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Abstract. The classical Nagy-Foiag-Langer decomposition of an ordinary contraction is
generalized in the context of the operators 1" on a complex Hilbert space H which, relative to
a positive operator A on H, satisfy the inequality 7" AT < A. As a consequence, a version of
the classical von Neumann-Wold decomposition for isometries is derived in this context. Also
one shows that, if T*AT = A and AT = A>T A", then the decomposition of H in normal
part and pure part relative to AY2T s just a von Neumann-Wold type decomposition for
AY2T | which can be completely described. As applications, some facts on the quasi-isometries
recently studied in [4], [5], are obtained.
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1 Introduction and preliminaries

Let H be a complex Hilbert space and B(H) the Banach algebra of all
bounded linear operators on H. The range and the null-space of T' € B(H) are
denoted by R(T") and N (T'), respectively.

Let A € B(H) be a fixed positive operator, A # 0. An operator 7' € B(H) is
called an A-contraction if it satisfies the inequality

T*AT < A, (1)

where T™ stands for the adjoint of T'. Also, T is called an A-isometry if the
equality occurs in (1). According to [8] we say that T' is a pure A-contraction if
T is an A-contraction and there exists no non zero subspace in ‘H which reduces
A and T on which T is an A-isometry. Such operators appear in many papers,
for instance [1,2,4,5,7-9].

Clearly, an ordinary contraction means an [I-contraction, where I = Iy is
the identity operator in B(#). A contraction T is also a T*T-contraction and a
Sr-isometry, where St is the strong limit of the sequence {T*"T™ : n > 1}.
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According to [4], [5], an operator T' € B(#) which is a T*T-isometry is called
a quasi-isometry. A quasi-isometry 1" is a partial isometry if and only if T is
quasinormal, which means that 7' commutes with 7*T" ( [4], [7]).

If T is a quasinormal contraction then T and T* are T*T-contractions
such that T and T commute with T*T', these being a particular case of A-
contractions S satisfying AS = SA.

In general, for an A-contraction T" on H one has AT # T A, and further-
more, T* is not an A-contraction (see [7]). This shows that the properties of
A-contractions are quite different from the ones of ordinary contractions. How-
ever, an A-contraction 7' is partially related to the contraction T on R(A)
defined (using (1)) by

TAY?h = A'?Th  (he M), (2)

where A'/? is the square root of A. Recall that R(A) = R(AL/2).

If T is a regular A-contraction, that is it satisfies the condition AT =
AY2T A2 then it is easy to see that T is a lifting of f, or equivalently, T is
an extension of T7*. Even in this case N'(A) is not invariant for T*, in general,
(see [7]) but it is immediate from (1) that A'(A) is invariant for T.

This paper deals with some decompositions of H induced by A-contractions
and particularly, A-isometries.

Thus, in Section 2 we find natural generalizations of Nagy-Foias-Langer
decomposition and of von Neumann-Wold decomposition, in the context of A-
contractions T" with AT = TA, that is in the commutative case. As conse-
quences, we recover the normal part and the pure (completely non normal)
part, as well as the normal partial isometric part, of a quasinormal contraction.

In Section 3 we completely describe the normal-pure decomposition of H rel-
ative to the operator AY/2T, when T is a regular A-isometry on 7. In fact, this
decomposition is a von-Neumann-Wold type decomposition for AV, by anal-
ogy with the case A = I (when T is an isometry). We give this decomposition
in terms of A and T, also using the polar decomposition of AY/2T'.

As applications, we recover and we complete some facts from Section 2, and
we also obtain some results concerning the quasi-isometries, recently studied
in [4], [5]. More precisely, our characterizations of normal quasi-isometries are
related to a problem posed by Patel in Remark 2.1 [4].

2 Decompositions in the commutative case

It is known [8] that for any A-contraction on H the subspace

Noo(A, T) = ﬁ N(A = T AT™) (3)

n=1
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is invariant for T', but it is not invariant for A, in general. However, this subspace
reduces A if T is a regular A-contraction (Theorem 4.6 [8]), but even in this
case it is not invariant for 7%, as happens when T is an ordinary contraction.
When the subspace N (A, T) reduces A, it is the maximum invariant subspace
for A and T on which T is an A-isometry (Proposition 2.1 [8]).

Using this fact, we can now generalize the classical Nagy-Foiag-Langer the-
orem ( [2], [10]) for ordinary contractions, in the context of A-contractions T
with AT = T A. First we give the following

1 Lemma. For an A-contraction T on H the following assertions are equiv-
alent:

(i) AT =TA;

(i1) N(A) reduces T, and T is a reqular A-contraction;
(iii) T* is a regqular A-contraction;
(iv) T* is an A-contraction and either T, or T* is regular.

PRrROOF. Clearly, the implications (i) = (i7) and (#i) = (iv) are trivial.
Now, the assumption (i) means that AT = AY2TAY? and R(A) = R(A/?)
reduces T, whence we obtain A'/2T = T AY/? because A'/? is injective on R(A).

This gives

TAY? = AV2T = TAV?
so that 7' = T\m, and later one obtains for h € H

TAT*h = AYV2TT*AV2h = AV2TT* AV2], = AV2TT* AV 2,

Next, since T is a contraction on R(A) it follows that TAT* < A, that is
T* is an A-contraction on M. Also one has AY/2T* = T* A2, or equivalently
AT* = AY2T*A'2 which means that T* is a regular A-contraction. Hence (i7)
implies (7).

Finally, from the hypothesis on T and the assumption (iv) we infer that
N(A) reduces T and also that AT = AY2TAY? or AT* = AY?T*A'/2. But
these imply AY/2T = TAY2 or equivalently AT = TA. Consequently (iv)
implies (v), which ends the proof.

We remark from the above proof that under the conditions (i) — (iv) we have
T|W =T, hence T is a contraction on R(A).

2 Theorem. Let T be an A-contraction on H such that AT = T A. Then
we have

NZ: = Na(AT)NNoo(A,T7) (4)
= N(A)@N(I—Sf)ﬂ/\/’([—si:*)
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and it is the mazximum reducing subspace for A and T on which T and T are
A-isometries. Moreover,

Ny =N eN(A) (5)

is the maximum subspace contained in R(A) which reduces T to a unitary op-
erator.

PROOF. Let Noo = Noo(A, T) and Noox = Noo(A, T™). Since AT = T'A the
subspaces Ny, and Ny reduce A. Now if h € Ny N Naos then for every integer
j > 1 we have Ah =T ATIh = TIAT* h, and for n > 1 we obtain

T AT T*h = T*T"AT*h = T*"T" 1 Ah
= T*AT" 'h =T*Ah = AT*h.

Hence T*h € N, and similarly one has Th € Ny.. Having in view that N, and
Noox are also invariant for T'and T* respectively, it follows that N = NooNNoox
reduces T, and obviously 7" and T™* are A-isometries on NZ. In addition, NZ
is the maximum reducing subspace for A and T on which T and T™* are A-
isometries, because Ny, and N« have similar properties relative to T and T*
respectively, as invariant subspaces.

Now since N(A) reduces A and T, while T', T* are A-isometries on N (A),
it follows that N (A) C NZX. Therefore G = N © N (A) also reduces A and T,
and T, T are A-isometries on G, hence we have for h € G

AT*Th =T*ATh = Ah =TAT*h = ATT"h.

As G C R(A) and A is injective on R(A), we infer from these relations that
T is a unitary operator on G. Next, let M C R(A) be another subspace which
reduces T to a unitary operator. Then for h € M and n > 1 we have

Ah = AT*"T"h = AT"T*"h = T"AT*""h = T*" AT"h,
which provides that M C Ny N Noos, having in view (3). Hence M C G, what

proves the required maximality property of G.
Finally, it is easy to see from (3) that the subspace N, can be expressed as

following
Noo = {heH: Ah=T"T"Ah, n > 1}
= N(A)©N (Ao — S740) = N(A) NI - S5),

where Ay = A\W, T = T’W' Clearly, we used here that AT =T A and that
Ay is injective. Analogously (by Lemma 1) one has

Noow = N(A) ® N (I = S3.)

and thus one obtains the second equality in (4). QED
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In what follows we say that an operator T' € B(H) is A-unitary if T and T*
are A-isometries. Obviously, if AT = T A then T is A-unitary if and only if T is
an A-isometry and T is normal on @, or equivalently (by Theorem 2) T is
unitary on R(A).

Using this concept, we can generalize in the context of A-contractions the
Nagy-Foiag-Langer decomposition for contractions.

3 Corollary. Let T be an A-contraction on H such that AT = TA. Then
there exists a unique orthogonal decomposition for H of the form

H =M, ®He (6)

where the two subspaces reduce A and T, such that N(A) C Hy and T is A-
unitary on H,, while T is a completely non unitary contraction on H.. In ad-
dition one has H, = N% .

PROOF. By Theorem 2 the subspace H, = N has the required properties.
Also, since H. = H S H, C R(A) © NL NR(A) and T|m =T, we infer also
from Theorem 2 that T is a completely non unitary contraction on H.. Thus
T has the above quoted properties relative to the decomposition (6). Let now
H = H.,®H. be another decomposition with N'(A) C H., and H,, be a reducing
subspace for A and T, such that T is A-unitary on #H!, and T is a completely
non unitary contraction on H.. Then since N'(A) C H, N H,,, one has

Hy ©OH, =Hy, NR(A) ©H), NR(A),

and so H, ©H,, reduces T to a unitary operator (by Theorem 2). But H,&H,, C
H.., hence T is also completely non unitary on H, © H!,. Thus, H, © H., = {0}
that is H, = H!,, and consequently H. = H.. This shows that the decomposition
(6) is unique with respect to the quoted properties. QED

4 Corollary. If T is a reqular A-contraction on H and A is injective, then
T is a contraction on H and the mazimum subspace which reduces T to a unitary
operator s

Mo = N(I — Sp) NN (T — Sp+). (7)

PROOF. Since AT = AYV2T AY2 and Al/QAiS injective it follows that T A2 =
AY2T = TAY2 hence TA = AT and T = T, that is T is a contraction on H.
In this case, H, = NZ has the form (7), having in view (4) and that N'(A4) =
{0}.

Clearly, in the case A = I every of the above corollaries just give the Nagy-

Foiag-Langer theorem concerning the unitary and the completely non unitary
part of a contraction.
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5 Corollary. Let T be an A-isometry such that T is a reqular pure A-
contraction on H. Then T is a shift on H.

PRrROOF. By Lemma 1 one has AT = T'A and since T*AT = A, one obtains
that AT*T = A on H. Also, since N'(A) reduces T* to an A-isometry and T is
a pure A-contraction, it follows that N'(A) = {0}, that is A is injective. Then
the previous equality implies T*T = I so that T is an isometry on H. On the
other hand, from Theorem 2 we have that NX reduces T* to an A-isometry,
hence NX = {0} (having in view the hypothesis). This implies H, = {0} and
by Corollary 4 this means that T is completely non unitary, that is a shift on
H. QED

As a consequence one obtains a version for A-isometries of the von Neumann—
Wold decomposition [2,10] for isometries.

6 Corollary. LetT be an A-isometry such that AT = T A. Then there exists
a unique orthogonal decomposition for H of the form

where the two subspaces reduce A and T, such that N(A) C H, and T is A-
unitary on H,, while T is a shift on Hs. Moreover, H, s the normal part for
AY2T and we have

Hy=N(A) NI —Sz), H=N(I-Sz)eNI—-5). (9

PROOF. Since T is an A-isometry one has Noo(A,T) = H, and so H, =
Noo (A, T*) is the subspace from (6) in this case. Also, H, is the maximum
subspace which reduces A and T" on which 7™ is an A-isometry (by Theorem 2).
Hence T™ is a pure A-contraction on Hs = H & H,, therefore T is a shift on H
(by Corollary 5). This gives the decomposition (8) with the required properties
relative to T'.

Now since T and T* are A-isometries on H,, H, will reduces AV2T to a
normal operator. Then applying Proposition 2.2 [9] for the regular A-contraction
T*, we obtain that H, is the maximum subspace which reduces AY/27T* =
T*AY2 on which we have TAT* = A = T*AT. This means that H, is the
normal part for T* A2, or equivalently for AY/2T.

Clearly, H, = NZ, has the form from (9) obtained in the proof of Theorem
2. On the other hand, by the same theorem T is unitary on N'(I —S5,), hence T

is an isometry on R(A) = N'(I —S5,)®Hs. This means that R(A) = N (I—-S5),
and thus we find the form of H; from (9). The proof is finished.

7 Remark. Let T be as in Corollary 6. Since A = T*T' A one has R(A) C
N (I —T*T), hence
H=N(A) VNI —TT)
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but the two subspaces are not orthogonal, in general. In fact, it is easy to see
that R(A) = N(I —T*T) if and only if N(I —T*T) is invariant for 7" and T is
completely non isometric on N'(A).

We also remark that if A = A2 then AY?T = AT is an A-isometry and
AT commutes with A. In this case is not difficult to see that the corresponding
decompositions (8) for the A-isometries T' and AT coincide, hence AT is A-
unitary on H, and a shift on H;.

As an application of Theorem 2 we obtain the following

8 Corollary. LetT be a quasinormal contraction on H. Then the maximum
subspace which reduces T to a T*T -unitary operator is N(T) @& N (I — Sp+), and
N(I — St+) is the mazimum subspace which reduces T to a unitary operator.
Hence T is T*T-unitary on ‘H if and only if T is a normal partial isometry.

PRrOOF. The hypothesis on T gives that 1" is a T*T-contraction and T’ com-
mutes with 77 Since TT* < T*T and (T*T)" = T*"T™ for n > 1, it follows
that T7T*™* < T*™T™ and also I — T*"T™ < I —T"T*" for n > 1. This implies
that I — Sp < I — Sp«, whence one obtains

NI — Sp+) C NI — Sp) C R(T*).

But R(T*) reduces T and N'(I — S+) = N (I — St;), N(I — St) = N(I - S1)),
where Ty = T|m. Thus, from Theorem 2 we infer in this case that N% =
N(T) & N(I — Sp+), and this subspace and N (I — Sp+) have the required
properties. Clearly, T is a normal partial isometry on N, and it is easy to see
that MV is also the maximum subspace with this property. This fact ensures
the last assertion of the corollary. QED

In the sequel we denote as usually |T| = (T*T)'/2, that is the module of T'.

9 Corollary. Let T be a quasinormal contraction on H with the polar de-
composition T = W|T|. Then the normal part in H for T is

Hp =N(T)® NI — Sw+),

where N'(I — Sw+) is the unitary part in H for W. Also, the pure part in H for
T is

that is the shift part in R(T*) for W.

PRrROOF. Since T is quasinormal, W is a quasinormal partial isometry with
NW) = N(T) satistying WT*T = T*TW, hence W is also a T*T-isometry.
Then by Corollary 8 the maximum reducing subspace for W and T*T on which
W is T*T-unitary is H, = N(T) ® N(I — Sw+), and by Corollary 6, H,, is
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also the normal part for |T|W = T. Since Sy~ = S3,. (W being quasinormal;
see [2], [8]) one has

H ZN(Sw* — SI%V*) ZN(Sw*) @N(I— Sw+),

hence the pure part in H for T is the subspace H, = HEOH,, = N (Sw-)oN(T).
But N (I — Sy+) is the unitary part of W, and so it follows that H,, is the shift
part in R(T*) for the isometry W|W QED

3  Von Neumann-Wold type decomposition for A/2T

As we remarked, the decomposition (8) gives the normal and pure subspaces
for the operator AY2T in the special case when the A-isometry T satisfies the
condition AT = T A, these subspaces being expressed in the terms of the op-
erators Sz and Sz, where T = T\W. More general, if instead of condition

AT = TA we ask AY?T to be quasinormal, then Corollary 9 gives the above
quoted subspaces in the terms of the partial isometry from the polar decompo-
sition of AY2T. But in this last case, these subspaces can be intrinsic described
in the terms of A and T', and thus we obtain a von Neumann-Wold type decom-
position for AY2T, as below. Recall that a subspace G C H is wandering for a
sequence {S, : n>1} C B(H) if S,G L S,,G, n # m.

10 Theorem. Let T be a regular A-isometry on H. Then £ = N (T*A'/?)
is a wandering subspace for the operators AY/2m (n > 0), and the mazimum
subspace which reduces AY2T to a normal operator is

Mo = [ (@A) Lt (10)

n=0

Moreover, H, is invariant for A and T, and AY2T 4s q pure injective quasinor-
mal operator on the subspace

HoMH, =PAPT L=\ APT(LON(A)). (11)
n=0 n=0

PROOF. Let A and T be as above. It is easy to see that, because A = T* AT,
the regularity condition AT = AY2T A2 is equivalent to the fact that AY2T
is quasinormal. Also we have |AY2T| = AY2) N (A) = N(AY2T) and R(A) =
R(T*A/2).

Let £ := N(T*A'?). Clearly, N(A) C £ and £ reduces A because
T*AY2A = AT*AY2. In fact, one has

AV2L = N(T*) N R(AY?) = LN R(AV?).
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Let us prove that £ is a wandering subspace for the operators AY2T™ n > 0,
that is AY2T"L L AYV2T™L for n # m. Indeed, for [,I' € £ we have if n > 1
and m = 0,

<A1/2Tnl,A1/2l,> _ <l,T*nAl/> _ <l,T*(n_1)A1/2T*A1/2l/> =0,
and if n,m > 1, m < n, then
<A1/2Tnl,Al/2Tmll> <l,T*nATmll> _ <l,T*(n7m)T*mATml/>
<Z’T*(n7m)Al/> _ <l’T*(nfmfl)Al/QT*Al/Ql/>
= 0.

Here we used the fact that 7" is also a regular A-isometry for m > 1.
Now we define the subspace

My = AVPTIL =\ AVPTIL =\ AT (LS N(4)),
n=0 n=0 n=0

which is invariant for AY2T™ (m > 0) because using the regularity condition
one obtains for n,m > 0,

AVRTMAYET L = ATML = AMETTAYEL C AMRPTTL C A,

In particular, H, reduces A. Also, H, is invariant for T*mAY2 m > 1. For this,
firstly we remark that T*AL = {0} since AY2L C L. So, if m > n > 0 then

T A2 AV L = T AL = {0},
and in the case m < n we get
T AVEAYRPTNL = T AT L = T AR AV L =
AT L C H,,

because T*™AY2T™ = AY2 T being also a regular A'/2-contraction (by Theo-
rem 2.6 [8]). Thus it follows that H, reduce AY/2T™ for any n. Now we remark
that H, is invariant for 7™ because

T*AVRTL = T*AYPTT L = AVPT ML C A,
if n > 1, and T*AY2L = {0} (the case n = 0).

Next, we prove that

MHo=HOH, =AYV T"L)*

n=0
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is the maximum subspace which reduces AY2T to a normal operator. First, it
is easy to see that

Hg={heH: T™Ah e R(AV2T), n >0} = [|(T*"AY?) "'t

n=0
Let D be the self-commutator of AY/2T, that is
D =T*AT — AV?TT* AV? = AV2(T — TT*) A2,

Clearly DL C AL C L, hence L is a reducing subspace for D. It is also known
from Theorem 1.4 [3] that the maximum subspace which reduces A/?T to a
normal operator is

H, ={heH: DT*"AV?hL =0, n>0}.

We will show that H, = H,.

Let h € Hy, h =1+ k where | € £ and k € R(AY2T). Let {h,} C H such
that k = lim,, AY/?Th,,. Then AY?(h — k) € R(AY2T) and A'/?] € L, therefore
A'2] = 0 and A'Y/2h = A'/2k. Thus we obtain

AYVRTT* AV 2R = AV2TT* AY2K = lim AY2TT* A2 AV 2T,
= lim AY2T Ah,, = lim AA/?Th,, = Ak = Ah,

which means Dh = 0. Hence DH, = {0}, that is the operator A'/T is normal
on Hg4, which gives the inclusion H, C H,.

Now let h € H,. Since (AY2T)*h € H,, one has DT*A'/2h = 0, hence using
the regularity condition on A and T we obtain

AT*A1/2h :Al/QTT*A1/2T*A1/2h _ A1/2TA1/4T*A1/2T*A1/4h
:AI/QTAI/QT*ZAI/Qh _ ATT*QAI/Zh
This implies by the injectivity of A%/2 on his range that
T*Ah = AY2T* AV2h = AV2TT2 AV 20 € R(AY?T).

Now using an approximation polynomial for the square root Al/? (as in [6], pg.
261), one infers that T* A'/2h € R(AY2T). This yields to T*2Ah = (T* AY/?)?h €
R(AL/2T), and as above T*2AY/2h € R(AL/2T). Then by induction one obtains
T AV2h € R(AV2T) for any n > 1, which gives h € H,. Therefore we have
H, C Hq and finally H,, = H,.

Consequently, H,, has the form (11), and N'(A) C H,, because N'(A) C L,
which implies that H, = H © H, reduces AY2T to a pure injective quasinormal
operator. The proof is finished. QED
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Theorem 10 can be completed by the following

11 Theorem. Let T be a reqular A-isometry on H and V be the unique
partial isometry on H satisfying VAY? = AV2T and N (V) = N(A). Then the
subspaces from (10) and (11) have the form

Hp = ﬁ VPH O N(A) = ﬁ ViR (A) @ N(A), (12)
n=0 n=0

and respectively

HEH, = éV”(/\/(V*) SN (4)) = é%"/\/(%*), (13)
n=0 n=0

where Vo = V|W is an isometry on R(A). Furthermore, we have

L=NV*) =NV e N(A) = (AV) TN (), (14)

and

AL = LOR(A) = N(V5). (15)
In particular, one has £ = N (V) if and only if A is injective.

PROOF. Let A, T,V as above. Then AY2T is quasinormal and A'/2T =
VA2 is just the polar decomposition of AY?T because |AY?T| = AY? and
N(V) = N(A2T) = N(A). Also, N(V*) = N(T*A'/?) = £ and V commutes
with A2 hence NV (A) reduces V. Thus for h € H we have

VAY?h = AV2Th = Vy A2,

therefore V]W = Vp and Vp is an isometry on R(A) because V is a partial
isometry with V' (V) = N(A). In addition one has

N(V5) =N(V")NR(A) = LOR(A),

or equivalently £ = N (V7)) @ N (A). Also, for h € H we have (T being a regular
A'/2_contraction)

T*A1/2h — A1/4‘/0*A1/4h — %*Al/Zh,

because V commutes with A1/2|@. Hence h € L if and only if AY2h € N(V§),

which gives that £ = (AY2)"'N/(V{"). Thus, all relations (14) and the second
relation from (15) are proved.
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Next, obviously one has AY/2£ ¢ £NR(A). Conversely, let h € £NR(A)
such that h L AY2L. Then Ah € AY2L, so h 1 Ah which gives AY2h = 0.
Hence h € R(A) NN (A), that is h = 0. Thus we infer that AY/2L = £ N R(A),
this being the first relation from (15).

Now, from (11) we obtain

HOH, = (7 AT L = §7 vrAl2L
n=0 n=0

=P VvV eNA) = P VENIE),
n=0 n=0
which give the relations (12). This shows that H © H,, is the shift part in R(A)
for the isometry Vj, hence we have

R(A)© (H O Hn) ﬂ VIR(A) ﬂ VH,

and finally we obtain the relations (12). It is clear from (14) that £ = N (V) if
and only if A is injective. This ends the proof.

According to [9], an operator T' € B(H) is called an A-weighted isometry if
T*T = A. Then we can also describe the above subspace H,, using this concept,
as follows.

12 Proposition. Let T be a reqular A-isometry on H and H,, be as above.
Then H,, is the mazimum subspace which reduces A and AY?*T on which
(AV2T)* is an A- weighted isometry. Moreover, one has H, = Ry®N (A), where
Ry is the unitary part in T\’,( ) for Vo, Viy being as in Theorem 11. In addition,
(T'|n,,)" is an A-isometry on Ry.

ProOF. From (12) we infer H,, = R, ® N(A) and as AY/?T is normal
on H, we obtain AY?TT*AY? = A on H,, and this means that (AY2T)* is
an A-weighted isometry on H,,. Conversely, both the previous relation and the
hypothesis 7* AT = A imply that A'/2T is normal, hence any reducing subspace
for A and AY/2T on which T*A'/2 is an A-weighted isometry is contained in H,,.
In conclusion, H,, is the maximum subspace with the above quoted property.

Now since H,, is invariant for 7" and A, R, will be invariant for A and
(T'|y,)*, and we prove that (T|y,, )" is an A-isometry on R,. Let h € R,. As
Ry C R(A) we have h = lim,, A'/?h,, for some sequence {h,} C H. Then if P,
is the orthogonal projection onto H,,, we have

AY2(T)y )*h = AY2P, T*h = P, AY?T*h = P,(lim AY?T* A'/?h,,)
= P, im T* Ah,, = P,T*AY?h = T* AY/?h,
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because H,, reduces A and AY/2T. Next we obtain
|AY2(T |y, )* bl > = [|T* AY21||> = (AYPTT* AY?h, by = (Ah, h) = || AY?R]|,

because A'/2T is normal on R,. This relation just shows that the operator
(T|n,)*|», is an Alg,-isometry on R,. This ends the proof. QED

Remark from the above proof that in fact we have
ATy, )" h = (T, ) AYVPh - (h € Ru),

that is (T'|3,)*|r, commutes with AY2?|x , but (T|s,)* and A'/?|y, are not
commutative on all H,, in general. Concerning the commutative case we have
the following proposition, where by (i) we recover the fact that the above sub-
space My, coincides with the subspace #H, from (8), and by (i7) and (iii) we
characterize the subspace H, © N(A) and H & H,, respectively, as reducing
subspaces for A and T, in H.

13 Proposition. Let T be an A-isometry on H such that AT =TA. Then
the following assertions hold:

(i) Hy is the mazximum reducing subspace for A and T, on which T is an
A-isometry.

(i1) Ry = Hn O N(A) is the mazimum subspace which reduces T to a unitary
operator such that R, = AR,.

(i1i) Hp = H & Hy, is the mazimum subspace which reduces T' to a shift such
that H, = AH,,.

In particular, if A is injective then T is an isometry and H = H, © H, is the
von Neumann-Wold decomposition for T.

PrOOF. Let V be the isometry from Theorem 11. Under the assumption
AT = TA we have VAY2 = AY2T = TA'Y2 and we infer that T|m =

V\m = Vb so that T is an isometry on R(A). Hence, from Theorem 11 we
have that R, reduces A and T such that T is unitary on R, which implies that
T* is an A-isometry on H,,. So, H,, C H, (the subspace from (8)) and trivially
H. C Hy, because Hy © N(A) reduces T to a normal operator. This gives the
assertion ().

Now one has AR, C Ry, and if h € R,OAR,, then Ah = 0 that is h € N'(A),
and since R, C R(A) we have h = 0. Hence R, = AR, and T is unitary on
R.. Let M C H be another subspace having the above properties of R,,. Since
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T'|arq is unitary and T = V} is completely non unitary on H & H,,, it follows that
M C H,,. Thus we obtain

M=AMC AH,, = AR, =R,

and consequently R, has the required properties in (ii).

Next, from Theorem 11 we have that H, reduces 71" to a shift because T' = Vj
on H,. As H, also reduces A and H, C R(A), one obtains (as for R,) that
H, = AH,. If M C H is another subspace which reduces T" to a shift such

that M = AM, then M C R(A) and from the assertion (i) it follows that
M C R(A) © Ry = H,p. So H,, has the required properties in (iii).

Clearly, if N(A) = {0} one has T' = V, therefore T is an isometry on H,
while H,, = R, and H,, are the unitary and shift parts in H for T', respectively.

The proof is finished.

As an application to quasi-isometries we have the following

14 Corollary. Let T' be a quasi-isometry on ‘H such that |T|T is a quasi-
normal operator. Then |T|T' is normal if and only if

N(T**T) = N (T).

PRrROOF. From the hypothesis we infer that T is a T*T-isometry which is
also regular because S = |T'|T is quasinormal. Let 7' = W|T'| be the polar de-
composition of 7. Then Theorem 2.1 [4] ensures that |T'|WW is a partial isometry
with N(|T|W) = N(|T|) = N(]S|). Hence S = |T|W|T| is the polar decomposi-
tion of S. Now the corresponding subspace from (13) which reduce S to a pure
operator is

Hy, = P S" WV (W*|T|) © N(T)).
n=0
But we have
N(WH|T[) = N(S*) = N(T*|T|) = N(T*|T*) = N(T**T)

where we used the fact that 7*|T|? = |T'|T*|T| (T being a regular T*T-contrac-
tion) and that N (T) = N(|T), N(T*) = N(TT*). Thus we conclude that S is
normal if and only if H, = {0}, or equivalent N'(T**T) = N (T). QED

15 Remark. In general one has T*?T # T* even if T is a quasi-isometry
and |T|T is quasinormal, for instance if T' is the operator on C? given by

T:G 8)
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But any quasi-isometry 7 with ||T|| = 1 satisfies T*2T = T* (see [4], [9]). In
this last case, the assumption that |T'|T" is quasinormal leads to the fact that
|T|T =T and that T*T = (T*T)?, that is T is a quasinormal partial isometry.
Indeed, supposing that |T|T is quasinormal, one has T*T? = |T|T|T| because
||T|T| = |T|. Then with the above remark one obtains 7' = |T'|T'|T"|, whence one
infers

T*T = |T|T*|T*T|T| = |T|T**T?|T| = |T|T*T|T| = (T*T)>.

So T*T is an orthogonal projection, or equivalently T is a partial isometry, and
hence T*T = |T|. Finally, it follows

|T|\T =T*T? =T,

therefore T is a quasinormal partial isometry.

Clearly, any quasinormal partial isometry 7" # 0 is a quasi-isometry with
||T'|| = 1. Having in view this fact, we obtain from Corollary 14 the following

16 Corollary. Let T be a quasinormal partial isometry. Then T is normal
if and only if N(T') = N(T%).

PROOF. Since T is a quasi-isometry and ||T'|| = 1 (supposing T # 0), we
have T* = T*2T by Remark 15. Thus, if N(T') = N(T*) then |T|T is normal
by Corollary 14, and from above remark we find 7" = |T'|T’, hence T is normal.
The converse assertion is trivial. QED

This corollary can be also obtained from Theorem 2.6 [4].
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