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1 Introduction and preliminaries

Let q = pn be a power of the prime p.

It is known ( [12]) that the affine plane AG(2, q) of odd order q can be
extended in the unique way (up to isomorphism) to the Möbius plane of order q
denoted byM(q) (in sense of extending 2−(q2, q, 1) design to 3−(q2+1, q+1, 1)
design). M(q) is a Miquelian Möbius plane, namely it is isomorphic to the
Möbius plane of the elliptic quadric in PG(3, q).

When q is even, the plane AG(2, q) can be extended, in the unique way (up
to isomorphism), to M(q) since the group PGL(4, q) is transitive on the set of
all elliptic quadrics in the projective space PG(3, q) (see [8]).

The plane M(q) is going to be observed in the way of associating it with the
projective line PG(1, q2).

According to [5], 4.3., once the frame for PG(1, q2) (a set of three different
points in PG(1, q2)) has been chosen the projective line PG(1, q) is naturally
embedded into PG(1, q2). The sublines PG(1, q) of PG(1, q2) embedded into
PG(1, q2) are called the Baer sublines (see [10]). Since PGL(2, q2) is transitive
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on frames of PG(1, q2), then it is transitive on the set of all the Baer sublines
of PG(1, q2). According to [2], 6.4, the incidence structure, in which the points
are all points of PG(1, q2) and the circles are all the Baer sublines of PG(1, q2),
together with the natural relation of incidence, is the Miquelian Möbius plane
M(q).

The points of PG(1, q2) can be expressed, in parametric form, as the ele-
ments of GF (q2) ∪ {∞}. The Baer sublines PG(1, q) of the line PG(1, q2) are
exactly the regular Hermitian varieties of PG(1, q2) ( [5], 6.2.1). According to [5],
5.1., and [4], p. 21, the circles of M(q) are the sets of the form

{z ∈ GF (q2) : azz + hz + hz + d = 0}, (1)

where a, d ∈ GF (q), h ∈ GF (q2) and ad− hh 6= 0. The mapping

z → z = zq, for each z ∈ GF (q2),

is the unique involutory automorphism of GF (q2) ( [2], 6.4.2), which is called
the conjugation on GF (q2). Note that in case a = 0, the circle (1) also contains
the point ∞.

It is well known that we can identify the points of AG(2, q) with the elements
of the finite field GF (q2) and with the points of the affine line AG(1, q2). In
Section 2, we show that the circles (1) of M(q) with a = 0 are exactly the lines
of AG(2, q) extended with the point∞ and the circles (1) with a 6= 0, which we
call the regular circles, are affine ellipses of AG(2, q).

For the point z of M(q) which is the vector of 2−dim vector space GF (q2)
over GF (q), we define the ”squared length” by

‖z‖2 := zz ∈ GF (q),

while for the point ∞ by definition we state

‖∞‖2 :=∞.

The vector z is called the conjugated vector of the vector z.

Likewise, for each z, t ∈ GF (q2), the ”squared distance” of any two points
of AG(2, q) is defined by

d(2)(z, t) := ‖z − t‖2.

The previous definition is extended by

d(2)(z,∞) :=∞ and d(2)(∞,∞) := 0.
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It is known ( [2], 6.4.1) that the group AutM(q) ∼= PΓL(2, q2), which consists
of the mappings

z 7→ azψ + b

czψ + d
,

for each z ∈ GF (q2) ∪ {∞}, where a, b, c, d ∈ GF (q2), so that ad − bc 6= 0 and
ψ ∈ AutGF (q2). AutM(q)∞ ∼= AΓL(1, q2), where the elements of AΓL(1, q2)
are the automorphisms of the form

z 7→ gzψ + h,

for each z ∈ GF (q2) ∪ {∞}, g, h ∈ GF (q2), so that g 6= 0 and ψ ∈ AutGF (q2).
These are exactly all automorphisms of M(q) which send regular circles to
regular circles.

The automorphisms of M(q) which preserve the ”squared distance” of any
two points are called the isometries. Let ω be an isometry of M(q). By the
definition of the ”squared distance” of two points ofM(q), for each z ∈ GF (q2),
it follows

d(2)(zω,∞ω) = d(2)(z,∞) =∞.
So, ω fixes the point ∞. Therefore, isometries of M(q) send regular circles to
regular circles.

In this paper, we find the matrix representations of isometries of AG(2, q)
and of the automorphisms of AG(2, q) which send regular circles to regular
circles. We will derive the vector forms of isometries (which can be found also
in [11]) from the corresponding matrix forms. Our method depends on the choice
of an irreducible polynomial λ(x) over GF (q).

Besides, we are going to observe the action of automorphisms of M(q) and
AG(2, q), which send regular circles to regular circles, to the centre, to the
”squared radius” (which we will define for each regular circle) and also to the
”squared distance” of two points.

2 Construction of the field GF (q2) and of the planes

AG(2, q) and M(q)

Let λ(x) = x2 − ex − f ∈ GF (q)[x] be an irreducible polynomial over the
finite field GF (q) of order q = pn, p prime. We denote the roots of λ(x) in a
quadric extension of the field GF (q), by −α and −β. These roots are different
and the discriminant ∆ = e2 + 4f 6= 0 ( [5], 1.4.). So, when p = 2, we have
e 6= 0. It is also known ( [6], [9]) that the quotient ring

GF (q)[x]/(λ(x)) ∼= GF (q)[−α] = {a+ (−α)b | a, b ∈ GF (q)}
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is the field GF (q2). The set {1, α} is one of corresponding bases. Consequently,
we can write elements of GF (q2) in the form z = x + αy = (x, y), where
x, y ∈ GF (q). If we add the point ∞ to them, according to Section 1, we get
the set of all points of M(q).

The group AutGF (q2) is a cyclic group of order 2n which consists of the
mappings

z 7→ zp
i
, 0 ≤ i < 2n,

for each z ∈ GF (q2).
Considering that (−α)q = −β ( [5], 1.2.(iii)), i.e. (−β)q = −α (using the

Binomial theorem), the conjugate vector of the vector z = x+ αy is the vector
z = x+βy. So, for each x, y ∈ GF (q), the conjugation on GF (q2) can be written
as

x+ αy 7→ x+ βy.

For the point ∞ we define ∞ :=∞.
It is easy to show that

‖z‖2 = zz = (x+ αy)(x+ βy) = x2 − exy − fy2

for any vector of the form z = x + αy in the Möbius plane M(q). Likewise,
the ”squared distance” of any two points z1 = x1 + αy1 = (x1, y1) and z2 =
x2 + αy2 = (x2, y2) of the field GF (q2) is

d(2)(z1, z2) = ‖z2 − z1‖2 = (x2 − x1)2 − e(x2 − x1)(y2 − y1)− f(y2 − y1)2.

From the irreducibility of λ(x) = x2 − ex− f ∈ GF (q)[x], it follows that

‖z‖2 = 0⇔ z = 0, where z ∈ GF (q2) and
d(2)(z, w) = 0⇔ z = w, for each z, w ∈ GF (q2) ∪ {∞}.

From (1), it can be derived, that the circles of M(q) are all the lines of AG(2, q)
extended with the point ∞, i.e. the sets

{
(x, y) ∈ GF (q2) | y = ax+ b

}
∪ {∞},

{
(x0, y) ∈ GF (q2) | y ∈ GF (q)

}
∪ {∞},

where x0, a, b ∈ GF (q), along with the regular circles:

K ((x0, y0), R) =
{
(x, y) | (x− x0)2 − e(x− x0)(y − y0)− f(y − y0)2 = R

}

where (x0, y0) ∈ GF (q2) and R ∈ GF (q)∗ = GF (q)\{0}. We say that the
regular circle K ((x0, y0), R) ∈ AG(2, q) has the ”squared radius” R and the
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centre (x0, y0). It is obvious that the regular circle K(z0, R) of the plane M(q)
is the set of the points of M(q) whose the ”squared distance” from the centre
z0 is equal to R. Hence,

K (z0, R) =
{
z ∈ GF (q2) | ‖z − z0‖2 = R

}
.

It is easy to show that the regular circles are ellipses in PG(2, q).

Furthermore, the Miquelian Möbius plane M(q) can be obtained by stereo-
graphic projection of the Möbius plane of the elliptic quadric

O = {〈(x1, x2, x3, x4)〉 | x21 − ex1x2 − fx22 = x3x4} ⊂ PG(3, q)

from the pole 〈(0, 0, 1, 0)〉 to the affine plane x3 = 0 (the pole is mapped to the
point ∞).

Henceforth, we suppose that coefficients of polynomial λ(x) are the elements
of the prime subfield of the field GF (q), i.e. λ(x) = x2− ex− f ∈ GF (p)[x]. Let
us observe the automorphisms of the field GF (q2).

1 Lemma. A mapping ψ : GF (q2) → GF (q2) is an automorphism of
GF (q2) if and only if for each x, y ∈ GF (q) it can be written as

(x+ αy)ψ = xφ + αyφ (2)

or

(x+ αy)ψ = xφ + βyφ, (3)

where φ ∈ AutGF (q).

Proof. Let φ be an automorphism of GF (q). If we define ψ : GF (q2) →
GF (q2) as in (2) or (3), it is not difficult to show (using α2 = −eα + f , β2 =
−eβ + f , eφ = e, fφ = f) that ψ is an automorphism of the finite field GF (q2)
with the property GF (q)ψ = GF (q)φ = GF (q).

To prove the reverse, suppose ψ is an automorphism of GF (q2). Let us show
that ψ is of the form (2) or (3). It is obvious that (GF (q))ψ = GF (q), since
GF (q) is the unique subfield of order q, of the field GF (q2). So if we define
φ := ψ|GF (q), it follows that φ ∈ AutGF (q) and (x + αy)ψ = xφ + αψyφ, for
each x, y ∈ GF (q). To prove the assertion, it is only necessary to prove the
bijectivity of the automorphism ψ on the set {−α,−β} of the roots of λ(x).

Let s(x) = amx
m+ · · ·+a1x+a0 ∈ GF (q2)[x] be a polynomial over GF (q2).

When we define ψ(s(x)) := aψmxm + · · ·+ aψ1 x+ aψ0 then ψ is an automorphism
of the ring GF (q2)[x] of polynomials over GF (q2). It is easy to show that γ ∈
GF (q2) is a root of s(x) if and only if γψ ∈ GF (q2) is a root of ψ(s(x)).
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Since each automorphism of GF (q2) fixes e, f ∈ GF (p), we conclude that

ψ(λ(x)) = x2 − eφx− fφ = x2 − ex− f = λ(x).

So (−α)ψ, (−β)ψ are the roots of λ(x) in GF (q2), i.e. ψ is a bijection on the set
{−α,−β} of the roots of λ(x). Hence, the claim is proven. QED

3 Automorphisms of the planes AG(2, q) and M(q)
which send regular circles to regular circles

Let (x, y) ∈ GF (q2) be arbitrary. It is well known that the group AΓL(2, q)
of all automorphisms of AG(2, q) consists exactly of mappings

(x, y)→ (xφ, yφ)

(
a c
b d

)
+ (r, s), (4)

where r, s, a, b, c, d ∈ GF (q), ad− bc 6= 0 and φ ∈ AutGF (q).

In Section 1, we have seen that all automorphisms of M(q) which send
regular circles to regular circles are exactly automorphisms

z 7→ gzψ + h, (5)

for each z ∈ GF (q2) ∪ {∞}, where g, h ∈ GF (q2), such that g 6= 0 and ψ ∈
AutGF (q2).

Let us observe the matrix representations of these automorphisms.

2 Theorem. An automorphism of AG(2, q) sends regular circles to regular
circles if and only if for each (x, y) ∈ GF (q2) its matrix form is

(x, y) → (xφ, yφ)

(
k l
fl k − el

)
+ (r, s) (6)

or

(x, y) → (xφ, yφ)

(
k l

−fl − ek −k

)
+ (r, s), (7)

where φ ∈ AutGF (q) and r, s, k, l ∈ GF (q), satisfying k2 − ekl − fl2 6= 0. All
these automorphisms form a subgroup of AΓL(2, q) of order 2nq2(q2 − 1).

Proof. We have seen that each automorphism of AG(2, q) which sends
regular circles to regular circles, if we additionally define it to fix the point ∞,
can be written in the form (5). Let ω be one of such automorphisms.

Let us label z := x+αy = (x, y), g := k+αl = (k, l) and h := r+αs = (r, s),
where x, y, k, l, r, s are the elements of the field GF (q).
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Considering that g 6= 0 and λ(x) = x2− ex− f ∈ GF (p)[x] is an irreducible
polynomial over GF (q), it is obvious that ‖g‖2 = k2 − ekl − fl2 6= 0.

We have also seen (Lemma 1) that the automorphism ψ ∈ AutGF (q2) asso-
ciated with ω, can be written as (2) or (3). Let us suppose that (2) holds, i.e.
(x+αy)ψ = xφ+αyφ, for each x, y ∈ GF (q), where φ = ψ|GF (q) ∈ AutGF (q).

If we use 0 = λ(−α) = α2 + eα− f then, from (5), it follows

ω(x+ αy) = (k + αl)(xφ + αyφ) + r + sα =

= kxφ + α2lyφ + α(lxφ + kyφ) + r + sα =

= kxφ + flyφ + α(lxφ + kyφ − elyφ) + r + sα =

= (xφ, yφ)

(
k l
fl k − el

)
+ (r, s).

Similarly if (3) holds, using the fact that α+ β = −e and αβ = −f , we obtain
(7).

To prove the reverse, let us suppose an automorphism ω of AG(2, q) to be
of the form (6), i.e. for each (x, y) ∈ GF (q2)

ω ((x, y)) = (xφ, yφ)

(
k l
fl k − el

)
+ (r, s)

where r, s, k, l ∈ GF (q), satisfying k2 − ekl− fl2 6= 0 and φ ∈ AutGF (q). Since
0 = λ(−α) = α2 + eα− f , we get

ω ((x, y)) =
(
kxφ + flyφ + r, lxφ + (k − el)yφ + s

)

= (k + αl)(xφ + αyφ) + r + sα.

Once again, if we label z := x+ αy = (x, y), g := k + αl = (k, l), h := r + αs =
(r, s) and define zψ = (x + αy)ψ := xφ + αyφ, it follows that ψ ∈ AutGF (q2),
ψ|GF (q) = φ ∈ AutGF (q) (according to Lemma 1) and ‖g‖2 = k2−ekl−fl2 6=
0. Finally, we get ω(z) = gzψ + h, so ω sends regular circles of AG(2, q) to
regular circles of that plane.

The proof is similar in the case when ω ∈ AΓL(2, q) is of the matrix form
(7). QED

It is very important to observe the effect of automorphisms of AG(2, q) and
M(q) which send regular circles to regular circles, to the centre and to the
”squared radius” of a regular circle. Now, we have

3 Lemma. An automorphism ω ∈ AΓL(2, q) of the form (6) or (7) sends
the regular circle K ((x0, y0), R) of the affine plane AG(2, q) to the regular circle
K
(
(x0, y0)

ω, Rφ(k2 − ekl − fl2)
)
, where x0, y0 ∈ GF (q) and R ∈ GF (q)∗.
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Proof. Let ω be an automorphism of AG(2, q) with the matrix form (6),
i.e.

ω((x, y)) = (xφ, yφ)

(
k l
fl k − el

)
+ (r, s),

for each (x, y) ∈ GF (q2), where r, s, k, l are elements of the field GF (q), such
that k2−ekl−fl2 6= 0, φ ∈ AutGF (q). Then, for any (x, y) ∈ GF (q2), we obtain
ω((x, y)) = (kxφ+flyφ+ r, lxφ+(k− el)yφ+ s) = (k+ lα)(xφ+yφα)+ (r+ sα)
(using α2 = −eα+ f). For each (x, y) ∈ GF (q2), let us label ω((x, y)) = (x̃, ỹ).
Using eφ = e and fφ = f (since e, f ∈ GF (p)), for any point (x, y) of the circle
K ((x0, y0), R) ∈ AG(2, q), we get

(x̃− x̃0)2 − e(x̃− x̃0)(ỹ − ỹ0)− f(ỹ − ỹ0)2 = [k(x− x0)φ + fl(y − y0)φ]2+
− e[k(x− x0)φ + fl(y − y0)φ][l(x− x0)φ + (k − el)(y − y0)φ]+
− f [l(x− x0)φ + (k − el)(y − y0)φ]2 = · · · =

= (k2 − ekl − fl2){[(x− x0)φ]2 − e(x− x0)φ(y − y0)φ − f [(y − y0)2]}φ =

= (k2 − ekl − fl2)[(x− x0)2 − e(x− x0)(y − y0)− f(y − y0)2]φ =

= (k2 − ekl − fl2)Rφ.

So, for each (x, y) ∈ K ((x0, y0), R), we have

(x̃, ỹ) = ω((x, y)) ∈ K
(
(x0, y0)

ω, Rφ(k2 − ekl − fl2)
)
.

Hence, the circle K
(
(x0, y0)

ω, Rφ(k2 − ekl − fl2)
)
is the image of K ((x0, y0), R)

under the automorphism ω.

The proof is similar in the case when ω is of the form (7). QED

4 Remark. From Lemma 3, it is obvious that automorphisms of AG(2, q)
which send regular circles to regular circles preserving the set of those having
equal ”squared radius”.

5 Corollary. An automorphism ω ∈ AΓL(2, q) of the form (6) or (7) sends
the points with the ”squared distance” d to the points with the ”squared distance”
dφ(k2 − ekl − fl2). That is, for any two points (x1, y1), (x2, y2) ∈ GF (q2) ⊂
AG(2, q) we have

d(2) ((x1, y1)
ω, (x2, y2)

ω) = [d(2) ((x1, y1), (x2, y2))]
φ(k2 − ekl − fl2).

Proof. The assertion is true if (x1, y1) = (x2, y2).

In case (x1, y1) 6= (x2, y2) we observe the circle with the centre (x2, y2) which
contains the point (x1, y1) and the claim follows from Lemma 3. QED
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6 Remark. Let us suppose ω is an automorphism of M(q) which sends
regular circles to regular circles, i.e. ω(z) = gzψ+h, where g, h ∈ GF (q2), g 6= 0,
z ∈ GF (q2) ∪ {∞}, ψ ∈ AutGF (q2). If we use g := k + αl ∈ GF (q2)), then
from Lemma 3 and the proof of Theorem 2 it follows that ω sends the regular
circle K(z0, R) ⊆M(q) to the regular circle K(zω0 , Rφ‖g‖2), where z0 ∈ GF (q2),
R ∈ GF (q)∗ and φ = ψ|GF (q) ∈ AutGF (q).

Also, since (∞)ω =∞, then for each z ∈ GF (q2) we obtain

d(2)(zω,∞ω) = d(2)(zω,∞) =∞ = d(2)(z,∞),

as well as d(2)(∞ω,∞ω) = d(2)(∞,∞) = 0. Let us define (∞)φ := ∞. Then,
from Corollary 5, for the ”squared distance” of images of any two points z, t ∈
GF (q2) ∪ {∞} under ω, we have

d(2)(zω, tω) = [d(2)(z, t)]φ‖g‖2.

Remark 6 leads to the following characterization of isometries.

7 Theorem. An automorphism of AG(2, q) is an isometry if and only if it
sends regular circle to regular circle preserving the ”squared radius”.

Proof. Suppose that ω is an isometry of AG(2, q). Let us take the circle
K1 = K(z0, R). According to the definition of isometry, ω preserves the “squared
distance” of any two points of AG(2, q). So, if we take an arbitrary point z1 ∈ K1,
then from d(2)(z0, z1) = R, it follows d(2)(zω0 , z

ω
1 ) = R, i.e. zω1 ∈ K(zω0 , R).

Hence, it is shown that K(zω0 , R) is the image of the circle K1. Therefore, we can
conclude that ω sends regular circle to regular circle with the same “squared
radius”.

To prove the reverse let us assume that ω is an automorphism of AG(2, q)
which sends regular circle to regular circle preserving the “squared radius”.
So ω is of the form (5). From Remark 6, it follows that ω sends arbitrary
regular circle with the “squared radius” R ∈ GF (q)∗ to regular circle with the
“squared radius” Rφ‖g‖2 (where φ = ψ|GF (q) ∈ AutGF (q)). Therefore, for
each R ∈ GF (q)∗, we obtain

R = Rφ‖g‖2. (8)

If we put R = 1 into the previous equation, we get ‖g‖2 = 1. So, from (8), for
each R ∈ GF (q)∗, we have R = Rφ. Hence, φ is an identity of AutGF (q). From
Remark 6, it follows d(2)(zω, tω) = d(2)(z, t), where z, t are any of two points of
M(q). So ω is an isometry of M(q). QED

Finally, we obtain the matrix representations for isometries of AG(2, q) and
M(q).
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8 Theorem. An automorphism of AG(2, q) is an isometry if and only if
for each (x, y) ∈ GF (q2) its matrix form is one of the following

(x, y) → (x, y)

(
k l
fl k − el

)
+ (r, s) (9)

or

(x, y) → (x, y)

(
k l

−fl − ek −k

)
+ (r, s), (10)

where r, s, k, l ∈ GF (q), satisfying k2− ekl−fl2 = 1. All isometries of AG(2, q)
form a subgroup of AΓL(2, q) of order 2(q + 1)q2.

Proof. According to Theorem 7, an isometry of AG(2, q) sends any regular
circle to regular circle. So, by Theorem 2, an isometry of AG(2, q) is of the form
(6) or (7). Besides, according to the proof of Theorem 2 (where we have labeled
g = k + αl) we get φ = id and k2 − ekl − fl2 = 1. Hence, isometries are of the
form (9) or (10).

To prove the reverse, it has to be shown that each automorphism of AG(2, q)
with the matrix form (9) or (10) is an isometry of AG(2, q). Let us suppose ω
is of the form (9). From Theorem 2 and Corollary 5, for each (x1, y1), (x2, y2) ∈
AG(2, q), it follows that

d(2) ((x1, y1)
ω, (x2, y2)

ω) = d(2) ((x1, y1), (x2, y2)) .

Hence, ω is an isometry of AG(2, q). Similar proof holds in the case when ω is
of the form (10).

It is easy to verify that all isometries ofAG(2, q) form a subgroup ofAΓL(2, q).
Let us find the order of that group.

There are exactly 2q2 isometries of AG(2, q) associated with each ordered
pair (k, l) ∈ GF (q)2 satisfying the condition k2 − ekl− fl2 = 1. The number of
such ordered pairs is equal to the number of points of the circles

K ((0, 0), 1) =
{
(x, y) ∈ GF (q2) | x2 − exy − fy2 = 1

}
.

This number is q+1, hence, there are exactly 2(q+1)q2 of isometries of AG(2, q).
QED
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