 (supposing T 6= 0), we
have T ∗ = T ∗2T by Remark 15. Thus, if N (T ) = N (T ∗) then |T |T is normal
by Corollary 14, and from above remark we find T = |T |T , hence T is normal.
The converse assertion is trivial. QED

This corollary can be also obtained from Theorem 2.6 [4].
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Birkhäuser, Boston, (1997).

[3] M. Martin, M. Putinar: Lectures on Hyponormal Operators, Birkháuser, Basel, (1989).
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