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Abstract. The notion of rare continuity introduced by Popa [12]. In this paper, we intro-
duce a new class of functions called rarely δs-continuous functions and investigate some of its
fundamental properties. This type of continuity is a generalization of super continuity [10].
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1 Introduction

Levine [7] defined semiopen sets which are weaker than open sets in topolog-
ical spaces. After Levine’s semiopen sets, mathematicians gave in several papers
different and interesting new open sets as well as generalized open sets. In 1968,
Velic̆ko [13] introduced δ-open sets, which are stronger than open sets, in order
to investigate the characterization of H-closed spaces. In 1997, Park et al. [11]
have introduced the notion of δ-semiopen sets which are stronger than semiopen
sets but weaker than δ-open sets and investigated the relationships between sev-
eral types of open sets. In 1979, Popa [12] introduced the useful notion of rare
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continuity as a generalization of weak continuity [6]. The class of rarely contin-
uous functions has been further investigated by Long and Herrington [8] and
Jafari [3] and [4].

The purpose of the present paper is to introduce the concept of rare δs-
continuity in topological spaces as a generalization of super continuity. We also
investigate several properties of rarely δs-continuous functions. The notion of
I.δs-continuity is also introduced which is weaker than super-continuity and
stronger than rare δs-continuity. It is shown that when the codomain of a func-
tion is regular, then the notions of rare δs-continuity and I.δs-continuity are
equivalent.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y ) denote
topological spaces on which no separation axioms are assumed unless explic-
itly stated. If A is any subset of a space X, then Cl(A) and Int(A) denote the
closure and the interior of A, respectively.

A subset A of X is called regular open (resp. regular closed ) if A =
Int(Cl(A)) (resp. A = Cl(Int(A))). Recall that a subset A of X is called semi-
open [7] if A ⊂ Cl(Int(A)). The complement of a semi-open sets is called semi-
closed. A rare or codense set is a set A such that Int(A) = ∅, equivalently, if
the complement X \ A is dense. A point x ∈ X is called a δ-cluster [13] of A
if A ∩ U 6= ∅ for each regular open set U containing x. The set of all δ-cluster
points of A is called the δ-closure of A and is denoted by Clδ(A). A subset A is
called δ-closed if Clδ(A) = A. The complement of a δ-closed set is called δ-open.
The δ-interior of a subset A of a space (X, τ), denoted by Intδ(A), is the union
of all regular open sets of (X, τ) contained in A. A topological space (X, τ) is
said to be semi-regular [2] if for each semi-closed set A and any point x ∈ X \A,
there exist disjoint semi-open sets U and V such that A ⊂ U and x ∈ V .

A subset A of a topological space X is said to be δ-semiopen sets [11] if
there exists a δ-open set U of X such that U ⊂ A ⊂ Cl(U), equivalently if
A ⊂ Cl(Intδ(A)). The complement of a δ-semiopen set is called a δ-semiclosed
set. A point x ∈ X is called the δ-semicluster point of A if A ∩ U 6= ∅ for every
δ-semiopen set U of X containing x. The set of all δ-semicluster points of A is
called the δ-semiclosure of A, denoted by sClδ(A) and The δ-semiinterior of A,
denoted by sIntδ(A), is defined as the union of all δ-semiopen sets contained in
A. We denote the collection of all δ-semiopen (resp. δ-semiclosed, δ-open, regular
open and open) sets by δSO(X) (resp. δSC(X), δO(X), RO(X) and O(X)). We
set δSO(X,x) = {U | x ∈ U ∈ δSO(X)}, δO(X,x) = {U | x ∈ U ∈ δO(X)},
RO(X,x) = {U | x ∈ U ∈ RO(X)} and O(X,x) = {U | x ∈ U ∈ O(X)}.
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1 Lemma. The intersection (resp. union) of an arbitrary collection of δ-
semiclosed (resp. δ-semiopen) sets in (X, τ) is δ-semiclosed (resp. δ-semiopen)

2 Corollary. Let A be a subset of a topological space (X, τ). Then the fol-
lowing properties hold:

(1) sClδ(A) = ∩{F ∈ δSC(X, τ) : A ⊂ F}.

(2) sClδ(A) is δ-semiclosed.

(3) sClδ(sClδ(A)) = sClδ(A).

3 Lemma ( [1]). For subsets A and Ai (i ∈ I) of a space (X, τ), the fol-
lowing hold:

(1) A ⊂ sClδ(A).

(2) If A ⊂ B, then sClδ(A) ⊂ sClδ(B).

(3) sClδ(∩{Ai : i ∈ I}) ⊂ ∩{sClδ(Ai) : i ∈ I}.

(4) sClδ(∪{Ai : i ∈ I}) = ∪{sClδ(Ai) : i ∈ I}.

(5) A is δ-semiclosed if and only A = sClδ(A).

4 Lemma (Park et al. [11]). For a subset A of a space (X, τ), the following
hold:

(1) A is a δ-semiopen set if and only if A = sIntδ(A).

(2) X − sIntδ(A) = sClδ(X −A) and sIntδ(X −A) = X − sClδ(A).

(3) sIntδ(A)) is a δ-semiopen set.

5 Definition. A function f : X → Y is called:

1) Weakly continuous [6] (resp. almost weakly-δs-continuous ) if for each
x ∈ X and each open set G containing f(x), there exists U ∈ O(X,x)
(resp. U ∈ δSO(X,x)) such that f(U) ⊂ Cl(G).

2) Rarely continuous [12] if for each x ∈ X and each G ∈ O(Y, f(x)) , there
exist a rare set RG with G ∩ Cl(RG) = ∅ and U ∈ O(X,x) such that
f(U) ⊂ G ∪RG.

3) super-continuous [10] if the inverse image of every open set in Y is δ-open
in X.
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3 Rare δs-continuity

6 Definition. A function f : X → Y is called rarely δs-continuous if for
each x ∈ X and each G ∈ O(Y, f(x)) , there exist a rare set RG with G ∩
Cl(RG) = ∅ and U ∈ δSO(X,x) such that f(U) ⊂ G ∪RG.

7 Example. Let X = Y = {a, b, c} and τ = σ = {X, ∅, {a}}. Then the
identity function f : (X, τ)→ (Y, σ) is rare δs-continuous.

Question 1 Is there any nontrivial example of a rarely δs-continuous func-
tion?

8 Theorem. The following statements are equivalent for a function f :
X → Y :

(1) f is rarely δs-continuous at x ∈ X.

(2) For each set G ∈ O(Y, f(x)), there exists U ∈ δSO(X,x) such that
Int[f(U) ∩ (Y \G)] = ∅.

(3) For each set G ∈ O(Y, f(x)), there exists U ∈ δSO(X,x) such that
Int[f(U)] ⊂ Cl(G).

(4) For each G ∈ O(Y, f(x)), there exists a rare set RG with G ∩ Cl(RG) = ∅
such that x ∈ sIntδ(f

−1(G ∪RG)).

(5) For each G ∈ O(Y, f(x)), there exists a rare set RG with Cl(G) ∩RG = ∅
such that x ∈ sIntδ(f

−1(Cl(G) ∪RG)).

(6) For each G ∈ RO(Y, f(x)), there exists a rare set RG with G∩Cl(RG) = ∅
such that x ∈ sIntδ(f

−1(G ∪RG)).

Proof. (1)→ (2) : Let G ∈ O(Y, f(x)). By f(x) ∈ G ⊂ Int(Cl(G)) and the
fact that Int(Cl(G)) ∈ O(Y, f(x)), there exist a rare set RG with Int(Cl(G)) ∩
Cl(RG) = ∅ and a δ-semiopen set U ⊂ X containing x such that f(U) ⊂
Int(Cl(G)) ∪ RG. We have Int[f(U) ∩ (Y − G)] = Int[f(U)] ∩ Int(Y − G) ⊂
Int[Cl(G) ∪RG] ∩ (Y − Cl(G)) ⊂ (Cl(G) ∪ Int(RG)) ∩ (Y − Cl(G)) = ∅.
(2)→ (3) : It is straightforward.
(3) → (1) : Let G ∈ O(Y, f(x)). Then by (3), there exists U ∈ δSO(X,x) such
that Int[f(U)] ⊂ Cl(G). We have f(U) = [f(U) − Int(f(U))] ∪ Int(f(U)) ⊂
[f(U)− Int(f(U))]∪Cl(G) = [f(U)− Int(f(U))]∪G∪ (Cl(G)−G) = [(f(U)−
Int(f(U))) ∩ (Y −G)] ∪G ∪ (Cl(G)−G).
Set R∗ = [f(U) − Int(f(U))] ∩ (Y − G) and R∗∗ = (Cl(G) − G). Then R∗ and
R∗∗ are rare sets. More RG = R∗ ∪ R∗∗ is a rare set such that Cl(RG) ∩G = ∅
and f(U) ⊂ G ∪RG. This shows that f is rarely-δs-continuous.
1) → 4) : Suppose that G ∈ O(Y, f(x)). Then there exists a rare set RG with
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G ∩ Cl(RG) = ∅ and U ∈ δSO(X,x) such that f(U) ⊂ G ∪ RG. It follows that
x ∈ U ⊂ f−1(G ∪RG). This implies that x ∈ sIntδ(f

−1(G ∪RG)).
4) → 5): Suppose that G ∈ O(Y, f(x)). Then there exists a rare set RG with
G ∩ Cl(RG) = ∅ such that x ∈ sIntδ(f

−1(G ∪ RG)). Since G ∩ Cl(RG) = ∅,
RG ⊂ Y − G, where Y − G = (Y − Cl(G)) ∪ (Cl(G) − G). Now, we have
RG ⊂ (RG ∪ (Y −Cl(G))∪ (Cl(G)−G)). Set R∗ = RG ∩ (Y −Cl(G)). It follows
that R∗ is a rare set with Cl(G) ∩R∗ = ∅. Therefore x ∈ sIntδ[f

−1(G ∪RG)] ⊂
sIntδ[f

−1(Cl(G) ∪R∗)].
5) → 6) : Assume that G ∈ RO(Y, f(x)). Then there exists a rare set RG with
Cl(G)∩RG = ∅ such that x ∈ sIntδ[f

−1(Cl(G)∪RG)]. Set R∗ = RG∪(Cl(G)−G).
It follows that R∗ is a rare set and G ∩ Cl(R∗) = ∅. Hence
x ∈ sIntδ[f

−1(Cl(G)∪RG)] = sIntδ[f
−1(G∪(Cl(G)−G)∪RG)] = sIntδ[f

−1(G∪
R∗)].
6)→ 2): Let G ∈ O(Y, f(x)). By f(x) ∈ G ⊂ Int(Cl(G)) and the fact that
Int(Cl(G)) ∈ RO(Y ), there exist a rare set RG and Int(Cl(G)) ∩ Cl(RG) = ∅
such that x ∈ sIntδ[f

−1(Int(Cl(G))∪RG)]. Let U = sIntδ[f
−1(Int(Cl(G))∪RG)].

Hence, U ∈ δSO(X,x) and, therefore f(U) ⊂ Int(Cl(G)) ∪RG. Hence, we have
Int[f(U) ∩ (Y −G)] = ∅. QED

9 Theorem. A function f : X → Y is rarely δs-continuous if and only if
for each open set G ⊂ Y , there exists a rare set RG with G ∩ Cl(RG) = ∅ such
that f−1(G) ⊂ sIntδ[f

−1(G ∪RG)].
Proof. It follows from Theorem 8. QED

It is shown in [10] that a function f : X → Y is super-continuous if and only
if for each x ∈ X and each G ∈ O(Y, f(x)), there exists U ∈ δO(X,x) such that
f(U) ⊂ G.

We define the following notion which is a new generalization of super-
continuity.

10 Definition. A function f : X → Y is I.δs-continuous at x ∈ X if for
each set G ∈ O(Y, f(x)), there exists U ∈ δSO(X,x) such that Int[f(U)] ⊂ G.
If f has this property at each point x ∈ X, then we say that f is I.δs-continuous
on X.

11 Remark. It should be noted that super-continuity implies I.δs-continu-
ity and I.δs-continuity implies rare δs-continuity. But the converses are not true
as shown by the following examples.

12 Example. Let X = Y = {a, b, c} and τ = σ = {X, ∅, {a}}. Then a
function f : (X, τ) → (Y, σ) defined by f(a) = f(b) = a and f(c) = c, is
I.δs-continuous. Since f is not continuous, then it is not super continuous.
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13 Example. Let (X, τ) and (Y, σ) be the same spaces as in the above
Example. Then the identity function f : (X, τ) → (Y, σ) is rare δs-continuous
but it is not I.δs-continuous.

14 Theorem. Let Y be a regular space. Then a function f : X → Y is
I.δs-continuous on X if and only if f is rarely δs-continuous on X.

Proof. We prove only the sufficient condition since the necessity condition
is evident.

Let f be rarely δs-continuous on X and x ∈ X. Suppose that f(x) ∈ G,
where G is an open set in Y . By the regularity of Y , there exists an open set
G1 ∈ O(Y, f(x)) such that Cl(G1) ⊂ G. Since f is rarely δs-continuous, then
there exists U ∈ δSO(X,x) such that Int[f(U)] ⊂ Cl(G1) (Theorem 8). This
implies that Int[f(U)] ⊂ G and therefore f is I.δs-continuous on X. QED

We say that a function f : X → Y is δs-semiopen if the image of a δ-
semiopen set is semiopen.

15 Theorem. If f : X → Y be a δs-semiopen rarely δs-continuous function,
then f is almost weakly δs-continuous.

Proof. Suppose that x ∈ X and G ∈ O(Y, f(x)). Since f is rarely δs-
continuous, there exists U ∈ δSO(X,x) such that Int(f(U)) ⊂ Cl(G). Since f is
δs-semiopen, f(U) is semiopen and hence f(U) ⊂ Cl(Int(f(U))) ⊂ Cl(G). This
shows that f is weakly δs-continuous. QED

16 Theorem. Let X be a semi-regular space. If f : X → Y is rarely δs-
continuous function, then the graph function g : X → X ×Y , defined by g(x) =
(x, f(x)) for every x in X, is rarely δs-continuous.

Proof. Suppose that x ∈ X and W is any open set containing g(x). It
follows that there exist open sets U and V in X and Y , respectively, such
that (x, f(x)) ∈ U × V ⊂ W . Since f is rarely δs-continuous, there exists G ∈
δSO(X,x) such that Int[f(G)] ⊂ Cl(V ). Let E = U∩G. Since X is semi-regular,
U is δ-open in X and it follows from Lemma 2.4 of [5] that E ∈ δSO(X,x) and
we have Int[g(E)] ⊂ Int(U×f(G)) ⊂ U×Cl(V ) ⊂ Cl(W ). Therefore, g is rarely
δs-continuous. QED

17 Definition. Let A = {Gi} be a class of subsets of X. By rarely union
sets [3] of A we mean {Gi ∪ RGi}, where each RGi is a rare set such that each
of {Gi ∩ Cl(RGi)} is empty.

Recall that a subset B of X is said to be rarely almost compact relative to
X [3] if every cover of B by open sets of X, there exists a finite subfamily whose
rarely union sets cover B. A topological space X is said to be rarely almost
compact if the set X is rarely almost compact relative to X.
A subset K of a space X is said to be δSO-compact relative to X if every cover
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of K by δ-semiopen sets in X has a finite subcover. A space X is said to be
δSO-compact if X is δSO-compact relative to X.

18 Theorem. Let f : X → Y be rarely δs-continuous and K a δSO-
compact relative to X. Then f(K) is rarely almost compact relative to Y .

Proof. Suppose that Ω is an open cover of f(K). Let B be the set of all
V in Ω such that V ∩ f(K) 6= ∅. Then B is an open cover of f(K). Hence for
each k ∈ K, there is some Vk ∈ B such that f(k) ∈ Vk. Since f is rarely δs-
continuous, there exist a rare set RVk with Vk ∩ Cl(RVk) = ∅ and a δ-semiopen
set Uk containing k such that f(Uk) ⊂ Vk∪RVk . Hence there is a finite subfamily
{Uk }k∈△ which covers K, where △ is a finite subset of K. The subfamily {Vk
∪RVk}k∈△ also covers f(K). QED

19 Theorem. Let f : X → Y be rarely continuous and X be a semi-regular
space. Then f is rarely δs-continuous.

Proof. Suppose that x ∈ X and G ∈ O(Y, f(x)). Since f is rarely contin-
uous, by Theorem 1 of [8] exists U ∈ O(X,x) such that Int(f(U)) ⊂ Cl(G).
Since X is semi-regular, U is δ-open and hence U ∈ δSO(X,x). It follows from
Theorem 8 that f is rarely δs-continuous. QED

20 Lemma. (Long and Herrington [8]). If g : Y → Z is continuous and
one-to-one, then g preserves rare sets.

21 Theorem. If f : X → Y is rarely δs-continuous and g : Y → Z is a
continuous injection, then g ◦ f : X → Z is rarely δs-continuous.

Proof. Suppose that x ∈ X and (g ◦ f)(x) ∈ V , where V is an open set
in Z. By hypothesis, g is continuous, therefore G = g−1(V ) is an open set Y
containing f(x) such that g(G) ⊂ V . Since f is rarely δs-continuous, there exists
a rare set RG with G ∩ Cl(RG) = ∅ and a δ-semiopen set U containing x such
that f(U) ⊂ G ∪ RG. It follows from Lemma 20 that g(RG) is a rare set in Z.
Since RG is a subset of Y \ G and g is injective, we have Cl(g(RG)) ∩ V = ∅.
This implies that (g ◦ f)(U) ⊂ V ∪ g(RG). Hence we obtain the result. QED

A function f : X → Y is called pre-δs-open if f(U) is δ-semiopen in Y for
every δ-semiopen set U of X.

22 Theorem. Let f : X → Y be a pre-δs-open surjection and g : Y → Z
a function such that g ◦ f : X → Z is rarely δs-continuous. Then g is rarely
δs-continuous.

Proof. Let y ∈ Y and x ∈ X such that f(x) = y. Let G ∈ O(Z, (g ◦f)(x)).
Since g◦f is rarely δs-continuous, there exists a rare set RG with G∩Cl(RG) = ∅
and U ∈ δSO(X,x) such that (g ◦ f)(U) ⊂ G ∪ RG. But f(U) (say V ) is
a δ-semiopen set containing f(x). Therefore, there exists a rare set RG with
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G ∩ Cl(RG) = ∅ and V ∈ δSO(Y, y) such that g(V ) ⊂ G ∪ RG, i.e., g is rarely
δs-continuous. QED

23 Definition. A space X is called
(1) r-separate [4] if for every pair of distinct points x and y in X, there exist
open sets Ux and Uy containing x and y, respectively, and rare sets RUx , RUy

with Ux ∩ Cl(RUx) = ∅ and Uy ∩ Cl(RUy) = ∅ such that (Ux ∪ RUx) ∩ (Uy ∪
RUy) = ∅,
(2) semi-Hausdorff [9] if for any distinct pair of points x and y in X, there
exist semiopen sets U and V in X containing x and y, respectively, such that
U ∩ V = ∅.

24 Theorem. If Y is r-separate and f : X → Y is a rarely δs-continuous
injection, then X is semi-Hausdorff.

Proof. Since f is injective, then f(x) 6= f(y) for any distinct points x and
y in X. Since Y is r-separate, There exist open sets G1 and G2 in Y containing
f(x) and f(y), respectively, and rare sets RG1and RG2 with G1 ∩ Cl(RG1) = ∅
and G2 ∩ Cl(RG2) = ∅ such that (G1 ∪ RG1) ∩ (G2 ∪ RG2) = ∅. Therefore
sIntδ[f

−1(G1 ∪ RG1)] ∩ sIntδ[f
−1(G2 ∪ RG2)] = ∅ . By Theorem 9, we have

x ∈ f−1(G1) ⊂ sIntδ[f
−1(G1 ∪RG1)] and y ∈ f−1(G2) ⊂ sIntδ[f

−1(G2 ∪RG2)].
Since sIntδ[f

−1(G1∪RG1)] and sIntδ[f
−1(G2∪RG2)] are δ-semiopen and as every

δ-semiopen subset is semiopen , then X is a semi-Hausdorff space. QED
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